This invention relates generally to low temperature or cryogenic refrigeration and, more particularly, to pulse tube refrigeration.
A recent significant advancement in the field of generating low temperature refrigeration is the pulse tube system or cryocooler wherein pulse energy is converted to refrigeration using an oscillating gas. Such systems can generate refrigeration to very low levels sufficient, for example, to liquefy helium. One important application of the refrigeration generated by such cryocooler system is in magnetic resonance imaging systems.
One problem with conventional cryocooler systems is contamination of the pulsing gas by the pulse generating equipment. Moreover, a source of inefficiency is a mismatch between the most efficient operating frequency of the cryocooler system and the most efficient operating frequency of the pulse generating system.
Accordingly it is an object of this invention to provide an improved cryocooler or pulse tube system which has reduced contamination potential and more efficient operation.
The above and other objects, which will become apparent to those skilled in the art upon a reading of this disclosure, are attained by the present invention, one aspect of which is:
A method for operating a low frequency cryocooler system comprising:
Another aspect of the invention is:
A low frequency cryocooler system comprising:
As used herein the term “regenerator” means a thermal device in the form of porous distributed mass or media, such as spheres, stacked screens, perforated metal sheets and the like, with good thermal capacity to cool incoming warm gas and warm returning cold gas via direct heat transfer with the porous distributed mass.
As used herein the term “thermal buffer tube” means a cryocooler component separate from the regenerator and proximate the cold heat exchanger and spanning a temperature range from the coldest to the warmer heat rejection temperature for that stage.
As used herein the term “indirect heat exchange” means the bringing of fluids into heat exchange relation without any physical contact or intermixing of the fluids with each other.
As used herein the term “direct heat exchange” means the transfer of refrigeration through contact of cooling and heating entities.
As used herein the term “frequency modulation valve” means a valve or system of valves generating oscillating pressure and mass flow at a desired frequency.
As used herein the term “discharge frequency modulating volume” means the total volume of the discharge conduit, and the reservoir if employed, extending from the compressor discharge to the frequency modulation valve. The discharge frequency modulating volume may be from 0.1 to 10 times the displacement volume of the compressor.
As used herein the term “suction frequency modulating volume” means the total volume of the suction conduit, and the reservoir if employed, extending from the frequency modulation valve to the compressor suction. The suction frequency modulation volume may be from 0.1 to 10 times the displacement volume of the compressor.
The numerals in the Drawings are the same for the common elements.
The invention will be described in detail with reference to the Drawings. Referring now to
The oil-free compressor has a moving element proximate a surrounding wall. In the embodiment of the invention illustrated in
The reciprocating piston 3 generates gas having a pulsing or oscillating motion at the frequency of the alternating current power supplied of at least 25 hertz and typically about 50 to 60 hertz. Check valve system 4, usually termed reed valves, converts the oscillating pressure wave to obtain a compression output at compressor discharge 5 which has small fluctuations at its operating frequency. Examples of gas which may be used as the pulsing gas generated by the oil-free compressor in the practice of this invention include helium, neon, hydrogen, nitrogen, argon, oxygen, and mixtures thereof, with helium being preferred.
The pulsing gas is cooled of the heat of compression in cooler 12 and passed in discharge conduit 18 to frequency modulation valve 17 which, in the embodiment illustrated in
As the pulsing gas passes through the frequency modulation valve its frequency is reduced to the most efficient operating frequency of the cryocooler. The resulting lower frequency pulsing gas generally has a frequency less than 40 hertz, typically has a frequency less than 30 hertz, preferably less than 10 hertz, most preferably less than 5 hertz. The lower frequency pulsing gas is then passed to regenerator 20 of the cryocooler or pulse tube system. Regenerator 20 is in flow communication with thermal buffer tube 40 of the pulse tube system.
The lower frequency pulsing gas applies a pulse to the hot end of regenerator 20 thereby generating an oscillating working gas and initiating the first part of the pulse tube sequence. The pulse serves to compress the working gas producing hot compressed working gas at the hot end of the regenerator 20. The hot working gas is cooled, preferably by indirect heat exchange with heat transfer fluid 22 in heat exchanger 21, to produce warmed heat transfer fluid in stream 23 and to cool the compressed working gas of the heat of compression. Examples of fluids useful as the heat transfer fluid 22, 23 in the practice of this invention include water, air, ethylene glycol and the like. Heat exchanger 21 is the heat sink for the heat pumped from the refrigeration load against the temperature gradient by the regenerator 20 as a result of the pressure-volume work generated by the compressor and the frequency modulation valve.
Regenerator 20 contains regenerator or heat transfer media. Examples of suitable heat transfer media in the practice of this invention include steel balls, wire mesh, high density honeycomb structures, expanded metals, lead balls, copper and its alloys, complexes of rare earth element(s) and transition metals. The pulsing or oscillating working gas is cooled in regenerator 20 by direct heat exchange with cold regenerator media to produce cold pulse tube working gas.
Thermal buffer tube 40 and regenerator 20 are in flow communication. The flow communication includes cold heat exchanger 30. The cold working gas passes in line 60 to cold heat exchanger 30 and in line 61 from cold heat exchanger 30 to the cold end of thermal buffer tube 40. Within cold heat exchanger 30 the cold working gas is warmed by indirect heat exchange with a refrigeration load thereby providing refrigeration to the refrigeration load. This heat exchange with the refrigeration load is not illustrated. One example of a refrigeration load is for use in a magnetic resonance imaging system. Another example of a refrigeration load is for use in high temperature superconductivity.
The working gas is passed from the regenerator 20 to thermal buffer tube 40 at the cold end. Preferably, as illustrated in
Cooling fluid 44 is passed to heat exchanger 43 wherein it is warmed or vaporized by indirect heat exchange with the working gas, thus serving as a heat sink to cool the compressed working gas. Resulting warmed or vaporized cooling fluid is withdrawn from heat exchanger 43 in stream 45. Preferably cooling fluid 44 is water, air, ethylene glycol or the like.
In the low pressure point of the pulsing sequence, the working gas within the thermal buffer tube expands and thus cools, and the flow is reversed from the now relatively higher pressure reservoir 52 into the thermal buffer tube 40. The cold working gas is pushed into the cold heat exchanger 30 and back towards the warm end of the regenerator while providing refrigeration at heat exchanger 30 and cooling the regenerator heat transfer media for the next pulsing sequence. Orifice 50 and reservoir 52 are employed to maintain the pressure and flow waves in phase so that the thermal buffer tube generates net refrigeration during the compression and the expansion cycles in the cold end of thermal buffer tube 40. Other means for maintaining the pressure and flow waves in phase which may be used in the practice of this invention include inertance tube and orifice, expander, linear alternator, bellows arrangements, and a work recovery line connected back to the compressor with a mass flux suppressor. In the expansion sequence, the working gas expands to produce working gas at the cold end of the thermal buffer tube 40. The expanded gas reverses its direction such that it flows from the thermal buffer tube toward regenerator 20. The relatively higher pressure gas in the reservoir flows through valve 50 to the warm end of the thermal buffer tube 40. In summary, thermal buffer tube 40 rejects the remainder of pressure-volume work generated by the compression and frequency modulation system (which comprises the oil-free compressor and the frequency modulation valve) as heat into warm heat exchanger 43.
The expanded working gas emerging from heat exchanger 30 is passed in line 60 to regenerator 20 wherein it directly contacts the heat transfer media within the regenerator to produce the aforesaid cold heat transfer media, thereby completing the second part of the pulse tube refrigerant sequence and putting the regenerator into condition for the first part of a subsequent pulse tube refrigeration sequence. Pulsing gas from regenerator 20 passes back to rotary valve 17 and in suction conduit 19 to suction 6 of compressor 1. Preferably reservoir 16 is employed on suction conduit 19 and the suction frequency modulating volume of suction conduit 19 and reservoir 16 serves a purpose similar to that of the discharge frequency modulating volume.
Now by the use of this invention a cryocooler, i.e. a pulse tube system, may operate at its most efficient frequency rather than being limited to operating at the frequency of the compressor while also avoiding complications caused by oil contamination of the pulsing gas. Although the invention has been described in detail with reference to certain preferred embodiments, those skilled in the art will recognize that there are other embodiments within the spirit and the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
5113663 | Gifford | May 1992 | A |
5389844 | Yarr et al. | Feb 1995 | A |
5398512 | Inaguchi et al. | Mar 1995 | A |
5431551 | Aquino et al. | Jul 1995 | A |
5487272 | Nagao | Jan 1996 | A |
5901737 | Yaron | May 1999 | A |
6094921 | Zhu et al. | Aug 2000 | A |
6127750 | Dadd | Oct 2000 | A |
6138459 | Yatsuzuka et al. | Oct 2000 | A |
6209328 | Kim et al. | Apr 2001 | B1 |
6230499 | Hohne | May 2001 | B1 |
6374617 | Bonaquist et al. | Apr 2002 | B1 |
6378312 | Wang | Apr 2002 | B1 |
6640553 | Kotsubo et al. | Nov 2003 | B1 |
6644038 | Acharya et al. | Nov 2003 | B1 |
20020066276 | Kawano et al. | Jun 2002 | A1 |
20030089116 | Heron | May 2003 | A1 |
20040040315 | Koyama et al. | Mar 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20050198970 A1 | Sep 2005 | US |