The present application is related to four co-pending and commonly-owned applications filed on even date herewith, the disclosure of each being hereby incorporated by reference in their entirety, entitled respectively:
The present invention relates, in general, to medically implantable devices that receive transcutaneous energy transfer (TET), and more particularly, such implant devices that optimize power transfer.
In a TET system, a power supply is electrically connected to a primary coil that is external to a physical boundary, such as the skin of the human body. A secondary coil is provided on the other side of the boundary, such as internal to the body. With a subcutaneous device, both the primary and secondary coils are generally placed proximate to the outer and inner layers of the skin. Energy is transferred from the primary coil to the secondary coil in the form of an alternating magnetic field. The secondary coil converts the transferred energy in the AC magnetic field to electrical power for the implant device, which acts as a load on the secondary coil.
In a TET system, the primary and secondary coils are placed on separate sides of the boundary or skin. This separation typically results in variations in the relative distance and spatial orientation between the coils. Variations in the spacing can cause changes in the AC magnetic field strength reaching the secondary coil, in turn causing power fluctuations and surges in the implant device. Implant devices, such as those used in medical applications, usually rely upon a microcontroller to perform various functions. These microcontrollers require a consistent, reliable power source. Variations in the supplied power, such as sudden changes in voltage or current levels, may cause the device to perform erratically or fail to function at all. Accordingly, one issue associated with conventional TET systems is that the physical displacement of either the primary or secondary coils from an optimum coupling position may cause an unacceptable effect on the output power supplied to the implanted device.
As an example of an implantable device that may benefit from use of TET is an artificial sphincter, in particular an adjustable gastric band that contains a hollow elastomeric balloon with fixed end points encircling a patient's stomach just inferior to the esophago-gastric junction. These balloons can expand and contract through the introduction of saline solution into the balloon. In generally known adjustable gastric bands, this saline solution must be injected into a subcutaneous port with a syringe needle to reach the port located below the skin surface. The port communicates hydraulically with the band via a catheter. While effective, it is desirable to avoid having to adjust the fluid volume with a syringe needle since an increased risk of infection may result, as well as inconvenience and discomfort to the patient.
To that end, in the above-referenced co-pending applications, an implanted infuser device regulates the flow of saline without requiring injection into the subcutaneous port. This system instead transfers AC magnetic flux energy from an external primary coil to a secondary coil that powers the pump in the implant connected to the gastric band within the abdomen. Although TET is not required for powering the device, the long-term nature of these devices benefits from use of TET, allowing an implanted device of reduced size and complexity. Moreover, these devices may remain unpowered between adjustments, which provides additional advantages such as not requiring a battery.
It is known to surgically implant a medical device such as, for example, a cardiac pacemaker or an adjustable gastric band, under the surface of a patient's skin to achieve a number of beneficial results. In order to actively operate within a patient, these medical implants require a reliable, consistent power source. Currently, medical implants are powered by either non-rechargeable batteries, rechargeable batteries that use a TET system to recharge the batteries, or directly by a TET system. In order to transfer sufficient power to the secondary coil of the TET system to operate an implant, TET systems have typically operated at frequencies from 100 kHz to upwards of 30 MHz. At these higher frequency levels, the alternating electromagnetic field that the primary coil generates couples not only to the secondary coil, but also to any metallic objects near it, including a metallic implant case. This parasitic coupling produces eddy currents in the implant case. These eddy currents reduce the amount of effective power transferred to the secondary coil, thereby increasing the amount of power required from the primary coil to drive the implant. In addition, the eddy currents can cause heating of the metallic case. Heating a metallic implant case by more than 2° Celsius above normal body temperature can have derogatory effects on the implant recipient. The level of eddy currents produced in a metallic object is directly proportional to the alternating magnetic field frequency raised to the second power. Accordingly, the greater the frequency of the energy transfer signal, the greater the eddy currents and energy transfer losses. In addition, operating a TET system at frequencies above 100 kHz requires that the system conform to FCC regulations.
To reduce the problems associated with eddy currents and power transfer losses when using a TET system with an implant, it has traditionally been necessary to enclose the implant in a non-metallic material, such as a ceramic outer casing, or to place the secondary coil outside of the implant outer casing and connect the coil by a pair of leads extending into the casing. Alternatively, TET systems have been used as low energy trickle charge systems that operate continuously to recharge internal implant batteries. Each of these solutions to the eddy current problem, however, is either expensive, cumbersome, or increases the complexity of the implant device. Accordingly, in order to reduce the problem of eddy currents when powering an implant, and minimize the issue of FCC regulations, it is desirable to have an energy transfer system that operates at low frequencies. In particular, it is desirable to provide a high power, low frequency TET system in which the secondary coil may be encased within the implant without significant power losses or development of eddy currents.
Although such TET powering of an implant, such as to recharge batteries, is a generally known procedure, using TET for an artificial sphincter system, such as an adjustable gastric band, presents a number of challenges. Adjustable gastric bands are most beneficial to patients that are morbidly obese. Providing a secure location to subcutaneously attach an implant that presents a reduced incident of discomfort often means that the implant is under a thick layer of skin and adipose tissue. A major challenge in using TET thus is transferring magnetic energy between the primary and secondary coils through this thick layer of dermal tissue, which thus reduces the effective amount of power transferred to the implant.
Consequently, a significant need exists for enhancing TET power transfer through the dermis of a patient and into a hermetically sealed case of an implanted medical device without significant power losses.
The invention overcomes the above-noted and other deficiencies of the prior art by providing a transcutaneous energy transfer (TET) system that advantageously transmits between 1 to 100 kHz, thereby achieving an electromagnetic pattern that may more efficiently penetrate a physical boundary such as a metallic case of an implant or human tissue, without excessive power loss due to eddy currents, thereby avoiding heating.
In one aspect of the invention, the transcutaneous energy transfer (TET) system has an external primary power supply that energizes an external primary resonant circuit having a primary coil in electrical communication with a capacitance to form a resonant tank circuit having peak resonance within a range of 1 to 100 kHz. The TET power therefrom reaches an internal secondary resonant circuit including a secondary coil in electrical communication with a capacitance to form a resonant tank circuit having peak resonance within a range of 1 to 100 kHz to power an electrical load.
These and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the description thereof.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the present invention.
Referring now to the drawings in detail, wherein like numerals indicate the same elements throughout the views,
TET system 20 also includes a secondary resonant circuit 34 in a spaced relationship from primary resonant circuit 30. Secondary resonant circuit 34 is located on the opposite side of boundary 28 from primary resonant circuit 30 within implant 22. Secondary resonant circuit 34 is electrically coupled to primary resonant circuit 30 via alternating magnetic field 32, symbolically illustrated in the figures as arrows emanating from primary resonant circuit 30 and propagating towards secondary resonant circuit 34. Secondary resonant circuit 34 generates an electrical signal 36 from field 32. Signal 36 is rectified by a filter 40 and applied to an implant load 42 to operate the implant 22.
Implantable, bi-directional infusing devices that would benefit from enhanced TET powering and telemetry are disclosed in four co-pending and co-owned patent applications filed on May 28, 2004, the disclosure of which are hereby incorporated by reference in their entirety, entitled (1)) “PIEZO ELECTRICALLY DRIVEN BELLOWS INFUSER FOR HYDRAULICALLY CONTROLLING AN ADJUSTABLE GASTRIC BAND” to William L. Hassler, Jr., Ser. No. 10/857,762; (2) “METAL BELLOWS POSITION FEED BACK FOR HYDRAULIC CONTROL OF AN ADJUSTABLE GASTRIC BAND” to William L. Hassler, Jr., Daniel F. Dlugos, Jr., Rocco Crivelli, Ser. No. 10/856,971; (3) “THERMODYNAMICALLY DRIVEN REVERSIBLE INFUSER PUMP FOR USE AS A REMOTELY CONTROLLED GASTRIC BAND” to William L. Hassler, Jr., Daniel F. Dlugos, Jr., Ser. No. 10/857,315; and (4) “BI-DIRECTIONAL INFUSER PUMP WITH VOLUME BRAKING FOR HYDRAULICALLY CONTROLLING AN ADJUSTABLE GASTRIC BAND” to William L. Hassler, Jr., Daniel F. Dlugos, Jr., Ser. No. 10/857,763.
To obtain a high Q factor at a low signal frequency level, capacitor 44 is selected so as to provide a high voltage at a minimum equivalent series resistance (ESR). An example of a suitable type of capacitor for obtaining high voltage/low ESR performance is a chip-on-glass (COG) dielectric capacitor. Additionally, to maximize the Q factor of primary resonant circuit 30, coil 46 is formed so as to minimize the coil impedance and, thus, the power loss in the circuit. One method for minimizing coil impedance in the present invention is to form coil 46 from Litz wire. Litz wire is composed of individual film insulated wires that are braided together to form a single conductor. The Litz wire minimizes power losses in coil 46 due to the skin effect, or tendency of radio frequency current to be concentrated at the surface of the conductor. In addition to Litz wire, other types of high current, low power loss conductors may also be utilized for primary coil 46 in the present invention without departing from the scope of the invention. The combination of the high voltage capacitance with a high current/low power loss coil enables primary resonant circuit 30 to transfer sufficient power to drive an implant, such as, for example, 1 to 4 watts of power, by virtue of using a low transfer signal frequency.
As shown in
In an exemplary embodiment of the present invention, a TET system was experimentally produced having a resonant frequency range of between 1.6 and 1.7 kilohertz and a Q factor greater than 100. In this experimental circuit, primary coil 46 having an outer diameter of 5.25 inches was comprised of one hundred two (102) turns of Litz wire. The Litz wire was comprised of 100 strands of individually insulated thirty (30)-gauge magnet wire. The primary coil was placed in parallel with 9.4 microFarads of capacitance. The capacitance was a high voltage, high current, low ESR, COG dielectric capacitor. In addition, a ferrite core was incorporated with the primary coil 46 as described in the application incorporated by reference above, entitled “TRANSCUTANEOUS ENERGY TRANSFER PRIMARY COIL WITH A HIGH ASPECT FERRITE CORE”
The secondary resonant circuit was comprised of two coils connected in parallel. Each of the coils consisted of 325 turns of thirty-four (34)-gauge magnet wire. The coils each had an outer diameter of 2.4 inches. The parallel secondary coils were connected in series with a capacitance of 1.1 microFarads to create a series tuned tank circuit having a significantly lower Q than the primary resonant circuit. In the experimental circuit, the secondary circuit had a Q in the range of approximately ten (10) to fifteen (15). The experimental TET system transmitted approximately one watt of power between the primary and secondary circuits. The lower Q factor of the secondary resonant circuit enabled the circuit to couple with the primary resonant circuit without being specifically tuned and matched to the primary circuit. This exemplary circuit illustrates one configuration through which the present invention may be implemented. Additional circuit configurations and elements that maximize the Q factor of the primary resonant circuit may also be utilized to achieve low frequency TET power transfer in accordance with the present invention without departing from the scope of the invention.
This enhanced power transfer is depicted in
To achieve the greatest energy transfer efficiency, a highly magnetically permeable ferrite core 162 has been placed within the primary coil 116. The optimum core 162 is of a long, skinny design. Testing indicates that a ferrite core rod 162 with a length of about 3 inches and a width of about 0.75 inches is the optimal size for the given primary coil 116 at which energy transfer is at its most efficient without going into magnetic saturation or wasting energy in the form of eddy current losses within the core 162.
With the long and slender core design, most of the magnetic flux is drawn toward the ferrite core 162, causing the field to collapse radially into the core 162 and changing the shape of the field 152 from circular to elliptical. This effect leads to an increase in the flux density within the secondary coil 18. In an exemplary version, a ferrite core of 3 inches length and 0.75 inches diameter was placed within the center of a 5 inch diameter primary coil 116 of the transcutaneous energy transfer (TET) system 10. With the addition of this core 162, the power coupling efficiency to the secondary TET coil was increased by up to 55%.
While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art.
Number | Name | Date | Kind |
---|---|---|---|
3727616 | Lenzkes | Apr 1973 | A |
3867950 | Fischell | Feb 1975 | A |
4096866 | Fischell | Jun 1978 | A |
4281664 | Duggan | Aug 1981 | A |
4361153 | Slocum et al. | Nov 1982 | A |
4441210 | Hochmair et al. | Apr 1984 | A |
4581018 | Jassawalla et al. | Apr 1986 | A |
4611598 | Hortmann et al. | Sep 1986 | A |
4665896 | LaForge et al. | May 1987 | A |
4681111 | Silvian | Jul 1987 | A |
5109843 | Melvin et al. | May 1992 | A |
5350413 | Miller | Sep 1994 | A |
5507737 | Palmskog | Apr 1996 | A |
5690693 | Wang et al. | Nov 1997 | A |
5715837 | Chen | Feb 1998 | A |
5733313 | Barreras, Sr. et al. | Mar 1998 | A |
5741315 | Lee et al. | Apr 1998 | A |
5741316 | Chen et al. | Apr 1998 | A |
5938669 | Klaiber et al. | Aug 1999 | A |
5974873 | Nelson | Nov 1999 | A |
5991664 | Seligman | Nov 1999 | A |
6058330 | Borza | May 2000 | A |
6102678 | Peclat | Aug 2000 | A |
6115636 | Ryan | Sep 2000 | A |
6208894 | Schulman et al. | Mar 2001 | B1 |
6315769 | Peer et al. | Nov 2001 | B1 |
6324431 | Zarinetchi et al. | Nov 2001 | B1 |
6327504 | Dolgin et al. | Dec 2001 | B1 |
6366817 | Kung | Apr 2002 | B1 |
6430444 | Borza | Aug 2002 | B1 |
6463329 | Goedeke | Oct 2002 | B1 |
6482177 | Leinders | Nov 2002 | B1 |
6505077 | Kast et al. | Jan 2003 | B1 |
6542350 | Rogers | Apr 2003 | B1 |
6585763 | Keilman et al. | Jul 2003 | B1 |
6889087 | Moore | May 2005 | B2 |
6895281 | Amundson et al. | May 2005 | B1 |
7016733 | Dublin et al. | Mar 2006 | B2 |
7092762 | Loftin et al. | Aug 2006 | B1 |
7191007 | Desai et al. | Mar 2007 | B2 |
7225032 | Schmeling et al. | May 2007 | B2 |
7286881 | Schommer et al. | Oct 2007 | B2 |
20020055763 | Zarinetchi et al. | May 2002 | A1 |
20020087204 | Kung et al. | Jul 2002 | A1 |
20020177884 | Ahn et al. | Nov 2002 | A1 |
20040095333 | Morag et al. | May 2004 | A1 |
20040138725 | Forsell | Jul 2004 | A1 |
20050075694 | Schmeling et al. | Apr 2005 | A1 |
20050228740 | Chang et al. | Oct 2005 | A1 |
20050228742 | McHale et al. | Oct 2005 | A1 |
20050288739 | Hassler, Jr. et al. | Dec 2005 | A1 |
20050288740 | Hassler et al. | Dec 2005 | A1 |
20050288742 | Giordano et al. | Dec 2005 | A1 |
20060155347 | Forsell | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
2 239 802 | Jul 1991 | GB |
WO 0024456 | Mar 1998 | WO |
WO 9811942 | Mar 1998 | WO |
WO 00 72899 | Dec 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20050288741 A1 | Dec 2005 | US |