This invention relates to reciprocating pumps for pumping fluids, and more particularly to a pump which lengthens the operational life of the pump by reducing the frictional forces expended on the fluid being pumped. The pump is described primarily herein for application in pumping a fluid which is subject to solidification when exposed to frictional forces. However, it is understood that the pump and seal assembly may be applied to efficiently pump any type of fluid.
Ink that is cured with ultraviolet (UV) energy has widespread use in the printing and graphic display industries. That type of ink is highly viscous and has a unique chemistry which requires special handling and pumping needs. Its material composition includes a monomer, instead of a solvent as in conventional inks, such that it solidifies when irradiated. Unfortunately, UV ink is also sensitive to mechanical shear stress (i.e., friction) which produces heat and initiates solidification of the ink. Conventional displacement pumps expose UV ink to substantial friction as it is pumped. Consequently, solidified polymers form and accumulate in the pump which cause the pump to bind and ultimately fail. Of particular concern are gaps between close-fitting parts which have relative movement. For example, a conventional pump has a reciprocal plunger received in a stationary bearing or sleeve for guiding movement and preventing “wobble” of the plunger as it reciprocates. The close-fit sliding motion produces localized regions of high friction at small gaps between the plunger and the bearing or sleeve. UV ink which reaches these gaps is prone to solidify. Aggravating this problem is that the plunger assembly must be sealed to prevent leaks.
Among the several objects and features of the present invention may be noted the provision of a fluid pump which exerts less frictional force on the fluid being pumped; the provision of such a pump which effectively pumps a highly viscous fluid including UV ink; the provision of such a pump which is sealed to prevent leakage of fluid; and the provision of such a pump which is efficient and durable in use and cost-efficient to construct.
In general, a reciprocating pump of the present invention is for pumping a fluid. The pump comprises a pump housing having an internal displacement chamber with an inlet, and outlet, a longitudinal axis, and opposite ends. A plunger is reciprocally movable in the chamber along the axis. An axial passage is in the housing at one end of the chamber through which the plunger axially reciprocates. First and second annular seals in the axial passage are generally co-axial with the passage and spaced from one another longitudinally of the passage. Each seal is sized for sealing contact with the plunger. The pump housing is free from a bearing which contacts the plunger or guides its motion. The plunger is free from direct engagement with the housing, and the sealing contacts of the plunger with the first and second seals are the only contacts of the plunger in the housing.
In another aspect, a reciprocating pump of this invention is for pumping a fluid. The pump includes a pump housing having an internal displacement chamber with an inlet, and outlet, a longitudinal axis, and opposite ends. A plunger is reciprocally movable in the chamber along the axis. An axial passage is in the housing at one end of the chamber through which the plunger axially reciprocates, the axial passage having at least a portion which defines a minimum clearance region for the plunger in the housing. The minimum clearance region is sized to receive the plunger therethrough with a clearance fit. The plunger has an outer diameter D1, the minimum clearance region has an internal diameter D2, and D2 is larger than D1 by at least about 0.015 inch.
In yet a further aspect, a reciprocating pump of this invention is for pumping a fluid. The pump comprises a pump housing having an internal displacement chamber with an inlet, and outlet, a longitudinal axis, and opposite ends. A plunger is reciprocally movable in the chamber along the axis. An axial passage is in the housing at one end of the chamber through which the plunger axially reciprocates, the axial passage having at least a portion which defines a minimum clearance region for the plunger in the housing. The minimum clearance region of the axial passage has an axial length L1 which is less than 1.0 inch.
In still another aspect, a reciprocating pump according to the present invention is for pumping a fluid. The pump comprises a pump housing having an internal displacement chamber with an inlet, and outlet, a longitudinal axis, and opposite ends. The housing includes a pump head, a cylinder attached to the head, and a gland attached to the head generally opposite the cylinder. A plunger is reciprocally movable in the chamber along the axis. An axial passage is in the gland through which the plunger axially reciprocates. First and second annular seals in the axial passage are generally co-axial with the passage and spaced from one another longitudinally of the passage. Each seal is sized for sealing contact with the plunger and has a generally U-shaped cross-section with two opposing legs in respective sealing contact with the plunger and housing. The two legs of each seal are asymmetrical. The axial passage comprises an intermediate section between the seals which is sized to receive the plunger therethrough with a clearance fit. Internal shoulders are at opposite longitudinal ends of the intermediate section. Each of the seals is positioned adjacent a respective shoulder in the axial passage, at least one of the seals being retained by a threaded nut. The pump housing is free from a bearing which contacts the plunger or guides its motion. The plunger is free from direct engagement with the housing, and the sealing contacts of the plunger with the first and second seals are the only contacts of the plunger in the housing.
Other objects and features of the present invention will be in part apparent and in part pointed out hereinafter.
Corresponding reference characters indicate corresponding parts throughout the views of the drawings.
Referring now to the drawings and in particular to
As shown in
Referring to
The pump 10 is known to those skilled in the art as a “single-acting” type pump having a pumping cycle which discharges fluid only during a stroke of the plunger 44 in one direction. During an upstroke, the plunger 44 moves outward (up in
The pump housing 30 includes a gland 50 secured (e.g., threaded) in the head 32 generally opposite the cylinder 20. The gland 50 defines an axial passage, indicated generally at 52, at one end (e.g., the upper end) of the chamber 42 through which the plunger 44 axially reciprocates. The gland 50 is shown in isolated detail in
In the embodiment shown in
An annular groove 72 extends around the intermediate section 64 of the axial passage 52 and communicates with a transverse drain bore 74 for draining fluid which may reach the axial passage. The bore 74 in turn communicates with a bore 76 (
Referring to
In one embodiment, the first and second seals 80, 82 are substantially identical in size, material, and configuration. However, it is understood that the seals can vary without departing from the scope of this invention. The seals are made of a suitable material which is stiff, has high mechanical strength, flexibility, and resiliency over a range of pressures. An exemplary material is an elastomer such as polyurethane having a durometer hardness (Shore A scale) within the range between 87 and 97, and more preferably having a durometer hardness about 92. In practice, an effective and commercially available seal is a Disogrin® asymmetrical piston U-cup seal manufactured by Simrit®, having offices in Plymouth, Mich.
To reduce friction, particularly resulting from shear forces exerted on the fluid being pumped, the outer diameter D1 of the plunger 44 is sized for a relatively loose clearance fit within the axial passage 52. In this regard, the internal diameter D2 of the narrowest section of the axial passage 52 (the intermediate section 64 of the passage in the illustrated embodiment) is significantly greater than the outer diameter D1 of the plunger 44, defining a clearance or gap G around the plunger as indicated on
The relatively loose fit does not produce greater instability or “wobble” in the motion of the plunger 44 because of the seal configuration. The two seals 80, 82 function as bearings to guide and stabilize movement of the plunger 44. The spaced-apart positions of the seals in the upper and lower sections 62, 66 of the axial passage, adjacent the narrowest section 64, provide an effective combination for stabilizing the plunger 44. This arrangement avoids the need for a sleeve or bearing which would result in increased friction. Further, if any UV ink fluid does solidify due to friction at the wiping surfaces 88 of the first and second seals 80, 82, its adverse effect is minimized by the relatively short axial length of these wiping surfaces which limits solidified ink to a narrow line at each wiping surface 88.
Friction is further inhibited by the relatively short longitudinal length of the narrowest section of the axial passage 52, which is the intermediate section 64 in the illustrated embodiment. In one embodiment, the length L1 of this section is preferably within a range between about 0.4 and 1.0 inches, and more preferably only about 0.9 inches. Thus, to the extent any fluid leaks into this area, the shearing forces exerted on fluid are kept to a minimum. In practice, a length L1 is about 0.92 inches, providing a ratio of L1 to plunger diameter D1 (L1/D1) of about 0.79. That length L1 includes the length of the drain groove 72 which is wider than other portions of the intermediate section 64. When the length of the drain groove 72 is subtracted, an effective length L1 is about 0.73 inches, providing an effective ratio (L1/D1) of about 0.63.
As illustrated in
In addition, friction is further reduced by the lack of valves or shut-off control in the outlet tube 26 which delivers fluid from the outlet 40 of the pump chamber to the device 14 requiring fluid. As a result, the fluid is subjected to only minimal shearing forces and thus less friction, thereby reducing any solidification of the fluid for more effective pump operation and longer pump life.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
When introducing elements of the present invention or the preferred embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements.
As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description as shown in the accompanying drawing shall be interpreted as illustrative and not in a limiting sense.