Field of the Invention
The invention relates to rehabilitation boards and in particular, low friction rehabilitation boards having an integral band retaining feature.
Background
Rehabilitation boards and/or bands are used in a wide variety of applications, such as the rehabilitation and/or strengthening of upper and lower body limbs. The boards and bands may be used for physical therapy, injury prevention, and athletic training or conditioning. In some applications, the boards and bands are used to strengthen, and in other applications, to extend the range of motion of limbs.
Rehabilitation boards are often made of a rigid board and some have non-slip materials attached to the bottom surface to prevent the board from moving during use. Rehabilitation boards may be made of any suitable material such as wood or a polymer material, however many of these polymer materials have a higher coefficient of friction than desired. When the coefficient of friction of the rehabilitation board is too high, the patient or user may have to exert additional force just to overcome the frictional forces of the board. In addition, repetitive motion across a rehabilitation board having a high coefficient of friction may result in skin abrasion.
Rehabilitation bands are used to provide varying levels of resistance during exercises. A user may be instructed to place a limb through a band, or grasp a band and extend it a certain amount and return. The user may be instructed to repeat this motion for a certain number of repetitions. As the user or patient strengthens their muscles, the user may be instructed to use a higher resistance band. In some cases, the bands are provided in different colors, wherein each color band has a specific resistance response. The resistance of many of these color-coded bands are predetermined such that extension to a certain degree requires a predetermined force.
In most cases, the user may be instructed to extend a band a certain amount, however there is typically no indication of how far to extend the band. As a result, there is no way of determining or monitoring exactly how far a user extends the band. Furthermore, there is no way of determining the force the user is exerting to extend the band.
Resistance bands are sometimes attached to a fixed object by being looped around or tied to the fixed object, and a user typically inserts a limb into the loop or grasps the band. It is often inconvenient to find a proper fixed object for the attachment of the band. The fixed object may not be secure enough and present a dangerous situation. In addition, it may be difficult to position the rehabilitation board in close enough proximity to the fixed object, therein making it more difficult for the user to complete their exercises.
There exists a need for a rehabilitation board that has a means to attach a rehabilitation band, and a way to determine the specific amount of force a user is exerting during the rehabilitation exercises.
The invention is directed to a rehabilitation board having a low friction material on the top, or working surface, and at least one band retaining feature. In another embodiment, the rehabilitation board comprises a non-slip material on at least a portion of the bottom surface and range markings. The rehabilitation board described herein comprises a low static coefficient of friction material on the working surface. The static coefficient of friction may be no more than about 0.05, such as 0.04, or no more than about 0.50. A low static coefficient of friction allows a user to easily move a limb across the board with minimal resistance. The low friction rehabilitation boards described herein may also reduce or eliminate chaffing or abrasion the user may experience after repetitive motion across higher coefficient of friction boards.
A rehabilitation board, as described herein, may comprise any suitable type of material including, but not limited to, wood, wood composite materials, polymers, plastics, rubber, elastomers, metal, foams and the like. The working surface of the rehabilitation board comprises a low coefficient of friction material that may include, but is not limited to, high density polyethylene (HDPE), ultrahigh molecular weight polyethylene (UHMWPE), or fluoropolymers, such as polytetrafluoroethylene (PTFE). The static coefficient of friction of HDPE, as tested against itself according to ASTM 1894, may be as low as 0.095 and the kinetic coefficient of friction may be 0.097. UHMWPE has a static coefficient of friction of approximately 0.17 and PTFE has an ultralow static coefficient of friction of approximately 0.04 according to ASTM 1894 when tested against itself. ASTM 1894 is hereby incorporated by reference herein. In some embodiments, the static coefficient of friction of the top surface of the rehabilitation board is no more than about 0.09, no more than about 0.06, no more than about 0.04, no more than about 0.15, no more than about 0.20, or no more than about 0.25 according to ASTM 1894 when tested against itself, or the same material. The dynamic coefficients of friction of UHMWPE and PTFE are approximately 0.15 and 0.1 respectively. In one embodiment, the static coefficient of friction is less than the dynamic coefficient of friction which eliminates stick slip motion.
In some embodiments, the rehabilitation board described herein may comprise a composite, laminate, or layered materials, where the working surface comprises a low friction material, such as a thin layer of low friction material laminated or otherwise attached or fastened to another material. The thin layer of low friction material may be any suitable thickness such as no more than about 15 mm, no more than about 10 mm, or no more than about 5 mm thick. In some embodiments, the low friction material is “thin.” as used herein, and is no more than about 2.5 mm thick. In yet other embodiments, the low friction material is “ultrathin,” as used herein, and is no more than about 0.010 mm thick or in some cases no more than about 0.005 mm thick. Low friction material may be expensive and utilizing a thinner layer attached to a thicker board material may provide economic benefits while providing a very low friction working surface. The low friction material may cover substantially all of the working surface or only a portion of the working surface. A low friction material may be sprayed onto and adhered to the board.
A person may also use a complimentary material between their skin and the rehabilitation board described herein to further facilitate low friction motion. For example, a person may slip a sock or bootie over their foot or shoe prior to moving their foot across the rehabilitation board. In addition, a person may simply place any suitable type of material between their skin and the board. For example, a person may place a complimentary material under their elbow prior to placing their elbow on the rehabilitation board. A complimentary material may be a fabric, such as a non-woven material, foam, a polymeric or plastic material, combinations of materials, and the like.
The rehabilitation board described herein may further comprise range markings that allow the user or instructor to define a set motion goal including movement of a limb or extension of a resistance band to a specific marking. Furthermore, the range markings may comprise percentage indicator markings to provide the user with some indication of degree of motion across the board. The range markings may be force indication markings that are calibrated with specific resistance band types. For example, red range markings having force levels across the board, may be calibrated to a red resistance band, such that the user and instructor know how much force the user is exerting to extend the red band to a preset range marking. The rehabilitation board may have multiple range markings which may be color calibrated with resistance bands of specific colors. The range markings may be printed directly onto the rehabilitation board or they may detachably attachable to the rehabilitation board. In one embodiment, the range markings are configured on a thin sheet of material that may be slid into a groove configured in the rehabilitation board. Markings of any type, including range markings, may be incorporated onto the rehabilitation board in any suitable manner including, but not limited to, printed, embossed, engraved, attached as stickers, laminated and the like.
The rehabilitation board described herein comprises at least one band retaining feature, and in some embodiments comprises two, three, four, five, six or more band retaining features. The band retaining feature may comprise a post that may be fastened or attached to the rehabilitation board. In one embodiment, a post is attached to the rehabilitation board, and can be rotated to various positions and secured in place. In yet another embodiment, the attached post may be rotated such that at least a portion of the post is recessed into the rehabilitation board. In another embodiment, a fastened post may be stored on or in the board, such as by pushing it into a recess configured to accept and retain the post.
The band retaining feature may comprise an opening that extends at least partially through the rehabilitation board. In one embodiment, the band retaining feature comprises an opening that extends completely through the rehabilitation board wherein a resistance band may be tied to or looped through the opening. In yet another embodiment, a post may be at least partially inserted into an opening and fastened or retained therein. An opening may have a consistent cross-sectional area through the board. For example, an opening may have a uniform circular shape through the thickness of the rehabilitation board. In another embodiment, an opening may have a non-uniform cross-section through the thickness of the board. In one embodiment, an opening may have a smaller cross-sectional area at the working surface than on the opposing surface or bottom surface. A tapered or conical shaped opening may be configured to receive a resistance band having a conical or otherwise tapered plug. A resistance band may be extended through the tapered opening from the bottom surface up to the working surface and the tapered plug inserted into the tapered opening. The conical or tapered opening may be a discrete hole through the rehabilitation board or may be coupled with a slot that extends out to the outer perimeter of the board, such as one of the sides of the board. The tapered plug may have a planar band surface that is flush with the working surface when inserted into the tapered or conical shaped opening. An opening may comprise threads, and a post may comprise matching threads, whereby a post can be threaded into and secured in the opening. In still another embodiment, openings in the board may be configured to act as a handle for transporting the rehabilitation board described herein. One or more openings may be configured near an end or side of the board, such that a person could insert two or more fingers and easily carry the board.
A post may be used to fill an opening when it is not being used, so that the working surface of the rehabilitation board is substantially continuously planar. A post may plug an opening by being inserted into the opening until the top surface of the post is flush with the working surface of the rehabilitation board. In one embodiment, a post comprises a band retaining feature that allows the band to extend from the post when it is inserted flush with the working surface. A post may be configured with a band retaining feature that allows the top surface of the post to be flush with the working surface of the rehabilitation board while retaining one end of a resistance band around a bar configured over a recess in the top of the post.
The band retaining feature may comprise at least one nodule configured into or onto the rehabilitation board, such that a resistance band may be tied to and/or looped around the nodule. The nodule may be a protrusion extending from the rehabilitation board or configured from a cut-away or an otherwise formed recess in the rehabilitation board. A nodule may have an enlarged end and may extend directly out from a side of the rehabilitation board and be in-plane with the rehabilitation board. A nodule may be substantially the same thickness as the rehabilitation board.
A band retaining feature may be located in any suitable location on the rehabilitation board, such as on the working surface, side surfaces, on one or more sides or ends, or within the center portion of the board. Band retaining features may be located on opposing sides of the rehabilitation board. In one embodiment, at least one band retainer is located on each end of the rehabilitation board. In another embodiment, at least one band retainer feature is located on the top surface of the rehabilitation board in close proximity to each end.
The rehabilitation board described herein may further comprise interlocking features, whereby two or more rehabilitation boards may be fastened together. Fastening two or more rehabilitation boards together allows for quickly varying the rehabilitation working surface area. A patient may eventually extend a band further than the length of a single board and may require more rehabilitation working surface area. In addition, some rehabilitation exercises may require a single rehabilitation board while others may require a plurality of rehabilitation boards. An interlocking feature, as described herein, provides a means to detachably attach or temporarily fasten a first rehabilitation board to a second rehabilitation board in a side-by-side manner. An interlocking feature may comprise a geometry along one or more sides of a rehabilitation board that has recesses and protrusions, or more simply stated, a puzzle piece geometry. The puzzle piece geometry may be repetitive, thereby allowing the fastening of one board to another in any desired position along the side having the repetitive puzzle piece geometry. In another embodiment, an interlocking feature is a dove-tail type interlocking feature that comprises a dove-tail recess into a side of a first rehabilitation board, and a complimentary dove-tail extending from at least one side of a second rehabilitation board. A dove-tail interlocking feature, as defined herein, comprises any shaped dove-tail having an enlarged extended portion and a narrower or smaller attached portion, such as the wedge shaped dove-tail, or a “T” shape, or any other suitable shape. In one embodiment, a dove-tail has a partial circular shape, where a smaller cross-section of the circle is attached to a side of a rehabilitation board. For example, a first rehabilitation board may comprise a “T” shaped dove-tail recess extending into one or more sides. A second rehabilitation board may comprise a complimentary “r” shaped protrusion, or dove-tail extending from one or more sides. The second board may be aligned with the first board, such that the “T” shaped dove-tail fits into the “T” shaped dove-tail recess. The two boards may be fastened together by dove-tail interlocking feature and slid along each other any suitable length. A dove-tail may extend any suitable length of the rehabilitation board. In one embodiment, a plurality of discrete dove-tails extend from a side of a rehabilitation board. In another embodiment, a dove-tail extends substantially the entire length of the a rehabilitation board side. A rehabilitation board may comprise any combination of interlocking features on the four sides of the board. For example, a rehabilitation board may comprise puzzle piece type interlocking features on two opposing sides of the rehabilitation board, and dove-tail type interlocking features on the two remaining sides, with one side having a dove-tail and the other a dove-tail recess. In one embodiment, an interlocking feature may act as, or also be, a band retaining feature. For example, a discrete dove-tail or a dove-tail type interlocking feature may be used to secure a band. Likewise, a puzzle protrusion of a puzzle piece type interlocking feature may be used as a band retaining feature.
The rehabilitation board described herein may comprise a non-slip material on the bottom surface. A non-slip material may be a component of the board or may be fastened or attached to the rehabilitation board. A non-slip material may be an integral component of the board wherein it is not readily detachable from the board and may be adhered or otherwise fastened. In one embodiment, a non-slip surface may comprise a sprayed on material to the board. The non-slip material may cover the bottom surface of the low friction board, or at least a portion of the bottom surface of the low friction board, such as one or more strips attached to the bottom surface. The non-slip material may be attached to the rehabilitation board through the use of any conventional means including, but not limited to, adhesives, fasteners and the like. In one embodiment, a non-slip material is attached to another material, such as a board, that may have a low coefficient of friction material on the working surface. The non-slip material may comprise any suitable material, including but not limited to, pressure sensitive adhesives, silicones, urethanes, rubbers, and the like. The non-slip material may comprise Dycem non-slip material available from Dycem Limited, Warwick, R.I. This material is well known to provide superior non-slip properties on a wide variety of surfaces.
In an exemplary embodiment, a low friction and/or a non-slip layer may be detachably attached to the rehabilitation board. A low friction or a non-slip layer may comprise a pressure sensitive adhesive allowing the layer to be attached over a board surface. In this way, the low friction and/or non-slip layer may be replaced if they become worn. In addition, a low friction and/or a non-slip layer may comprise apertures or cut-outs that are configured to align with a post hole and/or a band retaining feature. A low friction and/or a non-slip layer may only cover a portion of the board. For example, a low friction layer may be configured to cover the central portion of the board where a user may slide their foot thereover.
The rehabilitation board may further comprise a securing feature for better securing the board in a location. In one embodiment, the securing feature comprises a peg that may have one end at least partially inserted into an opening in the board, and a second end that may be inserted into another opening configured in a permanent fixture. In yet another embodiment, the securing feature comprises a peg or wedge that may be fastened to the board and forced against or around a permanent fixture.
The rehabilitation board, as described herein, may be used for any number of different rehabilitation exercises including but not limited to: appendage extension, such as a knee, or elbow extension, hip active assisted Range of Motion(ROM) in supine, heel slides (knee flexion & extension); hip abduction/adduction; shoulder activities seated for ROM; table slides for shoulder flexion/scaption/abduction; horizontal abduction/adduction; internal/external shoulder rotation; hip strengthening activities in supine position; therapy band hip & knee flexion and extension; therapy band hip abduction/adduction; therapy band mini squats (standing on rehabilitation board and holding bands with both hands for resistance); shoulder strengthening exercises standing and in a seated position; seated internal/external rotation with a resistance band in 90/90 position; seated horizontal abduction/adduction; biceps curl in standing or seated position with resistance bands attached to the rehabilitation board, patient may also stand directly on the rehabilitation; shoulder flexion/scaption/abduction and triceps extension with resistance band; standing D1/D2 shoulder flexion/extension; and leg scissor with one leg under the rehabilitation board elevated by post in the peg openings, as shown in
The rehabilitation board of the present invention enables rehabilitation directly after surgery through to resistance load rehabilitation. A patient with a knee operation for example may use the rehabilitation after surgery to slide their foot over the board to extend their knee. As the range of motion improves a patient may then incorporate a resistance band to further rehabilitate the muscles and the joint. A single rehabilitation board may be used, or a plurality of rehabilitation boards may be coupled together, as described herein to provide a larger surface.
The summary is provided as a general introduction to some of the embodiments of the invention and is not to be considered limiting. Additional embodiments, and combinations of the various features are more fully described herein.
The accompanying drawings are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and together with the description serve to explain the principles of the invention.
Corresponding reference characters indicate corresponding parts throughout the several views of the figures. The figures represent an illustration of some of the embodiments of the present invention and are not to be construed as limiting the scope of the invention in any manner. Further, the figures are not necessarily to scale, some features may be exaggerated to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Also, use of “a” or “an” are employed to describe elements and components described herein. This is done merely for convenience and to give a general sense of the scope of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
Certain exemplary embodiments of the present invention are described herein and illustrated in the accompanying figures. The embodiments described are only for purposes of illustrating the present invention and should not be interpreted as limiting the scope of the invention. Other embodiments of the invention, and certain modifications, combinations and improvements of the described embodiments will occur to those skilled in the art and all such alternate embodiments, combinations, modifications, and improvements are within the scope of the present invention.
Attached, as used herein, means that an object is fixed to and not easily removed from another object. For example a post that is attached to the rehabilitation board is not configured to be easily removed from the board.
Fastened, as used herein, means that an object is configured to be temporarily attached to, or detachably attached to another object. For example, a post that is a separate object from the rehabilitation board, may be fastened to the rehabilitation board by inserting one end of the post into an opening in the rehabilitation board or screwing the post into a threaded opening.
Band retaining feature, as used herein, is defined as a feature that is configured to retain at least one end of a resistance band and may comprise a nodule, post or opening through the board.
Integral, as used herein in reference to a band retaining feature, means that all components of the band retaining feature are attached to, are part of, or can be stored on the rehabilitation board. For example, a nodule that extends from the board is an integral band retaining feature. An opening in the rehabilitation board is an integral band retaining feature. A post that is attached to the rehabilitation board is an integral band retaining feature. A post that can be stored on or in the rehabilitation board is an integral band retaining feature.
Contiguous, as used herein in reference to a band retaining feature, means that the band retaining feature is integral and permanently attached to the rehabilitation board, such as nodules or posts that extend from the board, or openings in the rehabilitation board.
Calibrated, as used herein, in reference to range markings, means that the markings have a series of force markings that are calibrated with a resistance band type. In some embodiments, a band may be a color, such as red, and force range markings may be calibrated to that band type and may also be red in color. The force range markings may indicate a force that is approximately consistent with the force required to extend a band to that point.
Working surface, as used herein, refers to the surface and in most cases the top surface, of the rehabilitation board that is used for rehabilitation or exercise, and comprises a low coefficient of friction material.
Low static coefficient of friction material, as used herein, is a material that exhibits a static coefficient of friction of no more than about 0.50, or no more than about 0.30, which will allow the user to easily move a limb across the rehabilitation board.
The term board is used in reference to the rehabilitation board described herein.
The invention is directed to a rehabilitation board 10 comprising a low friction material 12 on the working surface, and at least one band retaining feature 16. Optionally, the rehabilitation board may comprise a non-slip material (not shown) on at least a portion of the bottom surface and range markings 20 as shown in
The rehabilitation board described herein may be any suitable dimension, having a length 47, width 48 and thickness 49 suitable for the required use, as shown in
The rehabilitation board described herein may be portable and sized such that it may be easily carried by a single individual, such as in a single hand. For example the board may be no more than about 1.5 meters long by 1.0 meters wide, or preferable no more than about 1 meter long by 1 meter wide, and in some embodiments no more than about 1 m long by about 0.5 m wide. A rehabilitation board may comprise a handle, such as an aperture extending through the board configured proximal to the edge of the board to allow a person to grab the handle with a single hand and carry the rehabilitation board.
In some embodiments, the rehabilitation board described herein is sized to allow the user to move a limb, such as a foot, over the board. In other embodiments, the board may be large enough to allow the user to lay on the board and move multiple limbs at one time. For example, a user may lay on a large rehabilitation board as described herein, and a band may be fastened to each of the user's legs. The user may then move both legs simultaneously to work and strengthen various muscle groups.
The rehabilitation board described herein may be planar, wherein no components or elements of the rehabilitation board extend or protrude from the working surface more than 10 mm.
The rehabilitation board 10 described herein may further comprise range markings 20 that allow the user or instructor to define a set motion goal including movement of a limb or extension of a resistance band to a specific range marking. Referring to
In one embodiment, the range markings may comprise force indicator markings 24 that are calibrated with a resistance band 18 as shown in
Other inspirational or goal markings may also be incorporated into the rehabilitation board. For example, words such as “Way to go!” or “You can do it!” and the like may be included on the rehabilitation board to encourage the user to extend a band all the way to a certain marking, or to provide general inspiration during rehabilitation. In addition, other markings such as corporate logos may be included on the rehabilitation board. Markings of any type, including range markings, may be incorporated onto the rehabilitation board in any suitable manner including, but not limited to, printed, embossed, engraved, attached as stickers, laminated and the like. In another embodiment, a sound feature may be incorporated into the rehabilitation board described herein, and provide inspiration phrase as the user extends a band across the board.
The range markings may extend down in a direction substantially parallel with the length of the rehabilitation board, and/or may be at an angle to the length of the board. Range markings at an angle to the length of the rehabilitation board may be used for specific motions during rehabilitation or exercise.
In one embodiment, as shown in
The range markings may be interchangeable, and may be on a material that can be fastened to the rehabilitation board. As shown in
The rehabilitation board described herein comprises at least one band retaining feature, and in some embodiments comprises two, three, four, five, six or more band retaining features. As shown in
As shown in
Referring to
In yet another embodiment, the attached post may be rotated such that at least a portion of the post is recessed into the rehabilitation board. In another embodiment, a post 30 may be stored on or in the rehabilitation board. As shown in
The post may be any suitable shape or size. The post may be rectangular in shape as shown in
The band retaining feature 16 may comprise at least one nodule 36 configured into or onto the rehabilitation board 10, such that a resistance band 18 may be tied to and/or looped around the nodule as shown in
A band retaining feature may comprise an opening 32 that extends at least partially through the rehabilitation board 10 as shown in
As shown in
In an alternative embodiment, a band retaining feature 16 may be rotated or otherwise fastened to the rehabilitation board in a manner that provides a post type band retaining feature 30, and a securing feature 64, as shown in
In another embodiment, as shown in
A band retaining feature 16 may be located in any suitable location on the rehabilitation board 10, such as on the working surface 50, side surfaces 66, 66′, or may protrude from one or more ends 68, as shown in
The rehabilitation board described herein may comprise a non-slip material that is fastened or attached to the low friction board. The bottom surface 51, of the rehabilitation board may comprise a non-slip material 14, as shown in
In another embodiment, the rehabilitation board may be secured in place using suction cups, magnets or any other suitable means. For example, straps may be used to retain the rehabilitation board to a structure, such as a table. Bands or straps may be retained in the integral band retaining features and configured to or around a fixed object to secure the rehabilitation board is a fixed position.
The rehabilitation board may further comprise a securing feature for more positively securing the board in a location. In one embodiment, the securing feature 64 comprises a peg 54 that may be inserted through a peg opening 56 in the rehabilitation board 10 and into another opening 62 configured in a permanent fixture 60 as shown in
An extension indicator 100 may be configured onto the rehabilitation board to allow the user and instructor to more accurately determine the extension a user achieves with a resistance band. As shown in
A dynamic indicator having a measuring function, may be used with the rehabilitation board as described herein. A force or range dynamic indicator may be attached or fastened to the rehabilitation board in any suitable manner. A force type dynamic indicator may record the amount of force exerted when a band is extended, and one end of a resistance band may be attached to a dynamic indicator. A range type dynamic indicator may be used to record that distance or range that a resistance band is extended. A range indicator may comprise a wheel that turns as a user extends a band, thereby measuring the distance the band was extended. A dynamic range indicator may be fastened to a rehabilitation board using a band retaining feature, such as a threaded opening, for example. In addition, an extension or dynamic indicator may be fastened to a dove-tail type interlocking feature as described herein.
In some circumstances, a given length of board may not be sufficient for the extension of some users. As shown in
In one embodiment, the rehabilitation board 10 may comprise a vertical resistance band retaining feature 120 as shown in
As shown in
Various boards, including exemplary rehabilitation boards, as described herein, were evaluated for static coefficient of friction. A test apparatus, as shown in
Incline angle=sin−1 (height/board length)
The coefficient of static friction, Ks, between the sand-filled sock and the board surface 452 can be is expressed by:
Ks=Ff/N
where Ff is the friction force along the surface of the board and N is the normal force to the board.
The friction force is calculated by equation:
Ff=1 kg sin (Incline angle);
and the normal force is calculated by:
N=1 kg cos (incline angle).
The following board surfaces were evaluated, high density polyethylene (HDPE), a PTFE skived tape was adhered to the high density polyethylene board, cabinet grade plywood, and an ultra-soft microfiber 100% polyester sheet was laid over and pulled taught over the plywood. The coefficient of static friction, Ks, for each of the board surface is provided in Table 1.
The PTFE and HDPE board surfaces had less than half the static coefficient of to the plywood and polyester sheet.
It will be apparent to those skilled in the art that various modifications, combinations and variations can be made in the present invention without departing from the spirit or scope of the invention. Specific embodiments, features and elements described herein may be modified, and/or combined in any suitable manner. Thus, it is intended that the present invention cover the modifications, combinations and variations of this invention provided they come within the scope of the appended claims and their equivalents.
The current application is a continuation in part application of U.S. patent application Ser. No. 13/602,179, filed on Sep. 2, 2012, entitled Low Friction Rehabilitation Board With an Integral Band Retaining Feature and, which claims the benefit of provisional patent No. U.S. 61/530,470, filed on Sep. 2, 2011 and entitled Low Friction Rehabilitation Board With an Integral Band Retaining Feature; the entirety of both applications are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3298232 | Carboni | Jan 1967 | A |
5178596 | McIntire | Jan 1993 | A |
5417636 | Havens | May 1995 | A |
6884504 | Liu | Apr 2005 | B2 |
20060052220 | Jackson | Mar 2006 | A1 |
20120115692 | Bussen | May 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
61530470 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13602179 | Sep 2012 | US |
Child | 14929436 | US |