Not Applicable
In an operating room environment, there is a need for a protective face shield with low haze, removable outer layer(s), ultraviolet (UV) radiation blocking properties, and stabilization during the sterilization process, both gamma irradiation and ethylene oxide (EO) sterilization.
Haze is an optical phenomenon which happens in both reflection and transmission. In reflection, the eye sees glare, scatter, and halos. In transmission, the visible light is reduced or darkened by internal scatter and is seen by the eye as milky and not clear. In order to meet the American National Standard for Occupational and Educational Personal Eye and Face Protection Devices (ANSI Z87.1-2020) and be classified as a protective face shield, the final product must have less than 3% haze. More than 3% haze in a face shield can give the user a dizzy or sick feeling. Ideally, a protective face shield used in the operating room should have 1% or less haze.
Removable outer layer(s) are needed when the surgeon or operating personnel get splatter that impairs their view during a procedure. Cleaning or wiping the face shield leads to smearing, and breaking the sterile field in the operating room to change face shields and gowns is time consuming and adds to the risk of infecting the patient.
UV blocking is necessary in the operating room to protect the operating personnel's face and eyes because some hospitals use lighting which can generate UV rays: quartz, halogen, tungsten or xenon. Some hospitals also use UVC lights to help reduce airborne pathogens.
Stability during sterilization is critical for both EO and gamma irradiation sterilization processes. Single-use medical products used during surgery must be sterile. Common methods to sterilize plastics include gamma irradiation and EO gas. After either or both processes, the laminated stack must be free from viable micro-organisms (including in between each laminated layer). Additionally, the optical stack performance and physical characteristics cannot change, including but not limited to discoloration, outgassing, optical defects, or delamination.
The current state-of-the-art solution is a laminated stack of index-matched removable lenses made from polyester film (PET). Optical quality PET is super clear with low haze and can be sterilized with EO and gamma without negatively impacting the optics, tensile strength or color. Polycarbonate, for example, can turn brown in color under gamma sterilization. However, PET is transparent to ultraviolet radiation (i.e. it transmits UV rays to the wearer). Therefore, a thin UV blocking layer is added to the base layer PET. A common UV blocking film is Hostaphan® 7333UV, made by Mitsubishi Polyester Film Group. The most common gauge or thickness used for this application is 1 mil because this is the gauge with the least amount of haze. The 1-mil thick UV blocking PET film from Mitsubishi has 1% haze. A 7-mil thick UV blocking PET film has 4% haze. An example face shield construction beginning from the base layer may be 7-mil PET, permanent adhesive, 1-mil UV blocking PET, removable adhesive, 2-mil PET, removable adhesive, 2-mil PET.
The most common test method for haze and visual light transmission is the Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics (ASTM D1003). It utilizes a haze meter and spectrophotometer. The above-described state-of-the-art protective face shield results in haze of 2.05% and VLT of 88.7% according to this standard. This meets the specification for a protective face shield (ANSI Z87.1-2020) but has twice the haze of an ideal operating room face shield. Considering that haze in an optical stack is additive, it is preferred that each layer in the stack has less than 0.5% haze.
The present disclosure contemplates various protective lens stacks and face shields for overcoming the above drawbacks accompanying the related art. One aspect of the embodiments of the disclosure is a protective lens stack. The protective lens stack may comprise a base layer including a polyethylene terephthalate (PET) film containing a UV blocking additive. The protective lens stack may further include one or more removable lens layers stacked on top of the base layer, each of the removable lens layers including a PET film and a first adhesive disposed on a bottom surface of the PET film. Refractive indices of the base layer and the one or more removable lens layers may be matched to within 0.2.
370 nm transmission of the protective lens stack may be less than 5%. Transmission of the protective lens stack at wavelengths of 320-380 nm may be less than 5%.
The UV blocking additive may comprise a hindered amine light stabilizer (HALS).
The UV blocking additive may comprise a UV absorber. The UV absorber may be selected from the group consisting of carbon black, rutile titanium oxide, hydroxy benzophenone, and benzophenone.
The UV blocking additive may comprise a quencher.
The PET film of the base layer may have a thickness of 4 mil to 20 mil, preferably 7 to 8 mil (e.g. 7.5 mil).
The PET film of each of the one or more removable lens layers may have a thickness of 1 to 4 mil, preferably 2 mil.
The base layer may include a second adhesive disposed on a bottom surface of the PET film containing the UV blocking additive, the second adhesive having a pull strength greater than that of the first adhesive. The PET film of the base layer may have a thickness of 2 mil to 7 mil, preferably 3 to 4 mil. The PET film of each of the one or more removable lens layers may have a thickness of 2 to 7 mil, preferably 3 to 4 mil.
A total haze of the protective lens stack may be 2% or less (e.g. 1%). A visible light transmission (VLT) of the protective lens stack may be 87% or greater (e.g. 90%).
Another aspect of the embodiments of the present disclosure is a face shield. The face shield may comprise a base layer including a polyethylene terephthalate (PET) film having a thickness of 4 mil to 20 mil and containing a UV blocking additive. The face shield may further comprise one or more removable lens layers stacked on top of the base layer, each of the removable lens layers including a PET film having a thickness of 1 to 4 mil and an adhesive disposed on a bottom surface of the PET film. Refractive indices of the base layer and the one or more removable lens layers may be matched to within 0.2.
Another aspect of the embodiments of the present disclosure is a surface mountable protective lens stack. The surface mountable protective lens stack may comprise a base layer including a polyethylene terephthalate (PET) film having a thickness of 2 mil to 7 mil and containing a UV blocking additive. The surface mountable protective lens stack may further comprise one or more removable lens layers stacked on top of the base layer, each of the removable lens layers including a PET film having a thickness of 2 to 7 mil and a first adhesive disposed on a bottom surface of the PET film. The base layer may further include a second adhesive disposed on a bottom surface of the PET film containing the UV blocking additive, the second adhesive having a pull strength greater than that of the first adhesive. Refractive indices of the base layer and the one or more removable lens layers may be matched to within 0.2.
Another aspect of the embodiments of the present disclosure is a protective lens stack. The protective lens stack may comprise a base layer including a polyethylene terephthalate (PET) film containing a UV blocking additive, the base layer having less than 0.5% haze. The protective lens stack may further comprise one or more removable lens layers stacked on top of the base layer, each of the removable lens layers having less than 0.5% haze and including a PET film and a first adhesive disposed on a bottom surface of the PET film.
These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
The present disclosure encompasses various embodiments of an optical stack of laminated removable protective lenses with a low haze integrated UV absorbing packaging for using as a protective face shield or affixing to a window (e.g. of a surgical helmet, hood, or gown worn in an operating room). The detailed description set forth below in connection with the appended drawings is intended as a description of several currently contemplated embodiments and is not intended to represent the only form in which the disclosed invention may be developed or utilized. The description sets forth the functions and features in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions may be accomplished by different embodiments that are also intended to be encompassed within the scope of the present disclosure. It is further understood that relational terms such as first and second and the like are used solely to distinguish one from another entity without necessarily requiring or implying any actual such relationship in order between such entities.
In either case, the protective lens stack 100 may combine low haze, UV blocking, and stability under multiple sterilization processes, all while providing one or more removable lens layers that may be torn off by the wearer as they become soiled. To this end, the protective lens stack 100 may comprise a base layer 110 including a polyethylene terephthalate (PET) film 112 containing a UV blocking additive and one or more removable lens layers 120 stacked on top of the base layer 110. By incorporating the UV blocking additive into the PET film 112 of the base layer 110, the desired UV blocking capability can be achieved without the need to include a separate UV blocking film or permanent adhesive layer therebetween. By eliminating these two layers, the total haze of the protective lens stack 100 may be reduced by 1%, amounting to a 50% increase in clarity over the conventional construction. Each layer of the resulting protective lens stack 100, including the base layer 110 and each of the removable lens layer(s) 120, may have less than 0.5% haze.
Each of the removable lens layers 120 may include a PET film 122 and an adhesive 124 disposed on a bottom surface of the PET film 122. The PET film 122 of the removable lens layer(s) 120 need not include the UV blocking additive since the removable lens layer(s) 120 are intended as sacrificial layers that can be removed as they become soiled. The adhesive 124 may be a dry mount adhesive such as a polymethyl methacrylate (PMMA) adhesive as described in U.S. Pat. No. 9,295,297, entitled “Adhesive Mountable Stack of Removable Layers,” a wet mount adhesive as described in U.S. Pat. No. 9,128,545, entitled “Touch Screen Shield,” or an adhesive as described in U.S. Pat. No. 6,536,045, entitled “Tear-off Optical Stack Having Peripheral Seal Mount,” the entire contents of each of which is expressly incorporated by reference herein. The adhesive 124 may be a pressure sensitive adhesive (PSA).
In the example of
When the outermost PET film 122 becomes soiled (e.g. with blood in an operating room setting), the wearer of the protective lens stack 100 may simply tear off the outermost removable lens layer 120 to reveal a clear lens layer 120 or the base layer 110 underneath. The adhesive 124 of each removable lens layer 120 may remain with the PET film 122 of the same removable lens layer 120 as the layer 120 is removed. That is, the adhesive 124 may be removable from the PET film 122 of the preceding lens layer 120 without leaving a significant amount of residue (e.g. with adhesive transfer 1% or less). So that it is easier to tear off the removable lens layer(s) 120, each removable PET film 122 may have an adhesive-free region 123 or “dry lane” at a periphery thereof where the adhesive 124 is not applied. For example, in the case of a 10-inch-wide protective lens stack 100 (having one or more 10-inch-wide removable PET films 122), the adhesive-free region 123 of each removable PET film 122 may be less than one-third of the width of the PET film 122, e.g., 3.2 inches. In the illustrated example, the adhesive-free region 123 is on only one side of the PET film 122, but it is contemplated that the adhesive-free region 123 may be provided on both sides depending on the preferred technique for tearing off the removable lens layer(s) 120 (e.g. with left hand only, with right hand only, or with either hand).
In order to ensure high visual acuity through the protective lens stack 100, internal reflections within the protective lens stack 100 may be minimized by matching the indices of refraction of each layer 110, 120. In this regard, the PET films 112, 122 and adhesive layers 124 making up the layers 110, 120 may be produced or selected so as to have the same or very similar indices of refraction as described in U.S. Pat. No. 9,295,297, incorporated by reference above. In particular, refractive indices of the base layer 110 and the one or more removable lens layers 120 may be matched to within 0.2.
The UV blocking additive that is incorporated into the PET film 112 of the base layer 110 may take a variety of forms. Most preferably, the UV blocking additive may comprise a hindered amine light stabilizer (HALS), which is a long-term thermal stabilizer that traps free radicals formed during photo-oxidation of plastics. The HALS may be optically clear and may be produced or selected to be refractive index matched to the PET film 112 or, in general, such that the refractive indices of the base layer 110 containing the HALS and the one or more removable lens layers 120 are within 0.2.
Other examples of the UV blocking additive that may be incorporated into the PET film 112 of the base layer 110 instead of or in combination with HALS are UV absorbers and quenchers. UV absorbers may include carbon black, rutile titanium oxide, hydroxy benzophenone, and benzophenones, for example. However, carbon black may have the negative effect of adding haze, while the other UV absorbers are either not optimized for thin PET films or insufficiently block UV radiation (e.g. rutile titanium oxide may not block UVB below 315 nm). Quenchers containing heavy metals may provide limited UV blocking capability to the PET film 112 (not as effective as HALS), but have the negative property of adding unwanted color to the resulting protective lens stack 100. In any case, the refractive index of the UV blocking additive may be matched with that of the PET film 112 and the remainder of the protective lens stack 100 (e.g. to within 0.2).
Owing to the incorporation of the UV blocking additive (HALS, UV absorber, and/or quencher) into the PET film 112 of the base layer 110, UV rays can be blocked by the protective lens stack 100. In particular, the resulting 370 nm transmission of the protective lens stack may be less than 5%. More preferably, the resulting transmission of the protective lens stack 100 at wavelengths of 320-380 nm may be less than 5%. Moreover, since the UV blocking additive is polymer-bound in the PET film 112, it cannot migrate from the PET film 112 during sterilization processes such as gamma irradiation and ethylene oxide (EO) sterilization. Therefore, the protective lens stack 100 may be used in an operating room setting and undergo the typical sterilization processes without degradation.
The characteristics of the PET film 112 containing the UV blocking additive may be within the ranges shown in Table 1, below.
When it is to be used as a standalone face shield (i.e. without being mounted to a surface 10), the protective lens stack 100 may have the following specifications. The PET film 112 of the base layer 110 may have a thickness of 4 mil to 20 mil, preferably 7 to 8 mil (e.g. 7.5 mil). The PET film 122 of each of the one or more removable lens layers 120 may have a thickness of 1 to 4 mil (e.g. 2 mil). In one example construction, two removable lens layers 120, each comprising a 2 mil PET film 122 and an adhesive 124, may be stacked on top of a 7.5 mil index matched UV blocking PET film 112 serving as the base layer 110. In the resulting protective lens 100, haze may be 1% and visible light transmission (VLT) may be 90%. The base layer 110 and the two removable lens layers 120 may each have less than 0.5% haze.
When the protective lens stack 100 is to be surface mountable (e.g. to the surface 10 shown in
As noted above, the surface 10 may be an existing window of a surgical helmet, hood, or gown. It is also contemplated that the surface 10 may more generally be any kind of window. In particular, the surface 10 that the protective lens stack 100 is affixed to may be a windshield of a car or other vehicle, such that the removable lens layers 120 may be peeled off as the windshield becomes soiled with mud and other debris. In this regard, the protective lens stack 100 may be used together with the systems and methods described in Applicant's U.S. Patent Application Pub. No. 2020/0247102, entitled “Thermoform Windshield Stack with Integrated Formable Mold,” and U.S. patent application Ser. No. 16/866,392, filed May 4, 2020 and entitled “Protective Barrier for Safety Glazing,” the entire contents of each of which is expressly incorporated by reference herein. In its surface mountable form as used on a windshield, the protective lens stack 100 may have the following specifications: The PET film 112 of the base layer 110 may have a thickness of 2 mil to 7 mil, preferably 3 to 4 mil. The PET film 122 of each of the one or more removable lens layers 120 may have a thickness of 2 to 7 mil (e.g. 3 to 4 mil). In the resulting protective lens 100, haze may be 2% and visible light transmission (VLT) may be 70%.
In the illustrated example, a 3-ply protective lens stack 100 is shown, having two removable lens layers 120 in addition to the base layer 110. However, it should be noted that the disclosure is not intended to be limited in this regard and that the inclusion of additional removable lens layers 120, or alternatively a construction having only a single removable lens layer 120, is also contemplated.
The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.
This application is a continuation of U.S. patent application Ser. No. 17/342,373, filed Jun. 8, 2021, the contents of which are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1337036 | Bergmann | Apr 1920 | A |
1366907 | Dunand | Feb 1921 | A |
2138086 | Blodjer | Nov 1938 | A |
2248331 | Blodjer | Jul 1941 | A |
2328687 | Serr | Sep 1943 | A |
2339280 | Harold | Jan 1944 | A |
2354415 | Woodard | Jul 1944 | A |
2461604 | Huntsman | Feb 1949 | A |
2511329 | Craig | Jun 1950 | A |
2546117 | Whelan | Mar 1951 | A |
2563125 | Malcom, Jr. | Aug 1951 | A |
2569715 | Green | Oct 1951 | A |
2640068 | Schaefer et al. | May 1953 | A |
2736109 | Scholl | Feb 1956 | A |
2923944 | Lindblom | Feb 1960 | A |
2963708 | Herbine et al. | Dec 1960 | A |
3095575 | Radov | Jul 1963 | A |
3298031 | Morgan | Jan 1967 | A |
3475766 | Raschke | Nov 1969 | A |
3577565 | Feldmann et al. | May 1971 | A |
3605115 | Bohner | Sep 1971 | A |
3685054 | Raschke | Aug 1972 | A |
3774239 | Kotzar | Nov 1973 | A |
3785102 | Amos | Jan 1974 | A |
3797042 | Gager | Mar 1974 | A |
3810815 | Welhart et al. | May 1974 | A |
3868293 | Selph | Feb 1975 | A |
3937863 | Moore | Feb 1976 | A |
3948662 | Alston et al. | Apr 1976 | A |
3950580 | Boudet | Apr 1976 | A |
3987569 | Chase | Oct 1976 | A |
4063740 | Mader | Dec 1977 | A |
4076373 | Moretti | Feb 1978 | A |
4090464 | Bishopp et al. | May 1978 | A |
D249597 | Dillon | Sep 1978 | S |
4138746 | Bergmann | Feb 1979 | A |
D254638 | Bay, Jr. | Apr 1980 | S |
4204231 | Permenter | May 1980 | A |
4248762 | Hornibrook et al. | Feb 1981 | A |
4248918 | Hornibrook et al. | Feb 1981 | A |
4268134 | Gulati et al. | May 1981 | A |
4273098 | Silverstein | Jun 1981 | A |
4301193 | Zuk | Nov 1981 | A |
4332861 | Franz et al. | Jun 1982 | A |
4333983 | Allen | Jun 1982 | A |
4380563 | Ayotte | Apr 1983 | A |
4528701 | Smith | Jul 1985 | A |
4557980 | Hodnett, III | Dec 1985 | A |
4582764 | Allerd et al. | Apr 1986 | A |
4625341 | Broersma | Dec 1986 | A |
4658515 | Oatman | Apr 1987 | A |
4696860 | Epperson | Sep 1987 | A |
4701965 | Landis | Oct 1987 | A |
4716601 | Mcneal | Jan 1988 | A |
4726074 | Baclit et al. | Feb 1988 | A |
4729179 | Quist, Jr. | Mar 1988 | A |
4769265 | Coburn, Jr. | Sep 1988 | A |
D299767 | Hsin | Feb 1989 | S |
4842919 | David et al. | Jun 1989 | A |
4850049 | Landis et al. | Jul 1989 | A |
4852185 | Olson | Aug 1989 | A |
4852186 | Landis | Aug 1989 | A |
4853974 | Olim | Aug 1989 | A |
4856535 | Forbes | Aug 1989 | A |
4864653 | Landis | Sep 1989 | A |
4867178 | Smith | Sep 1989 | A |
4884296 | Nix, Jr. | Dec 1989 | A |
4884302 | Foehl | Dec 1989 | A |
4889754 | Vargas | Dec 1989 | A |
D306363 | Stackhouse et al. | Feb 1990 | S |
4907090 | Ananian | Mar 1990 | A |
4911964 | Corbo | Mar 1990 | A |
D307065 | Friedman | Apr 1990 | S |
4920576 | Landis | May 1990 | A |
4934792 | Tovi | Jun 1990 | A |
4945573 | Landis | Aug 1990 | A |
4950445 | Salce et al. | Aug 1990 | A |
D311263 | Russell | Oct 1990 | S |
4964171 | Landis | Oct 1990 | A |
4965887 | Paoluccio et al. | Oct 1990 | A |
4973511 | Farmer et al. | Nov 1990 | A |
4975981 | Ray | Dec 1990 | A |
5000528 | Kawakatsu | Mar 1991 | A |
5002326 | Spicer et al. | Mar 1991 | A |
D318147 | Russell | Jul 1991 | S |
5035004 | Koester | Jul 1991 | A |
D319449 | Millar | Aug 1991 | S |
5046195 | Koritan | Sep 1991 | A |
D321268 | Nix, Jr. | Oct 1991 | S |
5052054 | Birum | Oct 1991 | A |
5067475 | Posnansky | Nov 1991 | A |
5071206 | Hood et al. | Dec 1991 | A |
H1023 | Wiseman | Mar 1992 | H |
5104929 | Bilkadi | Apr 1992 | A |
5113528 | Burke, Jr. et al. | May 1992 | A |
D331820 | Scanlon | Dec 1992 | S |
D333366 | Brown | Feb 1993 | S |
5183700 | Austin | Feb 1993 | A |
5194293 | Foster | Mar 1993 | A |
5201077 | Dondlinger | Apr 1993 | A |
5206956 | Olson | May 1993 | A |
5208916 | Kelman | May 1993 | A |
5239406 | Lynam | Aug 1993 | A |
5318685 | O'Shaughnessy | Jun 1994 | A |
D349177 | Russell | Jul 1994 | S |
D349178 | Russell | Jul 1994 | S |
5327180 | Hester, III et al. | Jul 1994 | A |
D349362 | Russell | Aug 1994 | S |
5364671 | Gustafson | Nov 1994 | A |
5365615 | Piszkin | Nov 1994 | A |
D353691 | Scanlon | Dec 1994 | S |
D354588 | Russell | Jan 1995 | S |
D354589 | Russell | Jan 1995 | S |
5420649 | Lewis | May 1995 | A |
D359586 | Lofton | Jun 1995 | S |
D361160 | Russell | Aug 1995 | S |
5443877 | Kramer et al. | Aug 1995 | A |
D362086 | Russell | Sep 1995 | S |
5471036 | Sperbeck | Nov 1995 | A |
5473778 | Bell | Dec 1995 | A |
5486883 | Candido | Jan 1996 | A |
5510173 | Pass et al. | Apr 1996 | A |
5512116 | Campfield | Apr 1996 | A |
5523132 | Zhang et al. | Jun 1996 | A |
RE35318 | Warman | Aug 1996 | E |
5544361 | Fine et al. | Aug 1996 | A |
5553608 | Reese et al. | Sep 1996 | A |
5555570 | Bay | Sep 1996 | A |
5557683 | Eubanks | Sep 1996 | A |
5584130 | Perron | Dec 1996 | A |
5592698 | Woods | Jan 1997 | A |
5593786 | Parker et al. | Jan 1997 | A |
5622580 | Mannheim | Apr 1997 | A |
5633049 | Bilkadi et al. | May 1997 | A |
5668612 | Hung | Sep 1997 | A |
5671483 | Reuber | Sep 1997 | A |
5673431 | Batty | Oct 1997 | A |
5687420 | Chong | Nov 1997 | A |
5694650 | Hong | Dec 1997 | A |
5709825 | Shih | Jan 1998 | A |
5740560 | Muoio | Apr 1998 | A |
5792535 | Weder | Aug 1998 | A |
5806102 | Park | Sep 1998 | A |
5815848 | Jarvis | Oct 1998 | A |
5819311 | Lo | Oct 1998 | A |
5846659 | Hartmut et al. | Dec 1998 | A |
D404849 | Desy | Jan 1999 | S |
5885704 | Peiffer et al. | Mar 1999 | A |
5896991 | Hippely et al. | Apr 1999 | A |
5924129 | Gill | Jul 1999 | A |
5937596 | Leeuwenburgh et al. | Aug 1999 | A |
5956175 | Hojnowski | Sep 1999 | A |
5972453 | Akiwa et al. | Oct 1999 | A |
5991072 | Solyntjes et al. | Nov 1999 | A |
5991081 | Haaland et al. | Nov 1999 | A |
5991930 | Sorrentino | Nov 1999 | A |
D418256 | Caruana | Dec 1999 | S |
6008299 | Mcgrath et al. | Dec 1999 | A |
6049419 | Wheatley et al. | Apr 2000 | A |
6085358 | Cogan | Jul 2000 | A |
6173447 | Arnold | Jan 2001 | B1 |
6217099 | Mckinney et al. | Apr 2001 | B1 |
6221112 | Snider | Apr 2001 | B1 |
6237147 | Brockman | May 2001 | B1 |
6250765 | Murakami | Jun 2001 | B1 |
6305073 | Badders | Oct 2001 | B1 |
6347401 | Joyce | Feb 2002 | B1 |
6375865 | Paulson et al. | Apr 2002 | B1 |
6378133 | Daikuzono | Apr 2002 | B1 |
6381750 | Mangan | May 2002 | B1 |
6385776 | Linday | May 2002 | B2 |
6388813 | Wilson et al. | May 2002 | B1 |
6403005 | Mientus et al. | Jun 2002 | B1 |
6416872 | Maschwitz | Jul 2002 | B1 |
6432522 | Friedman et al. | Aug 2002 | B1 |
6461709 | Janssen et al. | Oct 2002 | B1 |
6469752 | Ishikawa et al. | Oct 2002 | B1 |
6491390 | Provost | Dec 2002 | B1 |
6531180 | Takushima et al. | Mar 2003 | B1 |
6536045 | Wilson et al. | Mar 2003 | B1 |
6536589 | Chang | Mar 2003 | B2 |
6555235 | Aufderheide et al. | Apr 2003 | B1 |
6559902 | Kusuda et al. | May 2003 | B1 |
6576349 | Lingle et al. | Jun 2003 | B2 |
6584614 | Hogg | Jul 2003 | B2 |
6592950 | Toshima et al. | Jul 2003 | B1 |
6614423 | Wong et al. | Sep 2003 | B1 |
D480838 | Martin | Oct 2003 | S |
6654071 | Chen | Nov 2003 | B2 |
6660389 | Liu et al. | Dec 2003 | B2 |
6662371 | Shin | Dec 2003 | B2 |
6667738 | Murphy | Dec 2003 | B2 |
6739718 | Jung | May 2004 | B1 |
6750922 | Benning | Jun 2004 | B1 |
6773778 | Onozawa et al. | Aug 2004 | B2 |
6773816 | Tsutsumi | Aug 2004 | B2 |
6777055 | Janssen et al. | Aug 2004 | B2 |
6800378 | Hawa et al. | Oct 2004 | B2 |
6838610 | De Moraes | Jan 2005 | B2 |
6841190 | Liu et al. | Jan 2005 | B2 |
6847492 | Wilson et al. | Jan 2005 | B2 |
6864882 | Newton | Mar 2005 | B2 |
6870686 | Wilson et al. | Mar 2005 | B2 |
6879319 | Cok | Apr 2005 | B2 |
6907617 | Johnson | Jun 2005 | B2 |
6911593 | Mazumder et al. | Jun 2005 | B2 |
6922850 | Arnold | Aug 2005 | B1 |
6952950 | Doe et al. | Oct 2005 | B2 |
6967044 | O'Brien | Nov 2005 | B1 |
D512797 | Canavan et al. | Dec 2005 | S |
6995976 | Richardson | Feb 2006 | B2 |
7070837 | Ross | Jul 2006 | B2 |
7071927 | Blanchard | Jul 2006 | B2 |
D526446 | Cowan et al. | Aug 2006 | S |
7097080 | Cox | Aug 2006 | B2 |
7101810 | Bond et al. | Sep 2006 | B2 |
7103920 | Otterson | Sep 2006 | B1 |
7143979 | Wood et al. | Dec 2006 | B2 |
7184217 | Wilson et al. | Feb 2007 | B2 |
D541991 | Lawrence | May 2007 | S |
7215473 | Fleming | May 2007 | B2 |
7226176 | Huang | Jun 2007 | B1 |
7238401 | Dietz | Jul 2007 | B1 |
7311956 | Pitzen | Dec 2007 | B2 |
D559442 | Regelbrugge et al. | Jan 2008 | S |
7344241 | Baek | Mar 2008 | B2 |
7351470 | Draheim et al. | Apr 2008 | B2 |
D569557 | Cho | May 2008 | S |
7389869 | Mason, Jr. | Jun 2008 | B2 |
7410684 | Mccormick | Aug 2008 | B2 |
7425369 | Oakey et al. | Sep 2008 | B2 |
D586052 | Elias | Feb 2009 | S |
7495895 | Carnevali | Feb 2009 | B2 |
7597441 | Farwig | Oct 2009 | B1 |
7629052 | Brumwell | Dec 2009 | B2 |
7631365 | Mahan | Dec 2009 | B1 |
7663047 | Hanuschak | Feb 2010 | B2 |
7709095 | Persoone et al. | May 2010 | B2 |
7722921 | Shimoda et al. | May 2010 | B2 |
7727615 | Kato et al. | Jun 2010 | B2 |
7752682 | Vanderwoude et al. | Jul 2010 | B2 |
7812077 | Borade et al. | Oct 2010 | B2 |
7858001 | Qin et al. | Dec 2010 | B2 |
7937775 | Manzella, Jr. et al. | May 2011 | B2 |
7957524 | Chipping | Jun 2011 | B2 |
8024818 | Davenport | Sep 2011 | B1 |
8044942 | Leonhard et al. | Oct 2011 | B1 |
8261375 | Reaux | Sep 2012 | B1 |
8292347 | Drake | Oct 2012 | B1 |
8294843 | Hollaway | Oct 2012 | B2 |
8361260 | Wilson et al. | Jan 2013 | B2 |
D683077 | Klotz et al. | May 2013 | S |
8455105 | Hobeika et al. | Jun 2013 | B2 |
D692187 | Isobe | Oct 2013 | S |
D692189 | Isobe | Oct 2013 | S |
8567596 | Mason, Jr. | Oct 2013 | B1 |
8693102 | Wilson et al. | Apr 2014 | B2 |
8889801 | Liao et al. | Nov 2014 | B2 |
8918198 | Atanasoff | Dec 2014 | B2 |
8974620 | Wilson et al. | Mar 2015 | B2 |
D726378 | Wako | Apr 2015 | S |
8999509 | Port et al. | Apr 2015 | B2 |
9023162 | Mccormick et al. | May 2015 | B2 |
9104256 | Wilson et al. | Aug 2015 | B2 |
9128545 | Wilson et al. | Sep 2015 | B2 |
9150763 | Lopez et al. | Oct 2015 | B2 |
9161858 | Capers et al. | Oct 2015 | B2 |
9170415 | Mansuy | Oct 2015 | B2 |
9274625 | Wilson et al. | Mar 2016 | B2 |
9295297 | Wilson | Mar 2016 | B2 |
D759900 | Cummings et al. | Jun 2016 | S |
9442306 | Hines et al. | Sep 2016 | B1 |
9471163 | Wilson et al. | Oct 2016 | B2 |
9526290 | Wilson | Dec 2016 | B2 |
9575231 | Chu et al. | Feb 2017 | B2 |
D781507 | Huh | Mar 2017 | S |
D781508 | Huh | Mar 2017 | S |
9629407 | Foster | Apr 2017 | B2 |
9671622 | Vetrini et al. | Jun 2017 | B1 |
9726940 | Tomiyasu | Aug 2017 | B2 |
D805256 | Yang | Dec 2017 | S |
9905297 | Best | Feb 2018 | B2 |
D815190 | Dellemann | Apr 2018 | S |
9968155 | Wilson | May 2018 | B2 |
10070678 | Wilson | Sep 2018 | B2 |
10165819 | Klotz et al. | Jan 2019 | B2 |
10226095 | Wilson | Mar 2019 | B2 |
10227501 | Hwang et al. | Mar 2019 | B2 |
D849240 | Guo et al. | May 2019 | S |
D850256 | Ryszawy | Jun 2019 | S |
10321731 | Wilson | Jun 2019 | B2 |
10345934 | Wilson et al. | Jul 2019 | B2 |
10427385 | Wilson et al. | Oct 2019 | B2 |
10520756 | Gallina et al. | Dec 2019 | B2 |
D879384 | Sato | Mar 2020 | S |
D882182 | Fekete | Apr 2020 | S |
10620670 | Wilson et al. | Apr 2020 | B2 |
10687569 | Mcdirmid | Jun 2020 | B1 |
10716986 | Winter et al. | Jul 2020 | B2 |
D907299 | Brown, II et al. | Jan 2021 | S |
D907300 | Brown, II et al. | Jan 2021 | S |
D925129 | Wilson | Jul 2021 | S |
D925834 | Babin et al. | Jul 2021 | S |
11141959 | Wilson et al. | Oct 2021 | B2 |
11147323 | Wilson | Oct 2021 | B1 |
11307329 | Wilson | Apr 2022 | B1 |
11490667 | Wilson | Nov 2022 | B1 |
20010035936 | Maisnik | Nov 2001 | A1 |
20020025441 | Hieda et al. | Feb 2002 | A1 |
20020036362 | Chigira et al. | Mar 2002 | A1 |
20020101411 | Chang | Aug 2002 | A1 |
20020109922 | Wilson et al. | Aug 2002 | A1 |
20020114934 | Liu et al. | Aug 2002 | A1 |
20020122925 | Liu et al. | Sep 2002 | A1 |
20020159159 | Wilson et al. | Oct 2002 | A1 |
20020195910 | Hus et al. | Dec 2002 | A1 |
20030012936 | Draheim et al. | Jan 2003 | A1 |
20030087054 | Janssen et al. | May 2003 | A1 |
20030110613 | Ross | Jun 2003 | A1 |
20040004605 | David | Jan 2004 | A1 |
20040109096 | Anderson et al. | Jun 2004 | A1 |
20040121105 | Janssen et al. | Jun 2004 | A1 |
20040139530 | Yan | Jul 2004 | A1 |
20040202812 | Congard et al. | Oct 2004 | A1 |
20040227722 | Friberg et al. | Nov 2004 | A1 |
20040238690 | Wood et al. | Dec 2004 | A1 |
20040246386 | Thomas et al. | Dec 2004 | A1 |
20040258933 | Enniss et al. | Dec 2004 | A1 |
20050002108 | Wilson et al. | Jan 2005 | A1 |
20050015860 | Reaux | Jan 2005 | A1 |
20050133035 | Yahiaoui et al. | Jun 2005 | A1 |
20050186415 | Mccormick et al. | Aug 2005 | A1 |
20050188821 | Yamashita et al. | Sep 2005 | A1 |
20050200154 | Barbee et al. | Sep 2005 | A1 |
20050249957 | Jing et al. | Nov 2005 | A1 |
20050260343 | Han | Nov 2005 | A1 |
20060024494 | Amano et al. | Feb 2006 | A1 |
20060052167 | Boddicker et al. | Mar 2006 | A1 |
20060056030 | Fukuda et al. | Mar 2006 | A1 |
20060057399 | Persoone et al. | Mar 2006 | A1 |
20060114245 | Masters et al. | Jun 2006 | A1 |
20060138694 | Biernath et al. | Jun 2006 | A1 |
20060158609 | Heil | Jul 2006 | A1 |
20060177654 | Shoshi | Aug 2006 | A1 |
20060204776 | Chen et al. | Sep 2006 | A1 |
20060254088 | Mccormick | Nov 2006 | A1 |
20060285218 | Wilson et al. | Dec 2006 | A1 |
20070019300 | Wilson et al. | Jan 2007 | A1 |
20070181456 | Kusuda et al. | Aug 2007 | A1 |
20070211002 | Zehner et al. | Sep 2007 | A1 |
20070212508 | Mase | Sep 2007 | A1 |
20070229962 | Mason | Oct 2007 | A1 |
20070234592 | Crates | Oct 2007 | A1 |
20070234888 | Rotolo De Moraes | Oct 2007 | A1 |
20070286995 | Li et al. | Dec 2007 | A1 |
20080014446 | Donea et al. | Jan 2008 | A1 |
20080030631 | Gallagher | Feb 2008 | A1 |
20080030675 | Dillon | Feb 2008 | A1 |
20080055258 | Sauers | Mar 2008 | A1 |
20080118678 | Huang et al. | May 2008 | A1 |
20080151177 | Wang | Jun 2008 | A1 |
20080160321 | Padiyath et al. | Jul 2008 | A1 |
20080176018 | Enniss et al. | Jul 2008 | A1 |
20080231979 | Chen | Sep 2008 | A1 |
20080286500 | Sussner et al. | Nov 2008 | A1 |
20080292820 | Padiyath et al. | Nov 2008 | A1 |
20090011205 | Thiel | Jan 2009 | A1 |
20090026095 | Lofland et al. | Jan 2009 | A1 |
20090054115 | Horrdin et al. | Feb 2009 | A1 |
20090086415 | Chipping | Apr 2009 | A1 |
20090087655 | Yamada et al. | Apr 2009 | A1 |
20090105437 | Determan et al. | Apr 2009 | A1 |
20090119819 | Thompson | May 2009 | A1 |
20090181242 | Enniss et al. | Jul 2009 | A1 |
20090233032 | Craig | Sep 2009 | A1 |
20090239045 | Kato et al. | Sep 2009 | A1 |
20090239048 | Sugihara et al. | Sep 2009 | A1 |
20100026646 | Xiao et al. | Feb 2010 | A1 |
20100033442 | Kusuda et al. | Feb 2010 | A1 |
20100102197 | Mcintyre | Apr 2010 | A1 |
20100102476 | Higgins | Apr 2010 | A1 |
20100122402 | Tipp | May 2010 | A1 |
20100146679 | Heil | Jun 2010 | A1 |
20100238119 | Dubrovsky et al. | Sep 2010 | A1 |
20100245273 | Hwang et al. | Sep 2010 | A1 |
20100270189 | Pedersen, II et al. | Oct 2010 | A1 |
20110007388 | Wilson et al. | Jan 2011 | A1 |
20110010994 | Wilson et al. | Jan 2011 | A1 |
20110012841 | Lin | Jan 2011 | A1 |
20110013273 | Wilson et al. | Jan 2011 | A1 |
20110014481 | Wilson et al. | Jan 2011 | A1 |
20110035936 | Lee | Feb 2011 | A1 |
20110052864 | Son | Mar 2011 | A1 |
20110097574 | Faldysta et al. | Apr 2011 | A1 |
20110119801 | Wright | May 2011 | A1 |
20110165361 | Sherman et al. | Jul 2011 | A1 |
20110168261 | Welser et al. | Jul 2011 | A1 |
20110267793 | Cohen et al. | Nov 2011 | A1 |
20110271497 | Suh et al. | Nov 2011 | A1 |
20110277361 | Nichol et al. | Nov 2011 | A1 |
20110279383 | Wilson et al. | Nov 2011 | A1 |
20120003431 | Huang | Jan 2012 | A1 |
20120030095 | Marshall et al. | Feb 2012 | A1 |
20120047614 | Choi | Mar 2012 | A1 |
20120070603 | Hsu | Mar 2012 | A1 |
20120081792 | Neuffer | Apr 2012 | A1 |
20120137414 | Saylor | Jun 2012 | A1 |
20120180204 | Hawkins | Jul 2012 | A1 |
20120183712 | Leonhard et al. | Jul 2012 | A1 |
20120188743 | Wilson et al. | Jul 2012 | A1 |
20120200816 | Krasnov et al. | Aug 2012 | A1 |
20120291173 | Gleason et al. | Nov 2012 | A1 |
20130045371 | O'Donnell | Feb 2013 | A1 |
20130089688 | Wilson et al. | Apr 2013 | A1 |
20130098543 | Reuter et al. | Apr 2013 | A1 |
20130141693 | McCabe et al. | Jun 2013 | A1 |
20130145525 | Arenson et al. | Jun 2013 | A1 |
20130222913 | Tomoda et al. | Aug 2013 | A1 |
20130247286 | Vanderwoude et al. | Sep 2013 | A1 |
20130293959 | Mcdonald | Nov 2013 | A1 |
20140020153 | Romanski et al. | Jan 2014 | A1 |
20140050909 | Choi et al. | Feb 2014 | A1 |
20140220283 | Wilson et al. | Aug 2014 | A1 |
20140259321 | Arnold | Sep 2014 | A1 |
20150033431 | Hofer Kraner et al. | Feb 2015 | A1 |
20150131047 | Saylor et al. | May 2015 | A1 |
20150234209 | Miyamoto et al. | Aug 2015 | A1 |
20150258715 | Ohta | Sep 2015 | A1 |
20150294656 | Hanuschak | Oct 2015 | A1 |
20150309609 | Wilson et al. | Oct 2015 | A1 |
20150349147 | Xi et al. | Dec 2015 | A1 |
20150359675 | Wilson | Dec 2015 | A1 |
20160023442 | Faris | Jan 2016 | A1 |
20160050990 | Hayes | Feb 2016 | A1 |
20160073720 | Niedrich | Mar 2016 | A1 |
20160231834 | Hardi | Aug 2016 | A1 |
20160259102 | Taka | Sep 2016 | A1 |
20160271922 | Uzawa et al. | Sep 2016 | A1 |
20160291543 | Saito | Oct 2016 | A1 |
20160318227 | Kim et al. | Nov 2016 | A1 |
20170079364 | Paulson | Mar 2017 | A1 |
20170129219 | Uebelacker et al. | May 2017 | A1 |
20170173923 | Davis et al. | Jun 2017 | A1 |
20170208878 | Kakinuma et al. | Jul 2017 | A1 |
20170232713 | Mannheim Astete et al. | Aug 2017 | A1 |
20170281414 | Wilson | Oct 2017 | A1 |
20170299898 | Gallina et al. | Oct 2017 | A1 |
20170318877 | Yahiaoui et al. | Nov 2017 | A1 |
20180029337 | Wilson et al. | Feb 2018 | A1 |
20180042324 | King | Feb 2018 | A1 |
20180052334 | Repko | Feb 2018 | A1 |
20180094164 | Ito et al. | Apr 2018 | A1 |
20180148578 | Ohta et al. | May 2018 | A1 |
20180161208 | Huh | Jun 2018 | A1 |
20180236753 | Wykoff, II et al. | Aug 2018 | A1 |
20180295925 | Gagliardo et al. | Oct 2018 | A1 |
20180338550 | Boulware et al. | Nov 2018 | A1 |
20190021430 | Elliott | Jan 2019 | A1 |
20190037948 | Romanski et al. | Feb 2019 | A1 |
20190118057 | Winter et al. | Apr 2019 | A1 |
20190209912 | Isserow et al. | Jul 2019 | A1 |
20190212474 | Le Quang et al. | Jul 2019 | A1 |
20200100657 | Lee et al. | Apr 2020 | A1 |
20200115519 | Phillips et al. | Apr 2020 | A1 |
20200124768 | Wilson | Apr 2020 | A1 |
20200134773 | Pinter et al. | Apr 2020 | A1 |
20200154808 | Inouye | May 2020 | A1 |
20200178622 | Jascomb et al. | Jun 2020 | A1 |
20200281301 | Wynalda, Jr. | Sep 2020 | A1 |
20210030095 | Reicher | Feb 2021 | A1 |
20210162645 | Wilson et al. | Jun 2021 | A1 |
20210298380 | Brown, II et al. | Sep 2021 | A1 |
20210298390 | Sup, IV et al. | Sep 2021 | A1 |
20210307425 | Keim | Oct 2021 | A1 |
20210315291 | Votolato et al. | Oct 2021 | A1 |
20210318553 | Gharabegian | Oct 2021 | A1 |
20210321692 | Wilson | Oct 2021 | A1 |
20210321693 | Wilson et al. | Oct 2021 | A1 |
20210329999 | Ackerman | Oct 2021 | A1 |
20210368886 | Swart et al. | Dec 2021 | A1 |
20210386155 | Rose | Dec 2021 | A1 |
20220015472 | Boza | Jan 2022 | A1 |
Number | Date | Country |
---|---|---|
2005244595 | Jul 2006 | AU |
2015277196 | Jan 2017 | AU |
3637188 | May 1988 | DE |
19808535 | Sep 1999 | DE |
202004010014 | Apr 2005 | DE |
202020101562 | Apr 2020 | DE |
202020101794 | Apr 2020 | DE |
192075 | Aug 1986 | EP |
671258 | Sep 1995 | EP |
1471415 | Oct 2004 | EP |
1047537 | Mar 2010 | EP |
3157480 | Apr 2017 | EP |
2310862 | Sep 1997 | GB |
61017860 | Jan 1986 | JP |
S6117860 | Jan 1986 | JP |
62053832 | Mar 1987 | JP |
04314537 | Nov 1992 | JP |
06143496 | May 1994 | JP |
07021456 | Jan 1995 | JP |
10167765 | Jun 1998 | JP |
2000334812 | Dec 2000 | JP |
2002328613 | Nov 2002 | JP |
2012183822 | Sep 2012 | JP |
2014032222 | Feb 2014 | JP |
2015128896 | Jul 2015 | JP |
20120001292 | Jan 2012 | KR |
200700793 | Jan 2007 | TW |
201027992 | Jul 2010 | TW |
0024576 | May 2000 | WO |
03052678 | Jun 2003 | WO |
2009008857 | Jan 2009 | WO |
2015009114 | Jan 2015 | WO |
2015091425 | Jun 2015 | WO |
2015093413 | Jun 2015 | WO |
2015195814 | Dec 2015 | WO |
2019006151 | Jan 2019 | WO |
2019055267 | Mar 2019 | WO |
Entry |
---|
Racing Optics, Inc. v. Aevoe Corp. DBA Moshi; Case 2:15-cv-01774-RCJ-VCF; “Answer to Aevoe's Counterclaims—Jury Trial Demanded”; Nov. 2, 2015; 15 pages. |
Gregory Brower et al.; “Complaint for Patent Infringement”; Sep. 15, 2015; 15 pages. |
Jeffrey A. Silverstri et al.; “Answer to Complaint for Patent Infringement”; Oct. 7, 2015; 59 pages. |
United States Patent and Trademark Office; Office Action for U.S. Appl. No. 15/090,681; dated Aug. 26, 2016; 8 pages. |
List of References for U.S. Appl. No. 15/090,681; Receipt date Jun. 30, 2016; 3 pages. |
List of References for U.S. Appl. No. 15/090,681; Receipt date Apr. 27, 2016; 4 pages. |
Examiner's search strategy and results for U.S. Appl. No. 15/090,681, filed Aug. 21, 2016; 2 pages. |
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01164; Petition for Inter Partes Review of U.S. Pat. No. 9,104,256 (including Exhibits 1001-1011 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition for Inter Partes Review); Jun. 21, 2016. |
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01165; Petition for Inter Partes Review of U.S. Pat. No. 9,128,545(including Exhibits 1001-1006 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition for Inter Partes Review); Jun. 21, 2016. |
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01166; Petition for Inter Partes Review of U.S. Pat. No. 9,274,625 (including Exhibits 1001-1011 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition for Inter Partes Review); Jun. 21, 2016. |
Exhibit 1—Invalidity Contentions re: '545 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016. |
Exhibit 2—Invalidity Contentions re: '256 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016. |
Exhibit 3—Invalidity Contentions re: '620 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016. |
Exhibit 4—Invalidity Contentions re: '625 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016. |
Exhibit 1002—U.S. Pat. No. 5,364,671 to Gustafson; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-6. |
Exhibit 1004—U.S. Pat. No. 7,351,470 to Draheim et al; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-15. |
Exhibit 1001—U.S. Pat. No. 8,974,620 to Wilson et al.; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-15. |
Exhibit 1003—U.S. Pat. No. 6,250,765 to Murakami; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; p. 1-8. |
Exhibit 1005—U.S. Pat. No. 7,957,524 to Chipping; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2017; pp. 1-20. |
Aevoe Corp., Racing Optics, Inc.; Petition for Inter Partes Review; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-55. |
Exhibit 1006—Japanese Application No. JP 2002-328613 to Kitaguchi Translation; IPR2016-01745; at least as early as Sep. 7, 2016; pp. 1-10. |
Exhibit 1009—U.S. Appl. No. 13/838,311; Interview Summary; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; dated Sep. 7, 2016; p. 1-3. |
Exhibit 1010—U.S. Appl. No. 15/838,311; Notice of Allowance; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; dated Sep. 7, 2016; pp. 1-8. |
Aevoe Corp. v. Racing Optics, Inc.; Declaration of Darran Cairns; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-32. |
Aevoe Corp. v. Racing Optics, Inc.; Petitioner's Power of Attorney; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-3. |
Exhibit 1007—U.S. Appl. No. 13/838,311; Response to Office Action; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; dated Sep. 7, 2016; p. 1-19. |
Exhibit 1008—U.S. Appl. No. 13/838,311; Response and Request for Continued Examination; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; dated Sep. 7, 2016; pp. 1-21. |
Aevoe Corp. v. Racing Optics, Inc.; Mandatory Notices; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-4. |
Aevoe Corp. v. Racing Optics, Inc.;Power of Attorney; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-4. |
Aevoe Corp v. Racing Optics, Inc.; Notice of Filing Date; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 6, 2016; p. 1-5. |
Aevoe Corp v. Racing Optics, Inc.; Decision; Case IPR2016-01164; Inter Partes Review of U.S. Pat. No. 9,104,256; at least as early as Nov. 7, 2016; p. 1-24. |
Aevoe Corp v. Racing Optics, Inc.; Decision; Case IPR2016-01166; Inter Partes Review of U.S. Pat. No. 9,274,625; at least as early as Nov. 7, 2016; p. 1-23. |
Aevoe Corp v. Racing Optics, Inc.; Decision; Case IPR2016-01165; Inter Partes Review of U.S. Pat. No. 9,128,545; at least as early as Nov. 7, 2016; p. 1-25. |
Settlement and License Agreement, Dec. 21, 2007, 28 pgs. |
United States Patent and Trademark Office; Office Action dated Dec. 21, 2016 pertaining to U.S. Appl. No. 15/090,681, filed Apr. 5, 2016; 8 pages. |
PCT Search Report and Written Opinion for US2020/016245 (dated Apr. 28, 2020). |
Professional Plastics (http://www.professionalplastics.com/MelinexPETFilmDupont) 2012. |
Whitney, Frank D., Preliminary Injunction, dated Aug. 21, 2007, 5 pgs. |
Higgins, John P., Answer and Counterclaims to First Amended Complaint, Sep. 4, 2007, 27 pgs. |
Ballato, John, Expert Report of John Ballato, Ph.D., Nov. 12, 2007, 5 pgs. |
Russell, Geoffrey A., Rebuttal Report of Geoffrey A. Russell, Ph.D., on issues raised in the Export Report of John Ballato, Ph.D., Nov. 21, 2007, 15 pgs. |
Higgins, John P., Defendants' Second Supplement to Its Response to Plaintiffs' First Set of Interrogatories, Dec. 7, 2007, 25 pgs. |
Barnhardt, John J. III, Redacted Version Defendants' Memorandum in Support of Motion for Partial Summary Judgment, Dec. 3, 2007, 36 pgs. |
Higgins, John P., Defendants' Second Supplement to its Response to Plaintiffs' First Set of Interrogatories, Dec. 7, 2007, 26 pgs. |
Whitney, Frank D., Consent Judgment Order, Jan. 3, 2008, 5 pgs. |
Ballato, John, Supplemental Expert Report of John Ballato, Ph.D., Nov. 19, 2007, 10 pgs. |
Moore, Steven D., Plaintiffs' Motion to Strike Defendants' New and Untimely Invalidity Theory, Dec. 19, 2007, 3 pgs. |
Moore, Steven D., Plaintiffs' Brief in Support of Motion to Strike Defendants' New and Untimely Invalidity Theory, Dec. 19, 2007, 10 pgs. |
Barnhardt, John J. III, Notice Pursuant to 35 U.S.C. 282, Dec. 18, 2007, 3 pgs. |
Office Action for Canadian Patent Application No. 2,952,436; dated Jul. 8, 2020. |
Prosecution History of U.S. Re-Examination Application No. 95/002,073 titled Touch Screen Protector; pp. 1-1,980. |
www.store.moshimode.com; “iVisor AG for iPad 2 Black”; 2004-2010. |
Defendant's Motion for Summary Judgment; Oct. 25, 2013; pp. 1-31. |
Jake Gaecke; “Appletell Reviews the iVisor for iPad”; www.appletell.com; Sep. 15, 2010 at 12:32 p.m. www.technologytell.com/apple/60407/appletell-reviews-ag-for-ipad/; 2 pages. |
www.nushield.com/technology.php; “What Makes NuShield Screen Protectors Superior”, 2 pages. |
www.spigen.com; “Something You Want”; 2 pages. |
www.zagg.com; “Apple iPad 2 (Wi-Fi 3G) Screen Protector”; 2 pages. |
www.gadgetguard.com; “Invisible Gadget Guard, the Original”; 1 page. |
www.incipotech.com; “Protect Your iPhone 4 with Screen Protectors from Incipo”; 3 pages. |
www.store.moshimonde.com; “iVisor AG iPad Screen Protector”; Jul. 2010; 7 pages. |
www.store.moshimonde.com; “iVisor XT Crystal Clear Protector for iPad”; Aug. 2010; 3 pages. |
www.store.moshimonde.com; “iVisor AG for iPad 2 Black”; Mar. 2011; 5 pages. |
www.store.moshimonde.com; “iVisor AG for iPad 2 White”; Mar. 2011; 3 pages. |
www.store.moshimonde.com; “iVisor AG for iPhone 4/4S Black”; Nov. 2010; 5 pages. |
www.store.moshimonde.com; “iVisor AG for iPhone 4/4S White”; May 2010; 4 pages. |
Dictionary.com (http://dictionary.reference.com) 2012. |
Racing Optics, Inc. v. Aevoe, Inc., d/b/a/ Moshi; Case No. 15-cv-017744-JCM-VCF; Aevoe's Initial Disclosure Non-Infringement, Invalidity and Unenforceability Contentions (Redacted) dated Jan. 7, 2016. |
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 9,128,545) dated Jan. 7, 2016. |
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 9,104,256) dated Jan. 7, 2016. |
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 8,974,620) dated Jan. 7, 2016. |
I-Blason LLC v. Aevoe, Inc. and Aevoe Corp.; Case IPR2016-TBA; Petition for Inter Partes Review of U.S. Pat. No. 8,044,942 (including Exhibits 1001-1019). |
Dupont Teijin Films, “Mylar Polyester Film—Optical Properties”, Jun. 2003, 2 pages. |
https://en.wikipedia.org/wiki/Black_body, “Black Body”, Jul. 2009, 11 pages. |
https://en.wikipedia.org/wiki/Infrared, “Infrared”, Jul. 2009, 12 pages. |
https://en.wikipedia.org/wiki/BoPET, “PET Film (biaxially oriented)”, Jul. 2009, 4 pages. |
Instashield LLC, Bionic Wrench® Inventor Creates Low-Cost Face Shield For Masses, Apr. 15, 2020, 3 pages. |
Tom Zillich, Surrey manufacturer hopes to hit home run with face shield that clips to baseball cap, Apr. 29, 2020, 3 pages. |
Opentip, Opromo Safety Face Shield Visor for Adult Kids,Protective Cotton Hat with Removable PVC Face Cover <https://www.opentip.com/product.php?products_id=11699030>, May 5, 2020, 3 pages. |
HEFUTE, HEFUTE 5 PCS Protective Face Cover with Shield Comfortable Full Protection Face Compatiable with Glasses Anti-Droplet Anti-Pollution and Windproof Transparent Safety Face Cover with Shield(Style B) <https://www.amazon.com/dp/B086GSG8DH/ref=sspa_dk_detail_9?psc=1&pd_rd_i=B086GSG8DH&pd_rd_w=Ocdm2&pf_rd_p=48d372c1-f7e1-4b8b-9d02-4bd86f5158c5&pd_rd_wg=qkB2b&pf_rd_r=M%E2%80%A6>, May 6, 2020, 7 pages. |
GEANBAYE, GEANBAYE Safety Full Face Shield Cap Detachable Baseball Cap Anti-Saliva Anti-Spitting Eye Protective Hat Windproof Dustproof <https://www.amazon.com/dp/B086DV32B8/ref=sspa_dk_detail_8?psc=1&pd_rd_i=B086DV32B8&pd_rd_w=MwjfT&pf_rd_p=48d372c1-f7e1-4b8b-9d02-4bd86f5158c5&pd_rd_wg=pxuOs&pf_rd_r=PNDA%E2%80%A6>, May 5, 2020, 8 pages. |
Leigh Buchanan, These 2 Companies Are Making Face Shields for Everyone <https://www.inc.com/leigh-buchanan/face-shields-coronavirus-protection-open-source.html>, May 6, 2020, 8 pages. |
Brim Shield, photographs, Apr. 21, 2020, 1 pages. |
Hatshield, Shield Yourself With The Hatshield <https://www.hat-shield.com/?gclid=CjwKCAjwp-X0BRAFEiwAheRui1u89v_3URuiwEVvBRGa9TaEfWoZVMJXRkWsZgPTUw-0fHJ5HD-8uhoCc84QAvD_BwE>, Apr. 17, 2020, 11 pages. |
Eli N. Perencevich, Moving Personal Protective Equipment Into the Community Face Shields and Containment of COVID-19, Apr. 29, 2020, 2 pages. |
Chang, Tian-Ci; Cao, Xun; Bao, Shan-Hu; Ji, Shi-Dong; Luo, Hong-Jie; Jin, Ping; Review of Thermochromic Vanadium Dioxide Based Smart Coatings: From Lab to Commercial Application; Dec. 16, 2017. |
Saudi Basic Industries Corporation (SABIC); “The Department of Transportation [DOT] Guidebook”; Oct. 2016. |
Hostaphan RBB, “Transparent, Temperature Stable Polyester Film for Cooking & Roasting Bags'” Jul. 2016. |
Hostaphan Win, “White, Long-Term Stable, Thermally Stable Polyester Film for PV Back Sheet Laminates”; Jul. 2016. |
PCT Search Report & Written Opinion for PCT/US2019/054565 (dated Dec. 20, 2019). |
PCT Search Report & Written Opinion for PCT/US2015/036248 (dated Sep. 16, 2015). |
“Declaration of Jerome Aho”; Filed Aug. 3, 2007; Case 3:07-cv-00221-FDW-DCK; Includes: Exhibit A, Nascar Postcard (1 page), Exhibit B, 50th Anniversary Nascar letter sent Jan. 7, 1998 (1 page), and Exhibit C, Front page of “The Official Nascar Preview and Press Guide” (1 page); 9 pages. |
Racing Optics, Inc. v. David Leon O'Neal, Edward M. Wallace and Clear View Racing Optics, LLC; Case 3:07 CV 221; Includes: Exhibit A, Wilson et al. U.S. Pat. No. 6,847,492; and Exhibit B, Wilson et al. U.S. Pat. No. 7,184,217; 34 pages. |
International Search Report; International Application No. PCT/US99/95128; Date of Completion: Jan. 18, 2000; 54 pages. |
International Search Report; International Application No. PCT/US02/10971; Date of Completion: Nov. 20, 2002; 3 pages. |
International Search Report; International Application No. PCT/US03/16284; Date of Completion: Mar. 9, 2004; 3 pages. |
European Search Report for Application No. 15809930.9-107/3157480 (dated Dec. 15, 2017). |
Canadian Office Action for Application Serial No. 2,952,436 (dated Nov. 15, 2019). |
Canadian Office Action for Application Serial No. 2,952,436 (dated May 3, 2019). |
Australian Examination Report for Application Serial No. 2015277196 (dated Oct. 18, 2018). |
www.wikipedia.org, Refractive Index, Oct. 31, 2014. |
www.wikipedia.org. “Black Body”, Jul. 2009, 11 pages. |
www.wikipedia.org. “Infrared”, Jul. 2009, 12 pages. |
www.wikipedia.org. “PET Film (biaxially oriented)”, Jul. 2009, 4 pages. |
PCT International Application No. PCT/US99/25128 with International Search Report, Date of Completion Jan. 18, 2000, 54 Pages. |
English translation of TW201027992, “Monitor Protection Device for a Flat Panel Display”, 11 pgs. |
Pulse Racing Innovations, EZ Tear Universal Single Pull Tearoff Ramp, webpage <https://www.pulseracinginnovations.com>, Dec. 30, 2020, 6 pages. |
PCT International Search Report and Written Opinion for International Application No. PCT/US20/24639, dated Jun. 11, 2020, 13 pages. |
PCT International Search Report and Written Opinion for International Application No. PCT/US2020/049919; dated Nov. 27, 2020. |
Tian-Chi Chang, Xun Cao, Shan-Hu Bao, Shi=Dong Ji, Hong-Jie Luo, Ping Jin; “Review on Thermochromic Vanadium Dioxide Based Smart Coatings: From Lab to Commercial Application”; Dec. 16, 2017. |
PCT International Search Report and Written Opinion for International Application No. PCT/US2020/062230; dated Feb. 8, 2021. |
“Anti-reflective coating,” Wikipedia, last updated Jul. 13, 2017 by Andy Dingley, <https://en.rn.wikipedia.org/wiki/Anti-reflective_coating>. |
“Monotonic function,” Wikipedia, accessed May 24, 2017, <https://en.wikipedia.org/wiki/Monotonic_function>. |
“Thin Film,” Wikipedia, last updated Jun. 20, 2017, <https://en.wikipedia.org/wiki/Thin_film>. |
“Tips to Get Quality Anti-Reflection Optical Coatings,” Penn Optical Coatings, accessed May 24, 2017, <http://www.pennoc.com/tipsgetqualityantireflectionopticalcoatings/>. |
Langlet, M., “Antireflective Films”, from Chapter 15 of Handbook of Sol-Gel Science and Technology Processing Characterization and Applications, copyright 2005, pp. 332-334, 337, 339-341., taken from website <https://books.google.com/books?id=i9swy1D2HxlC&lpg=PA339&dq=AR%20thick%20film%20coatings&pg=PA339#v=onepage&q=AR%20thick%20film%20coatings&f=false>. |
Li, H.-M. et al., “Influence of weight ratio in polymer blend film on the phase separation structure and its optical properties”, The European Physical Journal Applied Physics, 45, 20501, published Jan. 31, 2009, EDP Sciences, 4 pages. |
MDS Nordion, “Gamma Compatible Materials,” Datasheet, Aug. 2007, 4 pages, <https://ab-div-bdi-bl-blm.web.cern.ch/Radiation/Gamma_Compatible_Materials_List_company.pdf>, retrieved on Sep. 29, 2021. |
Zhang, Xin_Xiang et al., Abstract of “One-step sol-gel preparation of PDMS-silica ORMOSILs as environment-resistant and crack-free thick antireflective coatings,” Journal of Materials Chemistry, Issue 26, 2012, <http://pubs.rsc.org/en/content/articlelanding/2012/m/c2jm31005h#!divAbstract>. |
PCT International Search Report and Written Opinion for International Application No. PCT/US2017/044438, dated Oct. 23, 2017, 12 pages. |
Chemical Book, “Benzophenone”, https://www.chemicalbook.com/Chemical ProductProperty_EN_CB57 44679.htm, available at least as of 2017, accessed on line on Dec. 15, 2021 (Year: 2017). |
Chemical Book, “Polymethylhydrosiloxane”, https://www.chemicalbook.com/Chemical ProductProperty _EN_ C B3694969. htm, available at least as of 2017, accessed online on Dec. 15, 2021 (Year: 2017). |
Guide Chem, “UV Stabilizer”, https://wap.guidechem.com/trade/uv-stabilizer-uv-absorber-ligh-id3578792.html, available at least as of 2018, accessed online on Dec. 15, 2021 (Year: 2018). |
Hostaphan RBB biaxially oriented film data sheet (Year: 2011). |
PCT International Search Report and Written Opinion for International Application No. PCT/US2020/024639; dated Jun. 11, 2020. |
PCT International Search Report and Written Opinion for International Application No. PCT/US2021/026165, dated Jul. 9, 2021, 10 pages. |
PCT International Search Report and Written Opinion for International Application No. PCT/US21/20421, dated May 20, 2021, 8 pages. |
Wiseman, Sr., United States Statutory Invention Registration No. H1023, published Mar. 3, 1992, 7 pages. |
Chemical Book, Bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, available online at least as of 2017, https://www.chemicalbook.com/ChemicalProductProperty_EN_CB8121619.htm, accessed online Mar. 15, 2022 (Year: 2017). |
Pearson Dental, “UV Protection Face Shields”, https://www.pearsondental.com/catalog/subcat_thumb.asp?majcatid=750&catid=I0149, available online at least as of Jan. 27, 2021 per Internet Archive, accessed online on Sep. 15, 2021. (Year: 2021). |
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US2022/031823, dated Jul. 14, 2022, 11 pages. |
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US2022/046171, dated Jan. 18, 2023, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20230128783 A1 | Apr 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17342373 | Jun 2021 | US |
Child | 17938308 | US |