The present invention relates to a communications methodology and system for providing communication signals of interest to movable platforms, for possible use by passengers associated with the destinations, which are located in areas where the signal would not otherwise be available.
Recently, it has been shown that vehicle usage on major roadways in the U.S. is now very high resulting in common time delays for passengers. This problem of traffic congestion has also been shown to be no longer confined to large cities, but is becoming a significant concern in small and medium-sized cities. Numerous commuters waste a significant amount of time each day as a result of traffic delays they experience while traveling to and from work.
Current ground and air mobile cellular communications systems are often based on the topography of the terrain. They are often optimized to send and receive many simultaneous communication signals to and from fixed phone subscribers located, for example, in homes or offices, as well as to and from mobile subscribers. These systems are not based specifically on the existing complex pathway infrastructure where many of the mobile subscribers are located. Often the cellular base stations and transmitters are centrally placed, for example on the highest local hill or on top of a tall building, to access both stationary and mobile users by maximizing the radiation pattern of the system cell area. However, the terrain often obscures the cellular base station's line of sight communication to the mobile users. For example, the terrain may include hills and/or valleys as well as manmade structures that may block the signal, or scatter the signal causing fading and thus reducing the signal strength or eliminating the signal altogether.
Thus, current mobile cellular networks may suffer from interference along the signal path, fading and multipath effects. Fading is caused by the signal being reflected from many different features of the terrain, buildings and other physical features of the topography. These reflections result in a vehicle receiving a signal from different directions concurrently. The signals concurrently received by the mobile user often arrive with different transmission delays producing out of phase signals which may destructively interfere with one another, causing poor quality reception. When a movable platform is travelling along a pathway and the cellular base stations and transmitters are located at a central place, frequent signal fading can result. Increasing the transmitter power can help to overcome fading, however, such an increase in power also may have adverse effects, such as, increased power consumption and therefore reduced battery life for battery powered phones, and may cause increased interference within the cellular communication system. In addition, the increased transmitter power may place the mobile subscriber at higher personal risk as a result of the effects of the radiation.
Other forms of communication systems, for example, satellite communication networks and systems, are also not primarily optimized for passengers in movable platforms positioned along pathways.
Another issue with existing communication networks is the usefulness of the information transmitted to the mobile users. For example, radio stations may broadcast traffic reports identifying prevailing traffic conditions and advising passengers in vehicles of specific congest on points and accidents. The broadcasts sometimes recommend alternate routes, but do not, in general, provide individual communications with re-routing advice to passengers in vehicles, as the broadcasts do not know the precise destinations of the vehicles. In addition, the broadcasts are often based on the time of day and not based on when a traffic event occurs. For example, a conventional traffic report may be broadcast every 10, 15 or even 30 minutes. Some broadcasts are only transmitted during regular commuting hours. A passenger in a mobile vehicle may therefore miss an opportunity to re-route its travel because of untimely broadcasts. For example, a passenger in a mobile vehicle may have the option of using an alternate roadway, but may not receive the traffic advisory until after passing the particular alternate roadway. Cellular phones may offer a calling option to obtain traffic congestion information, however, specific responses to individual automobiles and their location, are not always available.
An object of the invention is to provide information to at least one movable platform that is not within a signal coverage area of an information source.
One embodiment of a communication methodology of the invention, is a method for providing a signal of interest to at least one movable platform in an area where signal coverage is not available from an information source, to create an information network. The method includes steps of transmitting an information signal containing the information with a transmitter located at the information source, receiving the information signal with a first transmitter/receiver unit located on a movable platform that is within a signal coverage area of the information source, and re-transmitting the information signal with the transmitter/receiver unit to a receiver located on the at least one movable platform.
Another embodiment of a communication methodology of the invention is a method for providing information from at least one movable platform in an area where a signal network does not exist to a destination. According to this embodiment of the invention, the method includes steps of transmitting an information signal containing the information with a transmitter located on the at least one movable platform, receiving the information signal containing the information with a first transmitter/receiver unit located on a movable platform that is within a signal coverage area of the destination, and re-transmitting the information signal with the first transmitter/receiver unit to a receiver located at the destination.
One embodiment of a system of the invention, provides information to and from a destination which is in an area where signal coverage is otherwise not available from an information source. According to this embodiment, the system includes a transmitter, located at the information source, that transmits the information signal, a transmitter/receiver unit located on a movable platform that is within a signal coverage area of the information source, that receives the information signal and re-transmits the information signal, and a receiver, located at the destination, that receives the information signal.
Another embodiment of a method of the invention, provides information to movable platforms transmitting along a signal pathway. According to this embodiment, the method includes steps of transmitting an information signal containing the information from an information source to a transmitter/receiver unit located on a first movable platform, receiving the information signal with the transmitter/receiver unit, and re-transmitting the information signal to a receiver located on a second movable platform.
The foregoing and other objects, features and advantages of the invention will be apparent from the following description and from the accompanying drawings, in which like reference characters refer to the same parts through the different figures.
The method and apparatus of the invention include a method and a system for transmitting and receiving an information signal, thus creating an information network, between an information source and a destination, wherein the destination is not within a signal coverage area of the source, whether or not other communication signals are available to the destination. In general, the method includes transmitting the information signal with a transmitter located at the information source, receiving the information signal with a first transmitter/receiver unit and re-transmitting the information signal received with the first transmitter/receiver unit is located on a movable platform. The method wherein the first transmitter/receiver unit is located on a movable platform. The method may also include steps of receiving and re-transmitting the signal with a plurality of additional transmitter/receiver units between the source and the destination. Any of these transmitter/receiver units may be located on movable platforms. Some of these transmitter/receiver units may be located on fixed platforms.
The method of the invention can be used to provide a signal of interest to a passenger associated with a movable platform that is in an area where reception of the signal is not available. In this example, the method includes receiving the signal of interest with the first transmitter/receiver unit coupled to a movable platform that is in an area where reception of the signal is available and re-transmitting the signal to a receiver coupled to the movable platform that is in the area where the signal is not available. The method may also include repeating the steps of receiving and re-transmitting the signal with any number of additional transmitter/receiver units coupled to movable platforms along a signal path that the movable platforms are travelling. Each movable platform may receive the signal of interest and present it to passengers associated with the movable platforms. The movable platforms can be located on pathways and can be travelling in similar or different directions. The movable platforms can be any type of mobile platforms capable of moving on land, in the air, or on or in water. Some specific examples of such movable platforms include, but are not limited to, trains, railcars, boats, aircraft, automobiles, motorcycles, bicycles, skate-boards, wheelchairs, golf-carts, trucks, tractor-trailers, buses, police vehicles, emergency vehicles, fire vehicles, construction vehicles, ships, submarines, hydrofoils, barges and the like.
Although the movable platforms depicted in
Some of the advantages of the communication methodology and system of the invention include that each signal may be of relatively low power, especially in high traffic density areas where the distance from one movable platform to another is small. Low power signals pose significantly fewer health risks to users than high power signals. In addition, the communication methodology and system of the present invention precludes the need for large and/or numerous base stations or cell towers which are expensive, unsightly and undesirable, especially in high density areas, and impractical to construct in other areas. With the method and system of the invention, the movable platforms to which it is desired to provide the signal of interest also make up the communication network.
Another embodiment of the method and system of the invention may include the use of supplemental communication systems to augment the communication methodology and system of the invention. For example, a satellite communication system, or cellular communication system may be used at times to communicate directly with movable platforms located in areas where there may not be sufficient vehicular traffic to provide a signal to the movable platform. According to this embodiment, when the movable platform enters a region that does contain sufficient other movable platforms that are equipped with transmitter/receiver units to re-transmit the signals to the movable platform, the movable platform may then communicate signals using the vehicular communication methodology and network of the present invention.
An example of this embodiment includes passenger aircraft in pathways above an ocean, which may use, for example, satellites or ships to receive signals of interest that are not available from other movable platforms, and when sufficient other passenger aircraft are available to allow for the communication methodology and network of the invention to be established, the aircraft may then use the communication methodology and network of the invention to communicate signals to other aircraft in the sky or on the ground. It is to be appreciated that the method and system of the invention do not require that every air or sea movable platform or any specific air or sea movable platform be involved in the communication system, nor does it require that every aircraft or any specific aircraft be moving to still serve as a receiver and/or re-transmitter.
An embodiment (not illustrated) of the communication network and methodology of the invention allows movable platforms in the network to share information with other movable platforms in the network, and in the process of doing so, to also provide positional information, and create Situation Awareness within the network. For example, movable platform A in the network may observe an accident in its pathway and transmit an accident report, containing information regarding the location and heading of movable platform A, to movable platforms B and C positioned along this, or a nearby, pathway. Movable platforms B and C may then adjust their headings in order to avoid the accident. Another example of situation awareness information that may be provided by the method and system of the invention may be information regarding weather conditions or traffic congestion. The information, along with positional information of the transmitting movable platform, can be used by other movable platforms to adjust their headings to avoid particularly bad weather conditions or traffic congestion.
Another embodiment (not illustrated) of the method and system of the invention may provide for numerous signals to be provided amongst the transmitters and receivers of the network, wherein the numerous signals need not be identical or contain the same information. For example, a first signal may contain combined communication signals directed at specific movable platforms. Upon contact with a first intended movable platform, the first signal may be reduced by eliminating the contents intended for the first movable platform and transmitting a second signal to other movable platforms in the network. This methodology may be implemented in any number of movable platforms. An example of an application of this network and method of the invention is a network, or a plurality of networks, for providing communication services to a group of movable platforms which have a common ownership or affiliation. These movable platforms can be positioned along pathways within an area serviced by at least one network and system of the invention. Other movable platforms which are not part of the aforementioned group and which are also positioned within the same area serviced by the same mobile network, could form part of the group's dynamic pathway network, and receive access to unrestricted signals, but be prevented from decoding the signals intended for the group's exclusive use. Techniques such as, for example, spread spectrum processing, may be used to limit the opportunity of unauthorized users to observe and demodulate the signals. Spread spectrum processing also provides other benefits such as reduced power spectral density and enabling the receivers to reject interfering transmissions from other signals. Accordingly, it is to be appreciated that not every movable platform of the method and system of the invention need be an intended recipient of, or have access to, a signal of interest. Some of the movable platforms may simply be used to relay the signal of interest to other movable platforms.
According to another embodiment of the method and system of the invention, a communications network includes one or more pathway stations providing a signal to one or more movable platforms that may be positioned on pathways, and corresponding transmitter/receiver units associated with one or more movable platforms, so as to provide a signal of interest to a plurality of movable platforms in areas where reception of the signal of interest is not otherwise available.
An example of a method of providing the signals of interest to the movable platforms located along the pathways, according to this embodiment of the present invention, includes transmitting a signal of interest 23 from at least one of a plurality of pathway stations, such as PS1, receiving the signal with at least one of a plurality of transmitter/receiver units associated with corresponding movable platforms, such as movable platform V1, in a first area where the signal of interest 23 is available from the pathway station PS1, and re-transmitting the received signal of interest 25 to at least one of a second set of receivers associated with a plurality of movable platforms, such as movable platform V2, positioned on pathways and not in the first area where the original signal of interest 22 is available. The method may include additional steps of receiving and re-transmitting the signal of interest 27 to any movable platform V3-V6 that is positioned on a pathway and which is not located in the first area where the original signal is available, so that each appropriately equipped movable platform can receive and re-transmit the signal of interest to other equipped movable platforms. According to this method, each pathway station PS1 may monitor the communications along local pathways and may be able to relay a signal to one or more additional pathway stations PS2 through the communication network. In addition, it is to be appreciated that pathway control station CS1, coupled to the pathways stations PS1 and PS2, can also be used to provide signal 101 from a public network 100, such as the Internet, to any movable platform that is positioned on a pathway and which is not in an area where reception of the original signal is otherwise available, so that a communication network is provided wherein each movable platform in the network can receive signals of interest and provides the signal to passengers that may be associated with the movable platforms. According to this embodiment of the invention, one of the functions of the pathway control station CS1 is as an interface between one or more of the movable platforms and other communication networks 100, these other communication networks including, for example, the Internet, public telephone networks, a satellite network, a cable network or any other wired or wireless communication network.
It is to be appreciated that the pathway stations may also receive signals from one or more of the transmitter/receiver units, may participate in the re-transmission of signals, and may assist in routing of signals to and amongst movable platforms. Each pathway station may also monitor signal and movable platform activity along local pathways. The pathway station may also, for example, track equipped movable platforms which are positioned along pathways and the signal communications via a two-way tracking channel and system. The pathway station and the network of the present invention can be used to monitor the quantity of movable platforms and the position and velocity of movable platforms positioned in the communication network. The pathway stations may also monitor signal communications and issue warning of impending movable platform or signal traffic problems. The pathway stations may utilize systems such as the global positioning system (GPS) to assist in this monitoring of movable platforms and signals.
Another embodiment of the present invention includes routing software executed for example by processor 64 in control station CS1, as illustrated in
While one pathway station per pathway is illustrated in
It is further to be appreciated that the network and communication methodology of the present invention is not limited to a singular movable platform type and can be provided by mixed movable platform types.
It is to be understood that at least some of the movable platforms within the communication network of the invention will have receivers coupled to the movable platforms which receive the communication signals of interest. In addition, any movable platform or pathway station in the network may contain a transmitter/receiver unit, but each movable platform need not contain a transmitter/receiver unit. Further it is to be appreciated that any vehicle or pathway station may be the source or the destination of the original signal.
It is to be understood that according to the invention, the pathways referred to in the above description of embodiments of the invention are, for example, any of the roadways, waterways or airways maintained for use by any of the movable platforms described above. Nevertheless, it is to be appreciated that the method and network of the invention are not limited to movable platforms located on pathways, and include movable platforms that are not confined to pathways. It is also to be appreciated that the communication network and method of the invention may be used even though vehicle usage and density on any particular pathway may not be sufficient to form a continuous network. For example, the signal routing of the invention may provide for signal routing in various directions from pathway to pathway as necessary to transmit the signals to a desired movable platform or pathway station. At times simple direct routing may be used between the information source, the movable platforms and the destinations, at other times more circuitous routing may be necessary. Furthermore, it is to be appreciated that satellite transmission may be used to compliment the network and method of the invention.
It is to be appreciated that the method, system and network of the invention can be implemented using either directional antennas or omni-directional antennas, coupled to the transmitters, receivers and transmitter/receiver units, to provide transmission and reception of the signals of interest among the plurality of movable platforms and pathway stations making up the network and system on the invention. The movable platforms may be equipped with a plurality of antennas, such as two antennas, one for receiving signals and the other for transmitting signals. For example, a movable platform may receive a signal at one frequency with a first antenna and may transmit a signal at another frequency using a second antenna. This embodiment may also include a movable platform having a plurality of antennas that simultaneously receive signals and a plurality of antennas that simultaneously re-transmit the signals, such as directional antennas aligned in several directions. Alternatively the movable platform may be equipped with a single multibeam antenna that is capable of transmitting and/or receiving a plurality of signals simultaneously. It is to be appreciated that with the method and communication method and network of the invention, any antenna may thus operate at any frequency and multiple antennas, or individual beams of multibeam antennas may operate at the same or different frequencies. It is also to be appreciated that different antenna polarizations may be used to prevent unwanted destructive interference between antennas or beams having the same operating frequency.
It is to be appreciated that the communication methodology and network of the invention can be used to form networks that support various well known network modes, such as Asynchronous Transfer Mode (ATM) and Internet protocol (IP). The method and system of the invention may also support the use of various digital encoding techniques, such as, for example, time division multiple access (TDMA) or code division multiple access (CDMA), to enhance the overall efficiency and use of the frequency spectrum of the communication network of the invention. These and other encoding techniques may be used to provide multiple channel access to movable platforms. Error correcting coding and efficient data modulation types may also be used to ensure data quality on the network.
It is to be appreciated that other embodiments of the network and method of the invention may also include the formation of parallel and redundant signal routes to enable transmission of data redundantly along multiple paths to prevent data loss, to avoid low grade routes and to prevent congestion along certain pathways in the network.
It is to be appreciated that any embodiment of the invention may use, for example, infrared signals, laser beams, microwave signals, radio signals or optical signals, for the transmission of the information signals of interest to and from movable platforms, sources, destinations, and other transmitter/receiver units of the network. An advantage of using the infrared spectrum, for example, is that there are no eye-safety concerns when the beams are viewed directly by persons.
Having thus described several embodiments of the present invention, various alterations, modifications and improvements will readily occur to those skilled in the art. Such alterations, modifications and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the present invention.
Accordingly, the foregoing description is by way of example only and the invention is limited only as defined in the following claims and the equivalents thereto.
This application claims priority under 35 U.S.C. §119(e)(1) to Provisional Application Ser. No. 60/235,796, entitled, “Micro-Communications Methodology and System for Mobile Platforms,” filed on Sep. 27, 2000, and claims priority under 35 U.S.C. §120 to commonly-owned, co-pending U.S. application Ser. No. 09/382,969, entitled, “Low-Height, Low-Cost, High-Gain Antenna and System for Mobile Platforms,” filed on Sep. 17, 1999; which claims priority under 35 U.S.C. §120 to U.S. patent application Ser. No. 08/932,190, “In Flight Video Apparatus and Method Low Height, Low Cost, High-Gain Antenna and System for Mobile Platforms,” filed on Sep. 17, 1997 and issued on Oct. 26, 1999 as U.S. Pat. No. 5,973,647. Each of these applications is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2405242 | Southworth | Aug 1946 | A |
2571386 | Sarnoff | Oct 1951 | A |
2573746 | Watson et al. | Nov 1951 | A |
2626348 | Nobles | Jan 1953 | A |
2748266 | Boyd | May 1956 | A |
3281851 | Goebels | Oct 1966 | A |
3687213 | Sato et al. | Aug 1972 | A |
3701162 | Seaton | Oct 1972 | A |
4056779 | Toler | Nov 1977 | A |
4163216 | Arpino | Jul 1979 | A |
4234959 | Andrea, III et al. | Nov 1980 | A |
4451699 | Gruenberg | May 1984 | A |
4518967 | Westerman | May 1985 | A |
4539706 | Mears et al. | Sep 1985 | A |
4823139 | Eisner et al. | Apr 1989 | A |
4882765 | Maxwell et al. | Nov 1989 | A |
4916458 | Goto | Apr 1990 | A |
5045839 | Ellis et al. | Sep 1991 | A |
5056152 | Truby et al. | Oct 1991 | A |
5109526 | Reed | Apr 1992 | A |
5239666 | Truby | Aug 1993 | A |
5303240 | Borras et al. | Apr 1994 | A |
5309162 | Uematsu et al. | May 1994 | A |
5311302 | Berry et al. | May 1994 | A |
5345594 | Tsuda | Sep 1994 | A |
5355511 | Hatano et al. | Oct 1994 | A |
5371901 | Reed et al. | Dec 1994 | A |
5383187 | Vardakas et al. | Jan 1995 | A |
5390214 | Hopkins et al. | Feb 1995 | A |
5392053 | Hirata et al. | Feb 1995 | A |
5416492 | Takahashi et al. | May 1995 | A |
5428544 | Shyu | Jun 1995 | A |
5506584 | Boles | Apr 1996 | A |
5519761 | Gilhousen | May 1996 | A |
5530909 | Simon et al. | Jun 1996 | A |
5570354 | Simon | Oct 1996 | A |
5577264 | Tuohino | Nov 1996 | A |
5579019 | Uematsu et al. | Nov 1996 | A |
5594937 | Stiles et al. | Jan 1997 | A |
5659879 | Dupuny | Aug 1997 | A |
5689245 | Noreen et al. | Nov 1997 | A |
5729826 | Gravrilovich | Mar 1998 | A |
5768683 | Mulford | Jun 1998 | A |
5835780 | Osaki et al. | Nov 1998 | A |
5857144 | Mangum et al. | Jan 1999 | A |
5880693 | Drummer | Mar 1999 | A |
5915208 | Collyer | Jun 1999 | A |
5956639 | Armbruster et al. | Sep 1999 | A |
5973647 | Barrett et al. | Oct 1999 | A |
5982333 | Stillinger et al. | Nov 1999 | A |
5995804 | Rootsey et al. | Nov 1999 | A |
5995845 | Lardennois | Nov 1999 | A |
6047165 | Wright et al. | Apr 2000 | A |
6058288 | Reed et al. | May 2000 | A |
6085151 | Farmer et al. | Jul 2000 | A |
6104712 | Robert et al. | Aug 2000 | A |
6104910 | Koths | Aug 2000 | A |
6125261 | Anselmo et al. | Sep 2000 | A |
6141533 | Wilson et al. | Oct 2000 | A |
6150961 | Alewine et al. | Nov 2000 | A |
6236337 | Beier et al. | May 2001 | B1 |
6285878 | Lai | Sep 2001 | B1 |
6370475 | Breed et al. | Apr 2002 | B1 |
6400690 | Liu et al. | Jun 2002 | B1 |
6459881 | Hoder et al. | Oct 2002 | B1 |
6473617 | Larsen et al. | Oct 2002 | B1 |
6560650 | Imai | May 2003 | B1 |
6564002 | Murakami et al. | May 2003 | B1 |
6577419 | Hall et al. | Jun 2003 | B1 |
6720920 | Breed et al. | Apr 2004 | B2 |
Number | Date | Country |
---|---|---|
197 48 681 | May 1999 | DE |
0 329 079 | Aug 1989 | EP |
0 860 954 | Aug 1998 | EP |
1 017 188 | Jul 2000 | EP |
1 058 409 | Dec 2000 | EP |
2 638 288 | Apr 1990 | FR |
2 161 652 | Jan 1986 | GB |
2 247 990 | Mar 1992 | GB |
2346511 | Aug 2000 | GB |
06061900 | Apr 1992 | JP |
Number | Date | Country | |
---|---|---|---|
60235796 | Sep 2000 | US |