Information
-
Patent Grant
-
6537095
-
Patent Number
6,537,095
-
Date Filed
Wednesday, June 7, 200024 years ago
-
Date Issued
Tuesday, March 25, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Sircus; Brian
- Nguyen; Son V.
Agents
-
CPC
-
US Classifications
Field of Search
-
International Classifications
-
Abstract
A low insertion force terminal comprising a female terminal (12) and a male terminal (11), the female terminal 12 being provided with a bottom (14) soldered to wiring, and a pair of opposing upright parts (15,16) extending from said bottom (14) in a cantilevered beam shape; and wherein an extended part (19) that projects on the distal end (16a) of one of said upright parts (16) farther than the distal end part (15a) of the other upright part (15) in the widthwise direction is provided, and a male terminal supporting part (18) that grasps and supports the male terminal (11) is provided at a position in proximity to said extended part (19) of said pair of upright parts (15,16).
Description
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low insertion force terminal, and in particular relates to a terminal used in a surface mounted, high density electrical connector called a BGA connector (Ball Grid Array connector) that is connected to a substrate via a solder ball.
PRIOR ART
Parallel with the increasing density and reduction in size of electrical apparatuses such as computers, the development of BGA connectors that can reduce the mounting surface area is making progress. The BGA connector is a connector whose form has a plurality of terminals accommodated within the housing respectively connected to each of a plurality of exposed solder balls arranged in a array on one surface of a housing comprising an insulating material. When the BGA connector is mounted on a substrate, solder balls are placed in contact with a plurality of contact pads arranged on the substrate in the same manner and baked. During baking, a portion of each solder ball melts, and the terminal and contact pad are bonded via the solder ball. With this type of BGA connector, because the gap between adjacent solder balls can be extremely narrow, there are the advantages that the mounting surface area on the substrate is small, and extensive wiring can be implemented.
The structure disclosed, for example, in the Specification of U.S. Pat. No. 5,092,789, is a terminal used in this type of connector that has the terminals arranged in such an array. As shown in
FIG. 3
, the terminal
1
used in this connector comprises a female terminal
2
accommodated in a housing of the contact (not illustrated) and a male terminal
3
anchored to a lid member (not illustrated).
This male terminal
3
is formed into a round rod shape projecting in a vertically downward direction from the lid member. The female terminal
2
possesses a bottom part (not illustrated) through which a connection part (not illustrated) for connecting to the substrate projects from the bottom surface of the housing and a pair of upright parts
4
,
5
extending in a cantilever beam shape upwards from this bottom part. On the upper ends of these upright parts
4
,
5
, opposing male terminal grasping parts
4
a
,
5
a
, are formed separated by a gap smaller than the diameter of the male terminal
3
. When the male terminal
3
is inserted by pressing, the dimensions of the gap between these male connector grasping parts
4
a
,
5
a
expand, and due to the flexible restoring force of the upright parts
4
,
5
, the male terminal
3
can be supported in a grasped state.
In order to simplify the insertion of the male terminal
3
into the male support parts
4
a
,
5
a
, on one side in the widthwise direction of the male terminal support parts
4
a
,
5
a
, a guide part
6
is formed that has a pair of opposing out-turned surfaces
4
b
,
5
b
separated by a gap therebetween gradually widening in the widthwise direction from the male terminal support parts
4
a
,
5
a
. Therefore, when the male terminal
3
is inserted into the female terminal
2
, the male terminal
3
must be pressed against each out-turned surface
4
b
,
5
b
of this guide part
6
and inserted while widening the gap between the male terminal support parts
4
a
,
5
a.
PROBLEM TO BE SOLVED BY THE INVENTION
However, with the terminal
1
having this kind of structure, when the gap between the male terminal support parts
4
a
,
5
a
is pushed open by the male terminal
3
, a force that pushes the male terminal
3
forward while overcoming the frictional force from the pair of out-tuned surfaces
4
b
,
5
b
in the guide part
6
of the female terminal
2
, and a force acting on to the pair of out-turned surfaces
4
b
,
5
b
in order to flexibly deform the upright parts
4
,
5
of the female terminal
2
must be applied simultaneously. Due to this, the peak value of the insertion force applied to the male terminal
3
is extremely high. Furthermore, when male terminals
3
and female terminals
2
a re connected simultaneously in a plurality of terminals
1
as in the case of a BGA connector, the insertion force that must be applied simultaneously to all terminals
1
becomes excessive. Depending on the case, carrying out the connection operation manually is difficult, and as disclosed in the Specification of U.S. Pat. No. 5,092,789, a handle for carrying out the connection operation must be provided.
SUMMARY OF THE INVENTION
In consideration of the above-described problems, an object of the present invention is to provide a low insertion force terminal comprising a female terminal and a male terminal, said female terminal being characterized in providing a bottom soldered to wiring and a pair of facing upright parts extending from said bottom in a cantilever beam shape; and wherein an extended part is provided that projects in the widthwise direction on the distal end of one of said upright parts farther than the distal end part of the other upright part, and a male terminal supporting part that grasps and supports the male terminal is provided at a position in proximity to said extended part of said pair of upright parts.
In the above-described low insertion force terminal, the extended part is formed so as to capable of being pressed by said male part, and at the same time the contact surface with the male part from said extended part to said male terminal support part is flattened in the widthwise direction of said upright part.
Furthermore, in the above-described low insertion force terminal, the contact surface with the male terminal from the extended part to the male terminal support part is formed so as to curve in the lengthwise direction of the upright part such that a convex surface is imparted.
OPERATION
According to the low insertion force terminal of the present invention, when a male terminal and a female terminal are connected, the extended part formed at the distal end of one of the upright parts is pressed. Thereby, the distal end of this one upright part is separated from the distal end of the other upright part, and an insertion space for the male terminal can be maintained. In this state the male terminal is moved in the widthwise direction of the upright parts of the female terminal, and after being moved up to the male terminal support part in proximity to the extended part, the pressing force applied to the extended part is released, and thereby the male terminal is grasped within the male terminal support part of the female terminal, and both terminals become electrically and mechanically connected.
In this case, because the male terminal is inserted between the upright parts after carrying out the separation operation of the upright parts of the female terminal separately from the insertion operation of the male terminal, the male terminal and female terminal can be connected without excessive insertion force.
Furthermore, because the extended part can be pushed by the male terminal and the contact surface with the male terminal from this extended part to the male terminal supporting part is flattened in the widthwise direction of the upright parts, in the state wherein the pair of upright parts are separated, simply by moving the male terminal along the widthwise direction of the upright parts, the male terminal can be moved from the extended part to the male terminal support part without fluctuation of the frictional force. That is, since there is no peak value for the frictional force, the insertion force can be decreased.
In addition, because the contact surface with the male terminal from the extended part to the male terminal support part is formed by curving the upright part in the lengthwise direction so as to impart a convex surface, the contact surface area with the male terminal is decreased, and the frictional force generated while the male terminal moves to the male terminal support part can be decreased.
BRIEF EXPLANATION OF THE DRAWINGS
FIG. 1
is a perspective drawing showing the low insertion force terminal according to an embodiment of this invention.
FIG. 2
is a plane drawing for explaining the operating state of the low insertion force terminal in FIG.
1
.
FIG. 3
is a schematic drawing showing a conventional terminal.
DETAILED DESCRIPTION OF THE INVENTION
The low insertion terminal according to a first embodiment of the invention is explained below referring to FIG.
1
and FIG.
2
. As shown in
FIG. 1
, the low insertion force terminal
10
according to the present embodiment is formed by a male terminal
11
and a female terminal
12
.
The male terminal
11
has a round rod shaped contact surface
11
a
, and other aspects of the shape are matters of suitable design.
The female terminal
12
is formed by bending one piece of a metal plate, and for example, in a BGA connector, provides a bottom
14
mounted on a soldering ball
13
so as to be anchored to the wiring of a substrate (not illustrated) via the soldering ball
13
and a pair of upright parts
15
,
16
extending from both edges of this bottom
14
upwards in the form of a cantilever beam.
The upright parts
15
,
16
are formed from a first upright part
15
that rises in a substantially vertical direction from one edge of the bottom part
14
that is disposed horizontally and a second upright part
16
that rises from the other edge of the bottom
14
towards the distal end
15
a
of the first upright part
15
and inclines so that the gap with the first upright part
15
gradually narrows. The gap between the distal end
15
a
of the first upright part
15
and the distal end
16
a
of the second upright part
16
is smaller than the dimension of the diameter of the contact part
11
a
of the male terminal
11
, and when the male terminal
11
is held between both distal ends
15
a
,
16
a
, due to the elasticity of the pair of upright parts
15
,
16
, the dimensions are set so that the male terminal
11
and the female terminal
12
are connected with sufficient contract pressure.
On the distal end
15
a
of the first upright part
15
, a male terminal accommodation part
17
is provided that restricts the movement of the male terminal
11
in the horizontal direction by accommodating this male terminal
11
between curved parts
17
a
,
17
b
, formed by slightly bending both widthwise ends of the distal end
15
a
in the direction of the distal end
16
a
of the second upright part
16
. The male terminal support part
18
that grasps and holds the male terminal
11
is formed by this male terminal accommodation part
17
and the distal end
16
a
of the second upright part
16
facing this male terminal accommodation part
17
.
In addition, on the distal end
16
a
of the second upright part
16
, an extending part
19
is formed by extending widthwise one end thereof further in the horizontal direction than the distal end part
15
a
of the first upright part
15
. This extended part
19
projects in the widthwise direction by a dimension that is larger than the distal end
15
a
of the first upright part
15
, and at least larger than the radial dimension of the contact part
11
a
of the male terminal
11
. Thereby, as shown in
FIG. 2
(
a
), in the state wherein the first and second upright parts
15
,
16
come very close to the distal ends
15
a
,
16
a
, the male terminal
11
abuts the extended part
19
, and can flexibly deform the second upright part
16
in the direction of separation from the first upright part
15
up to the position shown in
FIG. 2
(
b
).
Furthermore, on the distal end
16
a
of the second upright part
16
, from the extended part
19
to the male terminal support part
18
, a contact surface
20
is provided that is formed having a flat shape in the widthwise direction of the upright part
16
, that is, in the horizontal direction. Thereby, as shown in
FIG. 2
(
c
), the male terminal
11
separates the second upright part
16
from the first upright part
15
by pushing on the extended part
19
, and can move from the extended part
19
to the male terminal support part
18
smoothly, without fluctuation of the frictional force, when moving horizontally along this contact surface
20
.
In addition, the contact surface
20
is formed into a convex curved surface along the lengthwise direction of the upright part
16
, that is, along the vertical direction, in the direction of the first upright part
15
. Thereby, the male terminal
11
reliably contacts this contact surface
20
at a point contact or at a contact surface with an extremely small area. In addition, the distal end
16
a
will reciprocate with the second terminal part
16
being flexibly deformed by the male terminal
11
, but even in this case, the surface contact area between the male terminal
11
and the distal end
16
a
remains extremely small.
In addition, when male terminal
11
is moved in the horizontal direction, no matter where the initial position of the male terminal
11
is during the flexible deformation of the upright part
16
, the male terminal
11
is moved while maintaining an extremely small contact surface area with the upright part
16
and a reliable contact. As a result, due to this small contact surface area, the frictional force that the male terminal
11
receives from the female terminal
12
becomes significantly reduced, and the male terminal
11
can be moved horizontally up to the male terminal supporting part
18
with an extremely small force.
Finally, as shown in
FIG. 2
(
d
), by decreasing the pushing force applied to the male terminal
11
in order to flexibly deform the second upright part
16
, the second upright part
16
returns in the direction approaching the first upright part
15
due to its elasticity, the male terminal
11
is accommodated in the male terminal accommodation part
17
of the first upright part
15
, and at the same time, is made to contact the inner surface of the male terminal accommodation part
17
with a specified contact force due to the elasticity of the second upright part
16
.
As a result, the male terminal
11
is mechanically connected to the female terminal
12
in a state wherein its displacement in a horizontal direction is restricted by the male terminal supporting part
18
comprising the male terminal accommodation part
17
and the distal end
16
a
of the second upright part
16
. At the same time, due to an appropriately applied contact pressure, the male terminal
11
electrically contacts the female terminal
12
.
Therefore, in the low insertion force terminal
10
according to the present embodiment, the pair of upright parts
15
,
16
of the female terminal
12
are separated by the male terminal
11
without producing friction between the upright parts
15
,
16
and the male part
11
, and thereafter the male terminal
11
is moved to the male terminal support part
18
by overcoming an extremely small frictional force that is due to reducing the contact surface area. Subsequently, simply by decreasing the force separating the pair of upright parts
15
,
16
, the male terminal
11
is accommodated in the male terminal accommodation part
17
, and both terminals
11
,
12
are electrically and mechanically connected. Thereby, the effects can be achieved that during the connection operation between the male terminal
11
and the female terminal
12
, the maximum value of the insertion force that should be applied is greatly reduced in comparison to a conventional terminal, and at the same time, in spite of this low insertion force, a reliable electrical and mechanical connection state is attained.
As a result, in particular when a BGA connector having this kind of low insertion force terminals
10
arranged in plurality in an array is employed, the maximum value of the insertion force necessary to connect simultaneously these terminals
10
can be greatly reduced. Therefore, conventionally, the mechanism such as a lever that is required due to the excessive insertion force applied during the connection operation can be simply structured.
Moreover, the low insertion terminal
10
according to the present embodiment has a contact part
11
a
of a round rod shaped male terminal
11
, but instead, a structure with a contact part
11
a
having an arbitrary shape, such as an angular column or a plate shape can be used. In addition, in the present embodiment, the male terminal accommodation part
17
that forms the male terminal support part
18
can be formed on the distal end
15
a
of the first upright part
15
on which the extended part
19
is not provided, and instead, can be formed on both the distal end of
16
a
of the second upright part
16
or on either the distal ends
15
a
,
16
a
of the first and second upright parts
15
,
16
. In this case, the male terminal accommodating part
17
formed on the second upright part
16
providing the extended part
19
can be formed by indenting the contact surface
20
of the distal end
16
a
so that the frictional force during the movement of the male terminal
11
from the extended part
19
to the male terminal accommodation part
17
is not increased.
Effects of the Invention
As described in detail above, the low insertion force terminal according to the present invention achieves the effects that the conventional form, wherein the upright part of the female terminal is pushed open by the male terminal, can be eliminated. Instead a structure is used in which the male terminal is grasped and held by the female terminal after the male terminal is moved while maintaining a low frictional force with respect to the female terminal while the female terminal is being pushed open without friction between the male terminal and female terminal. Thus, the maximum value of the insertion force necessary to connect the male terminal and female terminal is greatly lowered, and an electrical and mechanical connection between both terminals can be reliably attained.
In addition, the connection operation can be carried out smoothly without producing a peak in the frictional force of the insertion by forming a flat contact surface from the extended part to the male terminal supporting part.
Furthermore, by imparting a convex shape to the contact surface, the structure is extremely simple, the contact surface area between with the male terminal is reduced, and the frictional force produced between both can be lowered.
Claims
- 1. A low insertion force terminal comprising:a female terminal and a male terminal, said female terminal comprising: a bottom sized and shaped for soldering the female terminal to a conductor; and a pair of opposing upright parts extending from said bottom in a cantilever beam shape and terminating in distal ends which are laterally spaced apart from one another and at equal height from the bottom; and wherein one of said opposing upright parts has an extended part which projects in a widthwise direction at one of the distal ends corresponding to said one of said upright parts, the extended part extending in said widthwise direction from said one of said upright parts to beyond a distal end part of another of said upright parts, and said opposing upright parts define a male terminal support part that holds and supports the male terminal when the male terminal is mated to the female terminal, the male terminal support part being located at a position in proximity to said extended part of said pair of upright parts.
- 2. The low insertion force terminal according to claim 1 wherein said extended part is formed so as to be capable of being pressed by said male terminal during insertion of the male terminal, a contact surface of said one upright part which extends widthwise relative to said one upright part from said extended part to said male terminal support part and which contacts the male terminal being flattened substantially concurrently with the extended part being pressed by the male terminal during insertion of the male terminal.
- 3. The low insertion force terminal according to claim 1, wherein a contact surface of said one upright part extending from said extended part to said male terminal support part is curved lengthwise relative to said upright part to define a convex surface.
- 4. A low insertion force terminal comprising:a male terminal; and a female terminal shaped for receiving the male terminal, the female terminal comprising; a base section for connecting the female terminal to a conductor; a pair of spaced apart cantilevered parts depending from the base section, the pair of cantilevered parts forming a male terminal support section for holding the male terminal when the male terminal is mated to the female terminal, the support section having an axis of insertion of the male terminal into the male terminal support section, wherein a first of the cantilevered parts has a male terminal engagement tab projecting transversely relative to the first cantilevered part from the male terminal support section, the tab being disposed at a distal end of the male terminal support section at an equal height and opposite from another distal end of a second of the cantilevered parts, the tab engaging the male terminal during insertion of the male terminal when the male terminal is moved during insertion in a direction substantially transverse to the axis of insertion such that interaction of said tab and said male terminal increase the distance between said spaced apart cantilevered parts.
- 5. A low insertion force terminal according to claim 4, wherein the second of the cantilevered parts has a pair of inwardly curved parts at the male terminal support section.
- 6. A low insertion force terminal according to claim 4, wherein the male terminal engagement tab extends transversely from the male terminal support section across the male terminal when the male terminal is moved during insertion in the direction transverse to the axis of insertion.
- 7. A low insertion force terminal according to claim 4, wherein the male terminal engagement tab is displaced in the transverse direction by the male terminal, displacement of the engagement tab effecting displacement of the first cantilevered part away from the second of the cantilevered parts so that when the male terminal is moved along the insertion axis into the male terminal support section, the male terminal contacts only one of the opposing cantilevered parts.
- 8. A low insertion force terminal according to claim 7, wherein the second cantilevered part has an inwardly turned lip substantially opposite the engagement tab.
- 9. A low insertion force terminal according to claim 7, wherein the second cantilevered part has an inwardly turned lip projecting into a gap between the cantilevered parts through which the male terminal passes when moved along the axis of insertion into the support section, the lip projecting into the gap so that when the first cantilevered part is in an undisplaced position, the lip bars the male terminal from passing through the gap.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-161632 |
Jun 1999 |
JP |
|
US Referenced Citations (9)
Foreign Referenced Citations (2)
Number |
Date |
Country |
0571 105 |
Nov 1993 |
EP |
2 286 490 |
Aug 1995 |
GB |