Low latency automixer integrated with voice and noise activity detection

Information

  • Patent Grant
  • 11688418
  • Patent Number
    11,688,418
  • Date Filed
    Monday, April 11, 2022
    2 years ago
  • Date Issued
    Tuesday, June 27, 2023
    a year ago
Abstract
Systems and methods are disclosed for providing voice and noise activity detection with audio automixers that can reject errant non-voice or non-human noises while maximizing signal-to-noise ratio and minimizing audio latency.
Description
TECHNICAL FIELD

This application generally relates to systems and methods for providing low latency voice and noise activity detection integrated with audio automixers. In particular, this application relates to systems and methods for providing voice and noise activity detection with audio automixers that can reject errant non-voice or non-human noises while maximizing signal-to-noise ratio and minimizing audio latency.


BACKGROUND

Conferencing and presentation environments, such as boardrooms, conferencing settings, and the like, can involve the use of multiple microphones or microphone array lobes for capturing sound from various audio sources. The audio sources may include human speakers, for example. The captured sound may be disseminated to a local audience in the environment through amplified speakers (for sound reinforcement), and/or to others remote from the environment (such as via a telecast and/or a webcast). Each of the microphones or array lobes may form a channel. The captured sound may be input as multi-channel audio and provided as a single mixed audio channel.


Typically, captured sound may also include errant non-voice or non-human noises in the environment, such as sudden, impulsive, or recurrent sounds like shuffling of paper, opening of bags and containers, chewing, typing, etc. To minimize errant noise in captured sound, voice activity detection (VAD) algorithms and/or automixers may be applied to the channel of a microphone or array lobe. An automixer can automatically reduce the strength of a particular microphone's audio input signal to mitigate the contribution of background, static, or stationary noise when it is not capturing human speech or voice. VAD is a technique used in speech processing in which the presence or absence of human speech or voice can be detected. In addition, noise reduction techniques can reduce certain background, static, or stationary noise, such as fan and HVAC system noise. However, such noise reduction techniques are not ideal for reducing or rejecting errant noises.


While the combination of automixing and VAD exists in current systems, such combinations are not typically inherently capable of rejecting errant noises, in particular with low audio latency that is capable of real-time communication or for use with in-room sound reinforcement. The rejection of errant noises may compromise the performance of typical automixers since automixers typically rely on relatively simple channel selection rules, such as the first time of arrival or the highest amplitude at a given moment in time. Current systems that integrate automixing and VAD may not be optimal due to high latency and/or front end clipping (FEC) of speech or voice. For example, additional audio latency can be added to a channel to align the detection delay of a VAD to the incidence of voice in order to minimize FEC to the syllables or words in the speech or voice, but this may result in unacceptable delays in the audio stream. Alternatively, FEC can be accepted by deciding to not add audio latency to align the VAD detection delay to the audio stream, but this may result in incomplete voice or speech in the audio stream. These situations may result in decreased user satisfaction. Moreover, many current systems with VAD may utilize only a single audio channel in which the spatial relationship of speech/voice and noise that occurs in the particular environment need not be considered for effective operation.


Furthermore, in an automixing application (either with separate microphone units or using steered audio lobes from a microphone array), voice and errant noises may occur in the same environment and be included in all microphones and/or lobes, due to the imperfect acoustic polar patterns of the microphones and/or the lobes. This may present problems with VAD detection capability (both on an individual channel and collective channel basis), appropriate automixer channel selection (which attempts to avoid errant noises while still selecting the channel(s) containing voice), and the suppression of errant noises in lobes that are gated on because they contain speech/voice.


Accordingly, there is an opportunity for systems and methods that address these concerns. More particularly, there is an opportunity for systems and methods that can provide voice and noise activity detection with audio automixers that can reject errant non-voice or non-human noises while maximizing signal-to-noise ratio, increasing intelligibility, minimizing audio latency, and increasing user satisfaction. By combining automixing principles with more advanced voice activity detection techniques, microphone/lobe selection can be enhanced to maximize speech-to-errant noise ratios.


SUMMARY

The invention is intended to solve the above-noted problems by providing systems and methods that are designed to, among other things: (1) utilize a modified voice activity detector altered to function as a noise activity detector to sense whether voice or errant noise is present on a channel; (2) perform additional channel gating based on metrics and decisions from the voice activity detector that may affect and/or override the channel gating performed by an automixer; (3) reduce or eliminate the amount of front end clipping of captured voice/speech; and (4) minimize the effects of front end noise leak from errant noises that may be initially included in a particular gated on channel.


In an embodiment, a method includes determining whether non-speech audio is present in an audio signal of a channel initially gated on by a mixer, where the mixer generates a mixed audio signal based on at least the audio signal of the channel initially gated on; and when the non-speech audio is determined to be present in the audio signal of the channel initially gated on, overriding the mixer by gating off the channel initially gated on to cause the mixer to generate the mixed audio signal without the audio signal of the channel initially gated on.


In another embodiment, a system includes an activity detector configured to determine whether non-speech audio is present in an audio signal of a channel initially gated on by a mixer, where the mixer is configured to generate a mixed audio signal based on at least the audio signal of the channel initially gated on. The system also includes a channel gating module in communication with the activity detector, and the channel gating module is configured to when the non-speech audio is determined by the activity detector to be present in the audio signal of the channel initially gated on, override the mixer to cause the mixer to gate off the channel initially gated on, and generate the mixed audio signal without the audio signal of the channel initially gated on.


These and other embodiments, and various permutations and aspects, will become apparent and be more fully understood from the following detailed description and accompanying drawings, which set forth illustrative embodiments that are indicative of the various ways in which the principles of the invention may be employed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram of a system including a mixer and a voice activity detector for gating of channels, in accordance with some embodiments.



FIG. 2 is a flowchart illustrating operations for gating channels from microphones using the system of FIG. 1, in accordance with some embodiments.



FIG. 3 is a diagram of an exemplary gate control state machine used in the mixer of the system of FIG. 1, in accordance with some embodiments.





DETAILED DESCRIPTION

The description that follows describes, illustrates and exemplifies one or more particular embodiments of the invention in accordance with its principles. This description is not provided to limit the invention to the embodiments described herein, but rather to explain and teach the principles of the invention in such a way to enable one of ordinary skill in the art to understand these principles and, with that understanding, be able to apply them to practice not only the embodiments described herein, but also other embodiments that may come to mind in accordance with these principles. The scope of the invention is intended to cover all such embodiments that may fall within the scope of the appended claims, either literally or under the doctrine of equivalents.


It should be noted that in the description and drawings, like or substantially similar elements may be labeled with the same reference numerals. However, sometimes these elements may be labeled with differing numbers, such as, for example, in cases where such labeling facilitates a more clear description. Additionally, the drawings set forth herein are not necessarily drawn to scale, and in some instances proportions may have been exaggerated to more clearly depict certain features. Such labeling and drawing practices do not necessarily implicate an underlying substantive purpose. As stated above, the specification is intended to be taken as a whole and interpreted in accordance with the principles of the invention as taught herein and understood to one of ordinary skill in the art.


The systems and methods described herein can generate a mixed audio signal from an automixer that reduces and minimizes the contributions from errant non-voice or non-human noises that are sensed in an environment. The systems and methods may utilize an automixer in conjunction with a voice activity detector (or errant noise activity detector) that each make independent channel gating decisions. The automixer may gate particular channels on or off based on channel selection rules, while the voice/errant noise activity detector may override the channel gating decisions of the automixer depending on whether voice or errant noise is detected in channels that were gated on by the automixer. Metrics from the voice/errant noise activity detector, such as a confidence score, may also affect the channel gating decisions and/or affect the relative chosen mixture of each channel in the automixer. To support a low latency audio output, some errant noises may leak into the audio mix before the voice/errant noise activity detector is able to override the audio mixer. The systems and methods may allow for this behavior while minimizing the energy and subjective audio quality impact of this channel gating noise onset. This allows the energy from errant noises that leak into channels to be minimized while maintaining low latency.



FIG. 1 is a schematic diagram of a system 100 that can be utilized to reject errant noises, including microphones 102, a mixer 104 and a voice activity detector 108. FIG. 2 is a flowchart of a process 200 for rejecting errant noises using the system 100 of FIG. 1. The system 100 and the process 200 may result in the output of a mixed audio signal with optimal signal-to-noise ratio and that includes desirable voice while minimizing the inclusion or contribution of errant noises.


Environments such as conference rooms may utilize the system 100 to facilitate communication with persons at a remote location, for example. The types of microphones 102 and their placement in a particular environment may depend on the locations of audio sources, physical space requirements, aesthetics, room layout, and/or other considerations. For example, in some environments, the microphones may be placed on a table or lectern near the audio sources. In other environments, the microphones may be mounted overhead to capture the sound from the entire room, for example. The communication system 100 may work in conjunction with any type and any number of microphones 102. Various components included in the communication system 100 may be implemented using software executable by one or more servers or computers, such as a computing device with a processor and memory, graphic processing units (GPUs), and/or by hardware (e.g., discrete logic circuits, application specific integrated circuits (ASIC), programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.


In general, a computer program product in accordance with the embodiments includes a computer usable storage medium (e.g., standard random access memory (RAM), an optical disc, a universal serial bus (USB) drive, or the like) having computer-readable program code embodied therein, wherein the computer-readable program code is adapted to be executed by a processor (e.g., working in connection with an operating system) to implement the methods described below. In this regard, the program code may be implemented in any desired language, and may be implemented as machine code, assembly code, byte code, interpretable source code or the like (e.g., via C, C++, Java, Actionscript, Objective-C, Javascript, CSS, XML, and/or others).


Referring to FIG. 1, the system 100 may include the microphones 102, the mixer 104, a pre-mixer 106, a voice activity detector 108, and a channel gating module 110. Each of the microphones 102 may detect sound in the environment and convert the sound to an audio signal and form a channel. In embodiments, some or all of the audio signals from the microphones 102 may be processed by a beamformer (not shown) to generate one or more beamformed audio signals, as is known in the art. Accordingly, while the systems and methods are described herein as using audio signals from microphones 102, it is contemplated that the systems and methods may also utilize any type of acoustic source, such as beamformed audio signals generated by a beamformer.


The audio signals from each of the microphones 102 may be received by the mixer 104, the pre-mixer 106, and the voice activity detector 108, such as at step 202 of the process 200 shown in FIG. 2. The mixer 104 may ultimately generate and output a mixed audio signal that may conform to a desired audio mix such that the audio signals from certain microphones are emphasized and the audio signals from other microphones are deemphasized or suppressed. Exemplary embodiments of audio mixers are disclosed in commonly-assigned patents, U.S. Pat. Nos. 4,658,425 and 5,297,210, each of which is incorporated by reference in its entirety.


The mixed audio signal from the mixer 104 may include contributions from one or more channels, i.e., audio signals from the microphones 102, that are gated on using the system 100. The mixer 104 and the channel gating module 110 may gate on one or more channels to provide captured audio without suppression (or in certain embodiments, with minimal suppression) in response to determining that the captured audio contains human speech and/or according to certain channel selection rules. The mixer 104 and the channel gating module 110 may also gate off one or more channels to reduce the strength of certain captured audio in response to determining that the captured audio in a channel is a background, static, or stationary noise. The determination of channel gating by the mixer 104 and the channel gating module 110 may occur at step 204. The mixer 104 and the channel gating module 110 may render a channel gating decision for each of a plurality of channels corresponding to the plurality of microphones or array lobes 102. The process 200 may continue to step 206.


At step 206, if a channel was determined to be gated off at step 204, then process 200 may proceed to step 218 and the mixer 104 may output a mixed audio signal that does not include the gated off channel. However, if at step 206 a channel was determined to be gated on at step 204, then the process 200 may continue to step 208, where in certain embodiments a non-speech de-emphasis filter may be applied which functions as a bandwidth limiting filter (such as a low pass filter, a bandpass filter, or linear predictive coding (LPC)) to subjectively minimize front end noise leakage, as described in further detail below.


The audio signals from the microphones 102 may also be received at step 210 by the voice activity detector (VAD) 108. The VAD 108 may execute an algorithm at step 210 to determine whether there is voice present in a particular channel or conversely, whether there is noise present in a particular channel. For example, if voice is found to be present in a particular channel (or noise is not found) by the VAD 108, then the VAD 108 may deem that that channel includes voice or is “not noise”. Similarly, if voice is not found to be present in a particular channel (or noise is found) by the VAD 108, then it may be deemed that that channel includes noise or is “not voice”. In embodiments, the VAD 108 may be implemented by analyzing the spectral variance of the audio signals, using linear predictive coding (LPC), applying machine learning or deep learning techniques to detect voice, and/or using well-known techniques such as the ITU G.729 VAD, ETSI standards for VAD calculation included in the GSM specification, or long term pitch prediction.


By identifying whether a particular channel contains errant noise (i.e., is “not voice”), the system 100 can override decisions made by the mixer 104 and the channel gating module 110 to gate on channels and subsequently gate off such channels so that errant noise is not ultimately included in the mixed audio signal output from the mixer 104. In particular, at step 212, if it was determined that there is errant noise in a channel at step 210, then the process 200 may continue to step 220. At step 220, the decision by the mixer 104 and the channel gating module 110 to gate on the channel may be overridden due to the detection of errant noise, and the channel may be gated off. The process 200 may continue to step 218 where the mixer 104 may output a mixed audio signal that does not include contributions from the now-gated off channel. In embodiments, a confidence score from the VAD 108 may be utilized to determine whether the decision by the mixer 104 to gate on the channel may be overridden to gate the channel off, and/or be utilized to affect the relative chosen mixture of each channel in the automixer.


However, at step 212, if it was determined that there is voice (i.e., “not noise”) in the channel at step 210, then the process 200 may continue to step 214. At step 214, the filter applied at step 208 may be removed, as described in more detail below. At step 216, the gating on of the channel may be maintained by the mixer 104, and at step 218, the mixer 104 may output a mixed audio signal that includes this channel.


In embodiments, steps 210 and 212 by the VAD 108 for identifying whether there is voice or noise in a channel may be performed in parallel or just after the mixer 104 and the channel gating module 110 have determined channel gating decisions at steps 204 and 206. For example, the VAD 108 may collect and buffer audio data from the input audio signals for a predetermined period of time in order to have enough information to determine whether the channel includes voice or noise. As such, in the time period between the decision of the mixer 104 and the decision of the VAD 108 (regarding whether to override or not override the decision of the mixer 104 and the channel gating module 110), errant noise may temporarily contribute to the mixed audio signal. This contribution of errant noise for a small time period may be termed as front end noise leak (FENL). The occurrence of FENL in a mixed audio signal may be deemed as more desirable and less apparent to listeners of the mixed audio signal, as compared to front end clipping. The subjective impact of allowing FENL can be minimized through control of the amplitude and frequency content of the FENL time period, and the chosen length of time that FENL is allowed.


In embodiments, the mixer 104 may include a gate control state machine that controls the final application of channel gating based on the decisions of the mixer 104, the channel gating module 110, and the VAD 108. The state machine may include: (1) an FEC time period which is controlled by algorithm design outside of the design of the mixer 104 and the channel gating module 110 that delays the gate on time; (2) a particular duration during the FENL time period in which the mixer 104 and the channel gating module 110 have full control over channel gating; and/or (3) and a final time period in which the gating indication from the VAD 108 may be logically ANDed with the gating indication from the mixer 104 and the channel gating module 110. When the gating indication of the mixer 104 and the channel gating module 110 returns to gate off for a channel, the gate control state machine may be returned to its starting condition. A depiction of the gate control state machine is shown in FIG. 3.


The contribution of FENL to the mixed audio signal may be minimized using various techniques as detailed below by minimizing the energy and spectral contribution of errant noise that may temporarily leak into a particular channel. The minimization of the contribution of FENL to the mixed audio signal may reduce the impact on speech and voice in the mixed audio signal during the time period when FENL may occur. Such FENL minimization techniques may be implemented in the pre-mixer 106, in some embodiments.


The pre-mixer 106 may receive state information from the voice activity detector 108, in some embodiments. The state information may include a combination of automixer gating flags, VAD/NAD indicators, and the FENL time period. The pre-mixer 106 may utilize the state information to determine the amplitude attenuation and frequency filtering to apply over time. The mixer 104 may receive processed audio signals from the pre-mixer 106. The number of processed audio signals from the pre-mixer 106 to the mixer 104 may be the same as the number of microphones 102 in some embodiments, or may be less than the number of microphones 102 in other embodiments.


One technique may include applying an attenuated gate on amplitude until the VAD 108 can positively corroborate the decision by the mixer 104 to gate on a channel. The attenuation of a channel during the FENL time period can reduce the impact of errant noise while having a relatively insignificant impact on the intelligibility of speech in the mixed audio signal. This technique may be implemented in the pre-mixer 106 by applying a simple attenuation to channels that the automixer has recently gated on within the FENL time period window at step 209 and removing the application of the attenuation at step 215. The FENL time period window is exited after a timer expires that corresponds to the length of time that noise is allowed to leak through without tangibly affecting the subjective audio quality of speech.


Another technique may include reducing the audio bandwidth during the FENL time period. The reduction of audio bandwidth in this scenario can maintain the most important frequencies for intelligibility of speech or voice in the mixed audio signal during the FENL time period, while significantly reducing the impact of having a certain time period (e.g., some number of milliseconds) of full-band FENL. This technique may be implemented in the pre-mixer 106 by applying the non-speech de-emphasis filter at step 208 and removing the application of the non-speech de-emphasis filter at step 214, as described above. For example, a low pass filter may be applied at step 208 after the mixer 104 has made a decision as to whether to gate a channel on or off (e.g., at steps 204 and 206), but prior to the decision by the VAD 108 as to whether there is voice or noise in a channel. Once the VAD 108 has made a decision that there is voice in a channel (e.g., at steps 210 and 212), then the application of the non-speech de-emphasis filter may be removed at step 214. In embodiments, the non-speech de-emphasis filter in the pre-mixer 106 may be a static second order Butterworth filter that is cross-faded with the unprocessed audio signal from the microphones 102. In other embodiments, the non-speech de-emphasis filter in the pre-mixer 106 may be implemented as two first-order low pass filters in series where more or less filtering can be applied by moving the location of the pole of the filter over time, which provides control of limiting the bandwidth of the low and high frequencies independently and adaptively over time. Adaptive control of these filters can correspond to the FENL timer parameter or VAD confidence metrics. In other embodiments, the non-speech de-emphasis filter in the pre-mixer 106 may be implemented as a more complex bandwidth limiting filter that preserves the formant structure of speech by employing linear predictive coding.


Another technique may include altering the crest factor of the audio to minimize the perception of noise. Many types of errant noises may have higher crest factors than human speech. A sustained high crest factor can be perceived as loudness by a human. By compressing the crest factor of the audio during the FENL region to equal to or below that of human speech, the intelligibility of human speech can be maintained while reducing the perceived loudness of an errant noise. In some embodiments, signals with an instantaneous time domain crest factor that is above a target can be dynamically compressed to maintain the desired crest factor. In other embodiments, the compression can be modified to be a limiter to further ensure that the resulting audio has the desired crest factor.


A further technique may include introducing a predetermined amount of FEC that can psychoacoustically minimize the subjective impact of sharply transient errant noises (e.g., pen clicks, books dropping on a table, etc.) while insignificantly impacting the subjective quality of voice (which usually does not exhibit a transient onset). The introduction of FEC in this situation can be further refined to mimic the inverse envelope of a transient errant noise, which can noticeably reduce noise perception while not completely removing the onset of speech that would occur with a static attenuation during the FENL time period. This can be implemented in step 209 and removed in step 215 by applying a time varying, rather than static, attenuation. By using one or more of these techniques, the impact of errant noise leaking into the mixed audio signal undetected may be minimized until the VAD 108 can make a decision as to whether there is voice or noise in the channel. This can accordingly provide a benefit to speech intelligibility without adding audio path latency.


The FENL minimization techniques described above can be enhanced through the use of adaptive techniques that can automatically modify behaviors that better match the environment in which the system 100 is operating. Such adaptive techniques may control the time parameters of the gate control state machine described above, as well as parameters such as inverse FEC envelope shape, bandwidth reduction values, the amount of attenuation during the FENL time period, FENL minimization temporal entrance/exit behaviors, and/or temporal ballistics of the mixer 104 to gate off a channel that the VAD 108 has identified as containing errant noise.


In embodiments, the system 100 may collect statistics for each channel (corresponding to each of the plurality of microphones or array lobes 102) to identify whether a particular channel on average contains voice/speech or noise. For example, in a particular environment one channel may be pointed toward a door, while another channel is pointed at a chairman position. In this environment, over time, the system 100 may determine that the channel pointed at the door is almost exclusively errant noise and that the channel pointed at the chairman position is almost exclusively voice. In response, the system 100 may tune the channel pointed toward the door to apply longer forced FEC, use more aggressive FENL minimization parameters, and/or cause the gate control state machine to give additional priority to the VAD 108 with regards to gating decisions. Conversely, the system 100 may tune the channel pointed toward the chairman position to eliminate FEC, reduce the use of FENL minimization techniques, and/or cause the gate control state machine to provide gating control to the mixer 104 for a longer period of time (which may in turn force the VAD 108 to be more confident in its decision regarding noise before overriding and gating off the channel).


Another technique may include the system 100 only allowing adaptations to train when the VAD 108 has reached a threshold level of high confidence on a particular channel. This may mitigate false positives and/or false negatives in the adaptation behavior as applied to the FENL minimization techniques. A further technique may include the system 100 sampling and analyzing audio envelope data of a gated on channel for an audio period that was subsequently tagged as noise by the VAD 108, in order to update the inverse FEC envelope shape described above.


In embodiments, adaptive behavior may also be applied to the process of gating off a channel. For example, during normal speech, the system 100 may apply a slow ramp out for gating off a channel in order to minimize the perception of the noise floor of the audio going up and down or changing. As another example, in the presence of noise, the system 100 may apply a fast ramp for gating off a channel in order to maximize the effectiveness of gating channels off in response to a decision by the VAD 108. In embodiments, the system 100 may combine information from the mixer 104 and the VAD 108 to determine the reason for gating off a channel. This information may be used to dynamically alter the speed at which a channel is gated off. In addition, non-uniform slopes of the ramp can be used to perceptually optimize both the errant noise and speech conditions.


The system 100 may include further techniques that address the imperfect audio selectivity between the microphones or lobes 102, which can result in many or all channels having both voice and errant noise. In this situation, simply gating off a particular channel that contains the highest amount of errant noise may not fully eliminate the errant noise from the mixed audio signal. This may result in some of the errant noise still being present in the gated on channel that contains voice. One technique to address this situation may include the use of a noise leakage filter in the pre-mixer 106. The noise leakage filter may be applied during the portion of time after the VAD 108 has made a decision that there is voice in a particular channel. If it has been determined that a different channel includes errant noise (i.e., the decision of the mixer 104 to gate on that different channel has been overridden by the VAD 108), then the noise leakage filter may be applied to the channel having voice in order to mitigate high frequency leakage of noise into the channel having voice. In other words, the noise leakage filter may be applied when there is at least one channel identified as including errant noise while there are other channels identified as not having errant noise (i.e., having voice). In embodiments, the noise leakage filter in the pre-mixer 106 may be a static second order Butterworth filter that is cross-faded with the unprocessed audio signal from the microphones 102. In other embodiments, the noise leakage filter in the pre-mixer 106 may be implemented as two first-order low pass filters in series where more or less filtering can be applied by moving the location of the pole of the filter over time, which provides control of limiting the bandwidth of the low and high frequencies independently and adaptively over time. Adaptive control of these filters can correspond to the number of other channels identified as noise or VAD confidence metrics. In other embodiments, the noise leakage filter in the pre-mixer 106 may be implemented as a more complex bandwidth limiting filter that preserves the formant structure of speech by employing linear predictive coding.


For example, typically when a particular channel is gated off by the mixer 104, the mixer 104 may attenuate the audio signal in that channel (e.g., by applying −15 dB attenuation) in order to preserve room presence, have noise floor consistency as various channels are gated on and off, and to reduce the impact of FEC on a channel that is gated on late. By using the noise leakage filter described above, the system 100 may reduce the bandwidth of channels that are gated on such that the frequencies for speech intelligibility are preserved, while the frequencies for errant noise are rejected. This may result in mitigating the errant noise leaking into the channels that are gated on.


In certain embodiments, to further reduce the contribution of errant noise, when one or more channels are identified as containing errant noise by the VAD 108, the system 100 may apply an additional attenuation (i.e. changed from −15 dB to −25 dB) to all gated off channels and reduce the bandwidth of these channels.


It should be noted that standard static noise reduction techniques may be utilized in the system 100. In embodiments, the VAD 108 may utilize audio signals from the microphones 102 that have not been noise reduced. It may be more optimal for the VAD 108 to use non-noise reduced audio signal so that the VAD 108 can make its decisions based on the original noise floor of the audio signals.


In this application, the use of the disjunctive is intended to include the conjunctive. The use of definite or indefinite articles is not intended to indicate cardinality. In particular, a reference to “the” object or “a” and “an” object is intended to denote also one of a possible plurality of such objects. Further, the conjunction “or” may be used to convey features that are simultaneously present instead of mutually exclusive alternatives. In other words, the conjunction “or” should be understood to include “and/or”. The terms “includes,” “including,” and “include” are inclusive and have the same scope as “comprises,” “comprising,” and “comprise” respectively.


Any process descriptions or blocks in figures should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process, and alternate implementations are included within the scope of the embodiments of the invention in which functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those having ordinary skill in the art.


This disclosure is intended to explain how to fashion and use various embodiments in accordance with the technology rather than to limit the true, intended, and fair scope and spirit thereof. The foregoing description is not intended to be exhaustive or to be limited to the precise forms disclosed. Modifications or variations are possible in light of the above teachings. The embodiment(s) were chosen and described to provide the best illustration of the principle of the described technology and its practical application, and to enable one of ordinary skill in the art to utilize the technology in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the embodiments as determined by the appended claims, as may be amended during the pendency of this application for patent, and all equivalents thereof, when interpreted in accordance with the breadth to which they are fairly, legally and equitably entitled.

Claims
  • 1. A method, comprising: determining whether non-speech audio is present in an audio signal of a channel initially gated on by a mixer, wherein the mixer generates a mixed audio signal based on at least the audio signal of the channel initially gated on; andbased on determining that the non-speech audio is present in the audio signal of the channel initially gated on, overriding the mixer by gating off the channel initially gated on to cause the mixer to generate the mixed audio signal with an attenuated version of the audio signal of the channel initially gated on.
  • 2. The method of claim 1, further comprising based on determining that the non-speech audio is present in the audio signal of the channel initially gated on, attenuating the audio signal of the channel initially gated on to generate the attenuated version of the audio signal of the channel initially gated on.
  • 3. The method of claim 1, wherein overriding the mixer comprises overriding the mixer by controlling a rate of gating off the channel initially gated on.
  • 4. The method of claim 3, wherein controlling the rate of gating off the channel initially gated on comprises applying a ramp for gating off the channel initially gated on.
  • 5. The method of claim 4, wherein applying the ramp comprises altering a slope of the ramp for gating off the channel initially gated on.
  • 6. The method of claim 1, further comprising minimizing front end noise leak in the audio signal of the channel initially gated on during a time duration between (1) the mixer determining to gate on the channel initially gated on and (2) determining whether the non-speech audio is present in the audio signal of the channel initially gated on.
  • 7. The method of claim 1, further comprising: applying a non-speech de-emphasis filter to the audio signal of the channel initially gated on;determining whether speech audio is present in the audio signal of the channel initially gated on; andbased on determining that the speech audio is present in the audio signal of the channel initially gated on, removing the non-speech de-emphasis filter from the audio signal of the channel initially gated on.
  • 8. The method of claim 1, further comprising: attenuating the audio signal of the channel initially gated on;determining whether speech audio is present in the audio signal of the channel initially gated on; andbased on determining that the speech audio is present in the audio signal of the channel initially gated on, removing the attenuation from the audio signal of the channel initially gated on.
  • 9. The method of claim 1, further comprising: applying a time varying attenuation to the audio signal of the channel initially gated on;determining whether speech audio is present in the audio signal of the channel initially gated on; andbased on determining that the speech audio is present in the audio signal of the channel initially gated on, removing the time varying attenuation from the audio signal of the channel initially gated on.
  • 10. The method of claim 1, further comprising: applying one or more of a crest factor compressor or a crest factor limiter to the audio signal of the channel initially gated on;determining whether speech audio is present in the audio signal of the channel initially gated on; andbased on determining that the speech audio is present in the audio signal of the channel initially gated on, removing the one or more of the crest factor compressor or the crest factor limiter from the audio signal of the channel initially gated on.
  • 11. The method of claim 1, further comprising: determining whether speech audio is present in the audio signal of the channel initially gated on;determining whether non-speech audio is present in a second audio signal of a second channel initially gated on by the mixer; andbased on determining that the speech audio is present in the audio signal of the channel initially gated on and based on determining that the non-speech audio is present in the second audio signal of the second channel initially gated on, applying a noise leakage filter to the audio signal of the channel initially gated on.
  • 12. A system, comprising: an activity detector configured to determine whether non-speech audio is present in an audio signal of a channel initially gated on by a mixer, wherein the mixer is configured to generate a mixed audio signal based on at least the audio signal of the channel initially gated on; anda channel gating module in communication with the activity detector, the channel gating module configured to, based on the activity detector determining that the non-speech audio is present in the audio signal of the channel initially gated on, override the mixer to cause the mixer to: gate off the channel initially gated on; andgenerate the mixed audio signal with an attenuated version of the audio signal of the channel initially gated on.
  • 13. The system of claim 12, wherein the channel gating module is further configured to, based on the activity detector determining that the non-speech audio is present in the audio signal of the channel initially gated on, attenuate the audio signal of the channel initially gated on to generate the attenuated version of the audio signal of the channel initially gated on.
  • 14. The system of claim 12, wherein the channel gating module is configured to, based on the activity detector determining that the non-speech audio is present in the audio signal of the channel initially gated on, override the mixer to cause the mixer to gate off the channel initially gated on by controlling a rate of gating off the channel initially gated on.
  • 15. The system of claim 12, further comprising a pre-mixer in communication with the mixer, the pre-mixer configured to minimize front end noise leak in the audio signal of the channel initially gated on during a time duration between (1) the mixer determining to gate on the channel initially gated on and (2) the activity detector determining whether the non-speech audio is present in the audio signal of the channel initially gated on.
  • 16. The system of claim 12, wherein the activity detector is further configured to determine whether speech audio is present in the audio signal of the channel initially gated on; andfurther comprising a non-speech de-emphasis filter configured to: filter the audio signal of the channel initially gated on; andbased on the activity detector determining that the speech audio is present in the audio signal of the channel initially gated on, cease filtering of the audio signal of the channel initially gated on.
  • 17. The system of claim 12, wherein the activity detector is further configured to determine whether speech audio is present in the audio signal of the channel initially gated on; andwherein the channel gating module is further configured to: attenuate the audio signal of the channel initially gated on; andbased on the activity detector determining that the speech audio is present in the audio signal of the channel initially gated on, cease attenuating the audio signal of the channel initially gated on.
  • 18. The system of claim 12, wherein the activity detector is further configured to determine whether speech audio is present in the audio signal of the channel initially gated on; andwherein the channel gating module is further configured to: apply a time varying attenuation to the audio signal of the channel initially gated on; andbased on the activity detector determining that the speech audio is present in the audio signal of the channel initially gated on, remove the time varying attenuation from the audio signal of the channel initially gated on.
  • 19. The system of claim 12, wherein the activity detector is further configured to determine whether speech audio is present in the audio signal of the channel initially gated on; andwherein the channel gating module is further configured to: apply one or more of a crest factor compressor or a crest factor limiter to the audio signal of the channel initially gated on; andbased on the activity detector determining that the speech audio is present in the audio signal of the channel initially gated on, remove the one or more of the crest factor compressor or the crest factor limiter from the audio signal of the channel initially gated on.
  • 20. The system of claim 12, wherein the activity detector is further configured to determine: whether speech audio is present in the audio signal of the channel initially gated on; andwhether non-speech audio is present in a second audio signal of a second channel initially gated on by the mixer; andfurther comprising a pre-mixer in communication with the mixer, the pre-mixer configured to: based on the activity detector determining that the speech audio is present in the audio signal of the channel initially gated on and based on the activity detector determining that the non-speech audio is present in the second audio signal of the second channel initially gated on, apply a noise leakage filter to the audio signal of the channel initially gated on.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 16/887,407, filed on May 29, 2020, which claims the benefit of U.S. Provisional Pat. App. No. 62/855,491, filed on May 31, 2019, both of which are incorporated by reference herein in their entireties.

US Referenced Citations (985)
Number Name Date Kind
1535408 Fricke Apr 1925 A
1540788 McClure Jun 1925 A
1965830 Hammer Jul 1934 A
2075588 Meyers Mar 1937 A
2113219 Olson Apr 1938 A
2164655 Kleerup Jul 1939 A
D122771 Doner Oct 1940 S
2233412 Hill Mar 1941 A
2268529 Stiles Dec 1941 A
2343037 Adelman Feb 1944 A
2377449 Prevette Jun 1945 A
2481250 Schneider Sep 1949 A
2521603 Prew Sep 1950 A
2533565 Eichelman Dec 1950 A
2539671 Olson Jan 1951 A
2777232 Kulicke Jan 1957 A
2828508 Labarre Apr 1958 A
2840181 Wildman Jun 1958 A
2882633 Howell Apr 1959 A
2912605 Tibbetts Nov 1959 A
2938113 Schnell May 1960 A
2950556 Larios Aug 1960 A
3019854 Obryant Feb 1962 A
3132713 Seeler May 1964 A
3143182 Sears Aug 1964 A
3160225 Sechrist Dec 1964 A
3161975 McMillan Dec 1964 A
3205601 Gawne Sep 1965 A
3239973 Hannes Mar 1966 A
3240883 Seeler Mar 1966 A
3310901 Sarkisian Mar 1967 A
3321170 Vye May 1967 A
3509290 Mochida Apr 1970 A
3573399 Schroeder Apr 1971 A
3657490 Scheiber Apr 1972 A
3696885 Grieg Oct 1972 A
3755625 Maston Aug 1973 A
3828508 Moeller Aug 1974 A
3857191 Sadorus Dec 1974 A
3895194 Fraim Jul 1975 A
3906431 Clearwaters Sep 1975 A
D237103 Fisher Oct 1975 S
3936606 Wanke Feb 1976 A
3938617 Forbes Feb 1976 A
3941638 Horky Mar 1976 A
3992584 Dugan Nov 1976 A
4007461 Luedtke Feb 1977 A
4008408 Kodama Feb 1977 A
4029170 Phillips Jun 1977 A
4032725 McGee Jun 1977 A
4070547 Dellar Jan 1978 A
4072821 Bauer Feb 1978 A
4096353 Bauer Jun 1978 A
4127156 Brandt Nov 1978 A
4131760 Christensen Dec 1978 A
4169219 Beard Sep 1979 A
4184048 Alcaide Jan 1980 A
4198705 Massa Apr 1980 A
D255234 Wellward Jun 1980 S
D256015 Doherty Jul 1980 S
4212133 Lufkin Jul 1980 A
4237339 Bunting Dec 1980 A
4244096 Kashichi Jan 1981 A
4244906 Heinemann Jan 1981 A
4254417 Speiser Mar 1981 A
4275694 Nagaishi Jun 1981 A
4296280 Richie Oct 1981 A
4305141 Massa Dec 1981 A
4308425 Momose Dec 1981 A
4311874 Wallace, Jr. Jan 1982 A
4330691 Gordon May 1982 A
4334740 Wray Jun 1982 A
4365449 Liautaud Dec 1982 A
4373191 Fette Feb 1983 A
4393631 Krent Jul 1983 A
4414433 Horie Nov 1983 A
4429850 Weber Feb 1984 A
4436966 Botros Mar 1984 A
4449238 Lee May 1984 A
4466117 Rudolf Aug 1984 A
4485484 Flanagan Nov 1984 A
4489442 Anderson Dec 1984 A
4518826 Caudill May 1985 A
4521908 Miyaji Jun 1985 A
4566557 Lemaitre Jan 1986 A
4593404 Bolin Jun 1986 A
4594478 Gumb Jun 1986 A
D285067 Delbuck Aug 1986 S
4625827 Bartlett Dec 1986 A
4653102 Hansen Mar 1987 A
4658425 Julstrom Apr 1987 A
4669108 Deinzer May 1987 A
4675906 Sessler Jun 1987 A
4693174 Anderson Sep 1987 A
4696043 Iwahara Sep 1987 A
4712231 Julstrom Dec 1987 A
4741038 Elko Apr 1988 A
4752961 Kahn Jun 1988 A
4805730 O'Neill Feb 1989 A
4815132 Minami Mar 1989 A
4860366 Fukushi Aug 1989 A
4862507 Woodard Aug 1989 A
4866868 Kass Sep 1989 A
4881135 Heilweil Nov 1989 A
4888807 Reichel Dec 1989 A
4903247 Van Gerwen Feb 1990 A
4923032 Nuernberger May 1990 A
4928312 Hill May 1990 A
4969197 Takaya Nov 1990 A
5000286 Crawford Mar 1991 A
5038935 Wenkman Aug 1991 A
5058170 Kanamori Oct 1991 A
5088574 Kertesz, III Feb 1992 A
D324780 Sebesta Mar 1992 S
5121426 Baumhauer Jun 1992 A
D329239 Hahn Sep 1992 S
5189701 Jain Feb 1993 A
5204907 Staple Apr 1993 A
5214709 Ribic May 1993 A
D340718 Leger Oct 1993 S
5289544 Franklin Feb 1994 A
D345346 Alfonso Mar 1994 S
D345379 Chan Mar 1994 S
5297210 Julstrom Mar 1994 A
5322979 Cassity Jun 1994 A
5323459 Hirano Jun 1994 A
5329593 Lazzeroni Jul 1994 A
5335011 Addeo Aug 1994 A
5353279 Koyama Oct 1994 A
5359374 Schwartz Oct 1994 A
5371789 Hirano Dec 1994 A
5383293 Royal Jan 1995 A
5384843 Masuda Jan 1995 A
5396554 Hirano Mar 1995 A
5400413 Kindel Mar 1995 A
D363045 Phillips Oct 1995 S
5473701 Juergen Dec 1995 A
5509634 Gebka Apr 1996 A
5513265 Hirano Apr 1996 A
5525765 Freiheit Jun 1996 A
5550924 Helf Aug 1996 A
5550925 Hori Aug 1996 A
5555447 Kotzin Sep 1996 A
5574793 Hirschhorn Nov 1996 A
5602962 Kellermann Feb 1997 A
5633936 Oh May 1997 A
5645257 Ward Jul 1997 A
D382118 Ferrero Aug 1997 S
5657393 Crow Aug 1997 A
5661813 Shimauchi Aug 1997 A
5673327 Julstrom Sep 1997 A
5687229 Sih Nov 1997 A
5706344 Finn Jan 1998 A
5715319 Chu Feb 1998 A
5717171 Miller Feb 1998 A
D392977 Kim Mar 1998 S
D394061 Fink May 1998 S
5761318 Shimauchi Jun 1998 A
5766702 Lin Jun 1998 A
5787183 Chu Jul 1998 A
5796819 Romesburg Aug 1998 A
5848146 Slattery Dec 1998 A
5870482 Loeppert Feb 1999 A
5878147 Killion Mar 1999 A
5888412 Sooriakumar Mar 1999 A
5888439 Miller Mar 1999 A
D416315 Nanjo Nov 1999 S
5978211 Hong Nov 1999 A
5991277 Maeng Nov 1999 A
6035962 Lin Mar 2000 A
6039457 O'Neal Mar 2000 A
6041127 Elko Mar 2000 A
6049607 Marash Apr 2000 A
D424538 Hayashi May 2000 S
6069961 Nakazawa May 2000 A
6125179 Wu Sep 2000 A
D432518 Muto Oct 2000 S
6128395 De Vries Oct 2000 A
6137887 Anderson Oct 2000 A
6144746 Azima Nov 2000 A
6151399 Killion Nov 2000 A
6173059 Huang Jan 2001 B1
6198831 Azima Mar 2001 B1
6205224 Underbrink Mar 2001 B1
6215881 Azima Apr 2001 B1
6266427 Mathur Jul 2001 B1
6285770 Azima Sep 2001 B1
6301357 Romesburg Oct 2001 B1
6329908 Frecska Dec 2001 B1
6332029 Azima Dec 2001 B1
D453016 Nevill Jan 2002 S
6386315 Roy May 2002 B1
6393129 Conrad May 2002 B1
6424635 Song Jul 2002 B1
6442272 Osovets Aug 2002 B1
6449593 Valve Sep 2002 B1
6481173 Roy Nov 2002 B1
6488367 Debesis Dec 2002 B1
D469090 Tsuji Jan 2003 S
6505057 Finn Jan 2003 B1
6507659 Iredale Jan 2003 B1
6510919 Roy Jan 2003 B1
6526147 Rung Feb 2003 B1
6556682 Gilloire Apr 2003 B1
6592237 Pledger Jul 2003 B1
6622030 Romesburg Sep 2003 B1
D480923 Neubourg Oct 2003 S
6633647 Markow Oct 2003 B1
6665971 Lowry Dec 2003 B2
6694028 Matsuo Feb 2004 B1
6704422 Jensen Mar 2004 B1
D489707 Kobayashi May 2004 S
6731334 Maeng May 2004 B1
6741720 Myatt May 2004 B1
6757393 Spitzer Jun 2004 B1
6768795 Feltstroem Jul 2004 B2
6868377 Laroche Mar 2005 B1
6885750 Egelmeers Apr 2005 B2
6885986 Gigi Apr 2005 B1
D504889 Andre May 2005 S
6889183 Gunduzhan May 2005 B1
6895093 Ali May 2005 B1
6931123 Hughes Aug 2005 B1
6944312 Mason Sep 2005 B2
D510729 Chen Oct 2005 S
6968064 Ning Nov 2005 B1
6990193 Beaucoup Jan 2006 B2
6993126 Kyrylenko Jan 2006 B1
6993145 Combest Jan 2006 B2
7003099 Zhang Feb 2006 B1
7013267 Huart Mar 2006 B1
7031269 Lee Apr 2006 B2
7035398 Matsuo Apr 2006 B2
7035415 Belt Apr 2006 B2
7050576 Zhang May 2006 B2
7054451 Janse May 2006 B2
D526643 Ishizaki Aug 2006 S
D527372 Allen Aug 2006 S
7092516 Furuta Aug 2006 B2
7092882 Arrowood Aug 2006 B2
7098865 Christensen Aug 2006 B2
7106876 Santiago Sep 2006 B2
7120269 Lowell Oct 2006 B2
7130309 Boaz Oct 2006 B2
D533177 Andre Dec 2006 S
7149320 Haykin Dec 2006 B2
7161534 Tsai Jan 2007 B2
7187765 Popovic Mar 2007 B2
7203308 Kubota Apr 2007 B2
D542543 Bruce May 2007 S
7212628 Mirjana May 2007 B2
D546318 Yoon Jul 2007 S
D546814 Takita Jul 2007 S
D547748 Tsuge Jul 2007 S
7239714 De Blok Jul 2007 B2
D549673 Niitsu Aug 2007 S
7269263 Dedieu Sep 2007 B2
D552570 Niitsu Oct 2007 S
D559553 James Jan 2008 S
7333476 LeBlanc Feb 2008 B2
D566685 Koller Apr 2008 S
7359504 Reuss Apr 2008 B1
7366310 Stinson Apr 2008 B2
7387151 Payne Jun 2008 B1
7412376 Florencio Aug 2008 B2
7415117 Tashev Aug 2008 B2
D578509 Thomas Oct 2008 S
D581510 Albano Nov 2008 S
D582391 Morimoto Dec 2008 S
D587709 Niitsu Mar 2009 S
D589605 Reedy Mar 2009 S
7503616 Linhard Mar 2009 B2
7515719 Hooley Apr 2009 B2
7536769 Pedersen May 2009 B2
D595402 Miyake Jun 2009 S
D595736 Son Jul 2009 S
7558381 Ali Jul 2009 B1
7565949 Tojo Jul 2009 B2
D601585 Andre Oct 2009 S
7651390 Profeta Jan 2010 B1
7660428 Rodman Feb 2010 B2
7667728 Kenoyer Feb 2010 B2
7672445 Zhang Mar 2010 B1
D613338 Marukos Apr 2010 S
7701110 Fukuda Apr 2010 B2
7702116 Stone Apr 2010 B2
D614871 Tang May 2010 S
7724891 Beaucoup May 2010 B2
D617441 Koury Jun 2010 S
7747001 Kellermann Jun 2010 B2
7756278 Moorer Jul 2010 B2
7783063 Pocino Aug 2010 B2
7787328 Chu Aug 2010 B2
7830862 James Nov 2010 B2
7831035 Stokes Nov 2010 B2
7831036 Beaucoup Nov 2010 B2
7856097 Tokuda Dec 2010 B2
7881486 Killion Feb 2011 B1
7894421 Kwan Feb 2011 B2
D636188 Kim Apr 2011 S
7925006 Hirai Apr 2011 B2
7925007 Stokes Apr 2011 B2
7936886 Kim May 2011 B2
7970123 Beaucoup Jun 2011 B2
7970151 Oxford Jun 2011 B2
D642385 Lee Aug 2011 S
D643015 Kim Aug 2011 S
7991167 Oxford Aug 2011 B2
7995768 Miki Aug 2011 B2
8000481 Nishikawa Aug 2011 B2
8005238 Tashev Aug 2011 B2
8019091 Burnett Sep 2011 B2
8041054 Yeldener Oct 2011 B2
8059843 Hung Nov 2011 B2
8064629 Jiang Nov 2011 B2
8085947 Haulick Dec 2011 B2
8085949 Kim Dec 2011 B2
8095120 Blair Jan 2012 B1
8098842 Florencio Jan 2012 B2
8098844 Elko Jan 2012 B2
8103030 Barthel Jan 2012 B2
8109360 Stewart, Jr. Feb 2012 B2
8112272 Nagahama Feb 2012 B2
8116500 Oxford Feb 2012 B2
8121834 Rosec Feb 2012 B2
D655271 Park Mar 2012 S
D656473 Laube Mar 2012 S
8130969 Buck Mar 2012 B2
8130977 Chu Mar 2012 B2
8135143 Ishibashi Mar 2012 B2
8144886 Ishibashi Mar 2012 B2
D658153 Woo Apr 2012 S
8155331 Nakadai Apr 2012 B2
8170882 Davis May 2012 B2
8175291 Chan May 2012 B2
8175871 Wang May 2012 B2
8184801 Hamalainen May 2012 B1
8189765 Nishikawa May 2012 B2
8189810 Wolff May 2012 B2
8194863 Takumai Jun 2012 B2
8199927 Raftery Jun 2012 B1
8204198 Adeney Jun 2012 B2
8204248 Haulick Jun 2012 B2
8208664 Iwasaki Jun 2012 B2
8213596 Beaucoup Jul 2012 B2
8213634 Daniel Jul 2012 B1
8219387 Cutler Jul 2012 B2
8229134 Duraiswami Jul 2012 B2
8233352 Beaucoup Jul 2012 B2
8243951 Ishibashi Aug 2012 B2
8244536 Arun Aug 2012 B2
8249273 Inoda Aug 2012 B2
8259959 Marton Sep 2012 B2
8275120 Stokes, III Sep 2012 B2
8280728 Chen Oct 2012 B2
8284949 Farhang Oct 2012 B2
8284952 Reining Oct 2012 B2
8286749 Stewart Oct 2012 B2
8290142 Lambert Oct 2012 B1
8291670 Gard Oct 2012 B2
8297402 Stewart Oct 2012 B2
8315380 Liu Nov 2012 B2
8331582 Steele Dec 2012 B2
8345898 Reining Jan 2013 B2
8355521 Larson Jan 2013 B2
8370140 Vitte Feb 2013 B2
8379823 Ratmanski Feb 2013 B2
8385557 Tashev Feb 2013 B2
D678329 Lee Mar 2013 S
8395653 Feng Mar 2013 B2
8403107 Stewart Mar 2013 B2
8406436 Craven Mar 2013 B2
8428661 Chen Apr 2013 B2
8433061 Cutler Apr 2013 B2
D682266 Wu May 2013 S
8437490 Marton May 2013 B2
8443930 Stewart, Jr. May 2013 B2
8447590 Ishibashi May 2013 B2
8472639 Reining Jun 2013 B2
8472640 Marton Jun 2013 B2
D685346 Szymanski Jul 2013 S
D686182 Ashiwa Jul 2013 S
8479871 Stewart Jul 2013 B2
8483398 Fozunbal Jul 2013 B2
8498423 Thaden Jul 2013 B2
D687432 Duan Aug 2013 S
8503653 Ahuja Aug 2013 B2
8515089 Nicholson Aug 2013 B2
8515109 Dittberner Aug 2013 B2
8526633 Ukai Sep 2013 B2
8553904 Said Oct 2013 B2
8559611 Ratmanski Oct 2013 B2
D693328 Goetzen Nov 2013 S
8583481 Viveiros Nov 2013 B2
8599194 Lewis Dec 2013 B2
8600443 Kawaguchi Dec 2013 B2
8605890 Zhang Dec 2013 B2
8620650 Walters Dec 2013 B2
8631897 Stewart Jan 2014 B2
8634569 Lu Jan 2014 B2
8638951 Zurek Jan 2014 B2
D699712 Bourne Feb 2014 S
8644477 Gilbert Feb 2014 B2
8654955 Lambert Feb 2014 B1
8654990 Faller Feb 2014 B2
8660274 Wolff Feb 2014 B2
8660275 Buck Feb 2014 B2
8670581 Harman Mar 2014 B2
8672087 Stewart Mar 2014 B2
8675890 Schmidt Mar 2014 B2
8675899 Jung Mar 2014 B2
8676728 Velusamy Mar 2014 B1
8682675 Togami Mar 2014 B2
8724829 Visser May 2014 B2
8730156 Weising May 2014 B2
8744069 Cutler Jun 2014 B2
8744101 Burns Jun 2014 B1
8755536 Chen Jun 2014 B2
8787560 Buck Jul 2014 B2
8811601 Mohammad Aug 2014 B2
8818002 Tashev Aug 2014 B2
8824693 Åhgren Sep 2014 B2
8842851 Beaucoup Sep 2014 B2
8855326 Derkx Oct 2014 B2
8855327 Tanaka Oct 2014 B2
8861713 Xu Oct 2014 B2
8861756 Zhu Oct 2014 B2
8873789 Bigeh Oct 2014 B2
D717272 Kim Nov 2014 S
8886343 Ishibashi Nov 2014 B2
8893849 Hudson Nov 2014 B2
8898633 Bryant Nov 2014 B2
D718731 Lee Dec 2014 S
8903106 Meyer Dec 2014 B2
8923529 McCowan Dec 2014 B2
8929564 Kikkeri Jan 2015 B2
8942382 Elko Jan 2015 B2
8965546 Visser Feb 2015 B2
D725059 Kim Mar 2015 S
D725631 McNamara Mar 2015 S
8976977 De Mar 2015 B2
8983089 Chu Mar 2015 B1
8983834 Davis Mar 2015 B2
D726144 Kang Apr 2015 S
D727968 Onoue Apr 2015 S
9002028 Haulick Apr 2015 B2
D729767 Lee May 2015 S
9038301 Zelbacher May 2015 B2
9088336 Mani Jul 2015 B2
9094496 Teutsch Jul 2015 B2
D735717 Lam Aug 2015 S
D737245 Fan Aug 2015 S
9099094 Burnett Aug 2015 B2
9107001 Diethorn Aug 2015 B2
9111543 Åhgren Aug 2015 B2
9113242 Hyun Aug 2015 B2
9113247 Chatlani Aug 2015 B2
9126827 Hsieh Sep 2015 B2
9129223 Velusamy Sep 2015 B1
9140054 Oberbroeckling Sep 2015 B2
D740279 Wu Oct 2015 S
9172345 Kok Oct 2015 B2
D743376 Kim Nov 2015 S
D743939 Seong Nov 2015 S
9196261 Burnett Nov 2015 B2
9197974 Clark Nov 2015 B1
9203494 Tarighat Mehrabani Dec 2015 B2
9215327 Bathurst Dec 2015 B2
9215543 Sun Dec 2015 B2
9226062 Sun Dec 2015 B2
9226070 Hyun Dec 2015 B2
9226088 Pandey Dec 2015 B2
9232185 Graham Jan 2016 B2
9237391 Benesty Jan 2016 B2
9247367 Nobile Jan 2016 B2
9253567 Morcelli Feb 2016 B2
9257132 Gowreesunker Feb 2016 B2
9264553 Pandey Feb 2016 B2
9264805 Buck Feb 2016 B2
9280985 Tawada Mar 2016 B2
9286908 Zhang Mar 2016 B2
9294839 Lambert Mar 2016 B2
9301049 Elko Mar 2016 B2
D754103 Fischer Apr 2016 S
9307326 Elko Apr 2016 B2
9319532 Bao Apr 2016 B2
9319799 Salmon Apr 2016 B2
9326060 Nicholson Apr 2016 B2
D756502 Lee May 2016 S
9330673 Cho May 2016 B2
9338301 Pocino May 2016 B2
9338549 Haulick May 2016 B2
9354310 Visser May 2016 B2
9357080 Beaucoup May 2016 B2
9403670 Schelling Aug 2016 B2
9426598 Walsh Aug 2016 B2
D767748 Nakai Sep 2016 S
9451078 Yang Sep 2016 B2
D769239 Li Oct 2016 S
9462378 Kuech Oct 2016 B2
9473868 Huang Oct 2016 B2
9479627 Rung Oct 2016 B1
9479885 Ivanov Oct 2016 B1
9489948 Chu Nov 2016 B1
9510090 Lissek Nov 2016 B2
9514723 Silfvast Dec 2016 B2
9516412 Shigenaga Dec 2016 B2
9521057 Klingbeil Dec 2016 B2
9549245 Frater Jan 2017 B2
9560446 Chang Jan 2017 B1
9560451 Eichfeld Jan 2017 B2
9565493 Abraham Feb 2017 B2
9578413 Sawa Feb 2017 B2
9578440 Otto Feb 2017 B2
9589556 Gao Mar 2017 B2
9591123 Sorensen Mar 2017 B2
9591404 Chhetri Mar 2017 B1
D784299 Cho Apr 2017 S
9615173 Sako Apr 2017 B2
9628596 Bullough Apr 2017 B1
9635186 Pandey Apr 2017 B2
9635474 Kuster Apr 2017 B2
D787481 Tyss May 2017 S
D788073 Silvera May 2017 S
9640187 Niemisto May 2017 B2
9641688 Pandey May 2017 B2
9641929 Li May 2017 B2
9641935 Ivanov May 2017 B1
9653091 Matsuo May 2017 B2
9653092 Sun May 2017 B2
9655001 Metzger May 2017 B2
9659576 Kotvis May 2017 B1
D789323 Mackiewicz Jun 2017 S
9674604 Deroo Jun 2017 B2
9692882 Mani Jun 2017 B2
9706057 Mani Jul 2017 B2
9716944 Yliaho Jul 2017 B2
9721582 Huang Aug 2017 B1
9734835 Fujieda Aug 2017 B2
9754572 Salazar Sep 2017 B2
9761243 Taenzer Sep 2017 B2
D801285 Timmins Oct 2017 S
9788119 Vilermo Oct 2017 B2
9813806 Graham Nov 2017 B2
9818426 Kotera Nov 2017 B2
9826211 Sawa Nov 2017 B2
9854101 Pandey Dec 2017 B2
9854363 Sladeczek Dec 2017 B2
9860439 Sawa Jan 2018 B2
9866952 Pandey Jan 2018 B2
D811393 Ahn Feb 2018 S
9894434 Rollow, IV Feb 2018 B2
9930448 Chen Mar 2018 B1
9936290 Mohammad Apr 2018 B2
9966059 Ayrapetian May 2018 B1
9973848 Chhetri May 2018 B2
9980042 Benattar May 2018 B1
D819607 Chui Jun 2018 S
D819631 Matsumiya Jun 2018 S
10015589 Ebenezer Jul 2018 B1
10021506 Johnson Jul 2018 B2
10021515 Mallya Jul 2018 B1
10034116 Kadri Jul 2018 B2
10054320 Choi Aug 2018 B2
10061009 Family Aug 2018 B1
10062379 Katuri Aug 2018 B2
10153744 Every Dec 2018 B1
10165386 Lehtiniemi Dec 2018 B2
D841589 Böhmer Feb 2019 S
10206030 Matsumoto Feb 2019 B2
10210882 McCowan Feb 2019 B1
10231062 Pedersen Mar 2019 B2
10244121 Mani Mar 2019 B2
10244219 Sawa Mar 2019 B2
10269343 Wingate Apr 2019 B2
10366702 Morton Jul 2019 B2
10367948 Wells-Rutherford Jul 2019 B2
D857873 Shimada Aug 2019 S
10389861 Mani Aug 2019 B2
10389885 Sun Aug 2019 B2
D860319 Beruto Sep 2019 S
D860997 Jhun Sep 2019 S
D864136 Kim Oct 2019 S
10440469 Barnett Oct 2019 B2
D865723 Cho Nov 2019 S
10566008 Thorpe Feb 2020 B2
10602267 Grosche Mar 2020 B2
D883952 Lucas May 2020 S
10650797 Kumar May 2020 B2
D888020 Lyu Jun 2020 S
10728653 Graham Jul 2020 B2
D900070 Lantz Oct 2020 S
D900071 Lantz Oct 2020 S
D900072 Lantz Oct 2020 S
D900073 Lantz Oct 2020 S
D900074 Lantz Oct 2020 S
10827263 Christoph Nov 2020 B2
10863270 O'Neill Dec 2020 B1
10930297 Christoph Feb 2021 B2
10959018 Shi Mar 2021 B1
10979805 Chowdhary Apr 2021 B2
D924189 Park Jul 2021 S
11109133 Lantz Aug 2021 B2
D940116 Cho Jan 2022 S
20010031058 Anderson Oct 2001 A1
20020015500 Belt Feb 2002 A1
20020041679 Beaucoup Apr 2002 A1
20020048377 Vaudrey Apr 2002 A1
20020064158 Yokoyama May 2002 A1
20020064287 Kawamura May 2002 A1
20020069054 Arrowood Jun 2002 A1
20020110255 Killion Aug 2002 A1
20020126861 Colby Sep 2002 A1
20020131580 Smith Sep 2002 A1
20020140633 Rafii Oct 2002 A1
20020146282 Wilkes Oct 2002 A1
20020149070 Sheplak Oct 2002 A1
20020159603 Hirai Oct 2002 A1
20030026437 Janse Feb 2003 A1
20030053639 Beaucoup Mar 2003 A1
20030059061 Tsuji Mar 2003 A1
20030063762 Tajima Apr 2003 A1
20030063768 Cornelius Apr 2003 A1
20030072461 Moorer Apr 2003 A1
20030107478 Hendricks Jun 2003 A1
20030118200 Beaucoup Jun 2003 A1
20030122777 Grover Jul 2003 A1
20030138119 Pocino Jul 2003 A1
20030156725 Boone Aug 2003 A1
20030161485 Smith Aug 2003 A1
20030163326 Maase Aug 2003 A1
20030169888 Subotic Sep 2003 A1
20030185404 Milsap Oct 2003 A1
20030198339 Roy Oct 2003 A1
20030198359 Killion Oct 2003 A1
20030202107 Slattery Oct 2003 A1
20040013038 Kajala Jan 2004 A1
20040013252 Craner Jan 2004 A1
20040076305 Santiago Apr 2004 A1
20040105557 Matsuo Jun 2004 A1
20040125942 Beaucoup Jul 2004 A1
20040175006 Kim Sep 2004 A1
20040202345 Stenberg Oct 2004 A1
20040240664 Freed Dec 2004 A1
20050005494 Way Jan 2005 A1
20050041530 Goudie Feb 2005 A1
20050069156 Haapapuro Mar 2005 A1
20050094580 Kumar May 2005 A1
20050094795 Rambo May 2005 A1
20050149320 Kajala Jul 2005 A1
20050157897 Saltykov Jul 2005 A1
20050175189 Lee Aug 2005 A1
20050175190 Tashev Aug 2005 A1
20050213747 Popovich Sep 2005 A1
20050221867 Zurek Oct 2005 A1
20050238196 Furuno Oct 2005 A1
20050270906 Ramenzoni Dec 2005 A1
20050271221 Cerwin Dec 2005 A1
20050286698 Bathurst Dec 2005 A1
20050286729 Harwood Dec 2005 A1
20060083390 Kaderavek Apr 2006 A1
20060088173 Rodman Apr 2006 A1
20060093128 Oxford May 2006 A1
20060098403 Smith May 2006 A1
20060104458 Kenoyer May 2006 A1
20060109983 Young May 2006 A1
20060151256 Lee Jul 2006 A1
20060159293 Azima Jul 2006 A1
20060161430 Schweng Jul 2006 A1
20060165242 Miki Jul 2006 A1
20060192976 Hall Aug 2006 A1
20060198541 Henry Sep 2006 A1
20060204022 Hooley Sep 2006 A1
20060215866 Francisco Sep 2006 A1
20060222187 Jarrett Oct 2006 A1
20060233353 Beaucoup Oct 2006 A1
20060239471 Mao Oct 2006 A1
20060262942 Oxford Nov 2006 A1
20060269080 Oxford Nov 2006 A1
20060269086 Page Nov 2006 A1
20070006474 Taniguchi Jan 2007 A1
20070009116 Reining Jan 2007 A1
20070019828 Hughes Jan 2007 A1
20070053524 Haulick Mar 2007 A1
20070093714 Beaucoup Apr 2007 A1
20070116255 Derkx May 2007 A1
20070120029 Keung May 2007 A1
20070165871 Roovers Jul 2007 A1
20070230712 Belt Oct 2007 A1
20070253561 Williams Nov 2007 A1
20070269066 Derleth Nov 2007 A1
20080008339 Ryan Jan 2008 A1
20080033723 Jang Feb 2008 A1
20080046235 Chen Feb 2008 A1
20080056517 Algazi Mar 2008 A1
20080101622 Sugiyama May 2008 A1
20080130907 Sudo Jun 2008 A1
20080144848 Buck Jun 2008 A1
20080168283 Penning Jul 2008 A1
20080188965 Bruey Aug 2008 A1
20080212805 Fincham Sep 2008 A1
20080232607 Tashev Sep 2008 A1
20080247567 Kjolerbakken Oct 2008 A1
20080253553 Li Oct 2008 A1
20080253589 Trahms Oct 2008 A1
20080259731 Happonen Oct 2008 A1
20080260175 Elko Oct 2008 A1
20080279400 Knoll Nov 2008 A1
20080285772 Haulick Nov 2008 A1
20090003586 Lai Jan 2009 A1
20090030536 Gur Jan 2009 A1
20090052684 Ishibashi Feb 2009 A1
20090086998 Jeong Apr 2009 A1
20090087000 Ko Apr 2009 A1
20090087001 Jiang Apr 2009 A1
20090094817 Killion Apr 2009 A1
20090129609 Oh May 2009 A1
20090147967 Ishibashi Jun 2009 A1
20090150149 Cutter Jun 2009 A1
20090161880 Hooley Jun 2009 A1
20090169027 Ura Jul 2009 A1
20090173030 Gulbrandsen Jul 2009 A1
20090173570 Levit Jul 2009 A1
20090226004 Soerensen Sep 2009 A1
20090233545 Sutskover Sep 2009 A1
20090237561 Kobayashi Sep 2009 A1
20090254340 Sun Oct 2009 A1
20090274318 Ishibashi Nov 2009 A1
20090287482 Hetherington Nov 2009 A1
20090310794 Ishibashi Dec 2009 A1
20100011644 Kramer Jan 2010 A1
20100034397 Nakadai Feb 2010 A1
20100074433 Zhang Mar 2010 A1
20100111323 Marton May 2010 A1
20100111324 Yeldener May 2010 A1
20100119097 Ohtsuka May 2010 A1
20100123785 Chen May 2010 A1
20100128892 Chen May 2010 A1
20100128901 Herman May 2010 A1
20100131749 Kim May 2010 A1
20100142721 Wada Jun 2010 A1
20100150364 Buck Jun 2010 A1
20100158268 Marton Jun 2010 A1
20100165071 Ishibashi Jul 2010 A1
20100166219 Marton Jul 2010 A1
20100189275 Christoph Jul 2010 A1
20100189299 Grant Jul 2010 A1
20100202628 Meyer Aug 2010 A1
20100208605 Wang Aug 2010 A1
20100215184 Buck Aug 2010 A1
20100215189 Marton Aug 2010 A1
20100217590 Nemer Aug 2010 A1
20100245624 Beaucoup Sep 2010 A1
20100246873 Chen Sep 2010 A1
20100284185 Ngai Nov 2010 A1
20100305728 Aiso Dec 2010 A1
20100314513 Evans Dec 2010 A1
20110002469 Ojala Jan 2011 A1
20110007921 Stewart Jan 2011 A1
20110033063 McGrath Feb 2011 A1
20110038229 Beaucoup Feb 2011 A1
20110096136 Liu Apr 2011 A1
20110096631 Kondo Apr 2011 A1
20110096915 Nemer Apr 2011 A1
20110164761 McCowan Jul 2011 A1
20110194719 Frater Aug 2011 A1
20110211706 Tanaka Sep 2011 A1
20110235821 Okita Sep 2011 A1
20110268287 Ishibashi Nov 2011 A1
20110311064 Teutsch Dec 2011 A1
20110311085 Stewart Dec 2011 A1
20110317862 Hosoe Dec 2011 A1
20120002835 Stewart Jan 2012 A1
20120014049 Ogle Jan 2012 A1
20120027227 Kok Feb 2012 A1
20120076316 Zhu Mar 2012 A1
20120080260 Stewart Apr 2012 A1
20120093344 Sun Apr 2012 A1
20120117474 Miki May 2012 A1
20120128160 Kim May 2012 A1
20120128175 Visser May 2012 A1
20120155688 Wilson Jun 2012 A1
20120155703 Hernandez-Abrego Jun 2012 A1
20120163625 Siotis Jun 2012 A1
20120169826 Jeong Jul 2012 A1
20120177219 Mullen Jul 2012 A1
20120182429 Forutanpour Jul 2012 A1
20120207335 Spaanderman Aug 2012 A1
20120224709 Keddem Sep 2012 A1
20120243698 Elko Sep 2012 A1
20120262536 Chen Oct 2012 A1
20120288079 Burnett Nov 2012 A1
20120288114 Duraiswami Nov 2012 A1
20120294472 Hudson Nov 2012 A1
20120327115 Chhetri Dec 2012 A1
20120328142 Horibe Dec 2012 A1
20130002797 Thapa Jan 2013 A1
20130004013 Stewart Jan 2013 A1
20130015014 Stewart Jan 2013 A1
20130016847 Steiner Jan 2013 A1
20130028451 De Roo Jan 2013 A1
20130029684 Kawaguchi Jan 2013 A1
20130034241 Pandey Feb 2013 A1
20130039504 Pandey Feb 2013 A1
20130083911 Bathurst Apr 2013 A1
20130094689 Tanaka Apr 2013 A1
20130101141 McElveen Apr 2013 A1
20130136274 Aehgren May 2013 A1
20130142343 Matsui Jun 2013 A1
20130147835 Lee Jun 2013 A1
20130156198 Kim Jun 2013 A1
20130182190 McCartney Jul 2013 A1
20130206501 Yu Aug 2013 A1
20130216066 Yerrace Aug 2013 A1
20130226593 Magnusson Aug 2013 A1
20130251181 Stewart Sep 2013 A1
20130264144 Hudson Oct 2013 A1
20130271559 Feng Oct 2013 A1
20130282372 Visser Oct 2013 A1
20130294616 Mulder Nov 2013 A1
20130297302 Pan Nov 2013 A1
20130304476 Kim Nov 2013 A1
20130304479 Teller Nov 2013 A1
20130329908 Lindahl Dec 2013 A1
20130332156 Tackin Dec 2013 A1
20130336516 Stewart Dec 2013 A1
20130343549 Vemireddy Dec 2013 A1
20140003635 Mohammad Jan 2014 A1
20140010383 Mackey Jan 2014 A1
20140016794 Lu Jan 2014 A1
20140029761 Maenpaa Jan 2014 A1
20140037097 Mark Feb 2014 A1
20140050332 Nielsen Feb 2014 A1
20140072151 Ochs Mar 2014 A1
20140098233 Martin Apr 2014 A1
20140098964 Rosca Apr 2014 A1
20140122060 Kaszczuk May 2014 A1
20140177857 Kuster Jun 2014 A1
20140233777 Tseng Aug 2014 A1
20140233778 Hardiman Aug 2014 A1
20140264654 Salmon Sep 2014 A1
20140265774 Stewart Sep 2014 A1
20140270271 Dehe Sep 2014 A1
20140286518 Stewart Sep 2014 A1
20140295768 Wu Oct 2014 A1
20140301586 Stewart Oct 2014 A1
20140307882 Leblanc Oct 2014 A1
20140314251 Rosca Oct 2014 A1
20140341392 Lambert Nov 2014 A1
20140357177 Stewart Dec 2014 A1
20140363008 Chen Dec 2014 A1
20150003638 Kasai Jan 2015 A1
20150025878 Gowreesunker Jan 2015 A1
20150030172 Gaensler Jan 2015 A1
20150033042 Iwamoto Jan 2015 A1
20150050967 Bao Feb 2015 A1
20150055796 Nugent Feb 2015 A1
20150055797 Nguyen Feb 2015 A1
20150063579 Bao Mar 2015 A1
20150070188 Aramburu Mar 2015 A1
20150078581 Etter Mar 2015 A1
20150078582 Graham Mar 2015 A1
20150097719 Balachandreswaran Apr 2015 A1
20150104023 Bilobrov Apr 2015 A1
20150117672 Christoph Apr 2015 A1
20150118960 Petit Apr 2015 A1
20150126255 Yang May 2015 A1
20150156578 Alexandridis Jun 2015 A1
20150163577 Benesty Jun 2015 A1
20150185825 Mullins Jul 2015 A1
20150189423 Giannuzzi Jul 2015 A1
20150208171 Funakoshi Jul 2015 A1
20150237424 Wilker Aug 2015 A1
20150281832 Kishimoto Oct 2015 A1
20150281833 Shigenaga Oct 2015 A1
20150281834 Takano Oct 2015 A1
20150312662 Kishimoto Oct 2015 A1
20150312691 Virolainen Oct 2015 A1
20150326968 Shigenaga Nov 2015 A1
20150341734 Sherman Nov 2015 A1
20150350621 Sawa Dec 2015 A1
20150358734 Butler Dec 2015 A1
20160011851 Zhang Jan 2016 A1
20160021478 Katagiri Jan 2016 A1
20160029120 Nesta Jan 2016 A1
20160031700 Sparks Feb 2016 A1
20160037277 Matsumoto Feb 2016 A1
20160055859 Finlow-Bates Feb 2016 A1
20160080867 Nugent Mar 2016 A1
20160088392 Huttunen Mar 2016 A1
20160100092 Bohac Apr 2016 A1
20160105473 Klingbeil Apr 2016 A1
20160111109 Tsujikawa Apr 2016 A1
20160127527 Mani May 2016 A1
20160134928 Ogle May 2016 A1
20160142548 Pandey May 2016 A1
20160142814 Deroo May 2016 A1
20160142815 Norris May 2016 A1
20160148057 Oh May 2016 A1
20160150315 Tzirkel-Hancock May 2016 A1
20160150316 Kubota May 2016 A1
20160155455 Ojanperä Jun 2016 A1
20160165340 Benattar Jun 2016 A1
20160173976 Podhradsky Jun 2016 A1
20160173978 Li Jun 2016 A1
20160189727 Wu Jun 2016 A1
20160192068 Ng Jun 2016 A1
20160196836 Yu Jul 2016 A1
20160234593 Matsumoto Aug 2016 A1
20160249132 Oliaei Aug 2016 A1
20160275961 Yu Sep 2016 A1
20160295279 Srinivasan Oct 2016 A1
20160300584 Pandey Oct 2016 A1
20160302002 Lambert Oct 2016 A1
20160302006 Pandey Oct 2016 A1
20160323667 Shumard Nov 2016 A1
20160323668 Abraham Nov 2016 A1
20160330545 McElveen Nov 2016 A1
20160337523 Pandey Nov 2016 A1
20160353200 Bigeh Dec 2016 A1
20160357508 Moore Dec 2016 A1
20170019744 Matsumoto Jan 2017 A1
20170064451 Park Mar 2017 A1
20170105066 McLaughlin Apr 2017 A1
20170134849 Pandey May 2017 A1
20170134850 Graham May 2017 A1
20170164101 Rollow, IV Jun 2017 A1
20170180861 Chen Jun 2017 A1
20170206064 Breazeal Jul 2017 A1
20170230748 Shumard Aug 2017 A1
20170264999 Fukuda Sep 2017 A1
20170303887 Richmond Oct 2017 A1
20170308352 Kessler Oct 2017 A1
20170374454 Bernardini Dec 2017 A1
20180083848 Siddiqi Mar 2018 A1
20180102135 Ebenezer Apr 2018 A1
20180102136 Varma Apr 2018 A1
20180109873 Xiang Apr 2018 A1
20180115799 Thiele Apr 2018 A1
20180160224 Graham Jun 2018 A1
20180196585 Densham Jul 2018 A1
20180219922 Bryans Aug 2018 A1
20180227666 Barnett Aug 2018 A1
20180292079 Branham Oct 2018 A1
20180310096 Shumard Oct 2018 A1
20180313558 Byers Nov 2018 A1
20180338205 Abraham Nov 2018 A1
20180359565 Kim Dec 2018 A1
20190042187 Truong Feb 2019 A1
20190166424 Harney May 2019 A1
20190215540 Nicol Jul 2019 A1
20190230436 Tsingos Jul 2019 A1
20190259408 Freeman Aug 2019 A1
20190268683 Miyahara Aug 2019 A1
20190295540 Grima Sep 2019 A1
20190295569 Wang Sep 2019 A1
20190319677 Hansen Oct 2019 A1
20190371354 Lester Dec 2019 A1
20190373362 Ansai Dec 2019 A1
20190385629 Moravy Dec 2019 A1
20190387311 Schultz Dec 2019 A1
20200015021 Leppanen Jan 2020 A1
20200021910 Rollow, IV Jan 2020 A1
20200037068 Barnett Jan 2020 A1
20200068297 Rollow, IV Feb 2020 A1
20200100009 Lantz Mar 2020 A1
20200100025 Shumard Mar 2020 A1
20200137485 Yamakawa Apr 2020 A1
20200145753 Rollow, IV May 2020 A1
20200152218 Kikuhara May 2020 A1
20200162618 Enteshari May 2020 A1
20200228663 Wells-Rutherford Jul 2020 A1
20200251119 Yang Aug 2020 A1
20200275204 Labosco Aug 2020 A1
20200278043 Cao Sep 2020 A1
20200288237 Abraham Sep 2020 A1
20210012789 Husain Jan 2021 A1
20210021940 Petersen Jan 2021 A1
20210044881 Lantz Feb 2021 A1
20210051397 Veselinovic Feb 2021 A1
20210098014 Tanaka Apr 2021 A1
20210098015 Pandey Apr 2021 A1
20210120335 Veselinovic Apr 2021 A1
20210200504 Park Jul 2021 A1
20210375298 Zhang Dec 2021 A1
Foreign Referenced Citations (150)
Number Date Country
2359771 Apr 2003 CA
2475283 Jan 2005 CA
2505496 Oct 2006 CA
2838856 Dec 2012 CA
2846323 Sep 2014 CA
1780495 May 2006 CN
101217830 Jul 2008 CN
101833954 Sep 2010 CN
101860776 Oct 2010 CN
101894558 Nov 2010 CN
102646418 Aug 2012 CN
102821336 Dec 2012 CN
102833664 Dec 2012 CN
102860039 Jan 2013 CN
104036784 Sep 2014 CN
104053088 Sep 2014 CN
104080289 Oct 2014 CN
104347076 Feb 2015 CN
104581463 Apr 2015 CN
105355210 Feb 2016 CN
105548998 May 2016 CN
106162427 Nov 2016 CN
106251857 Dec 2016 CN
106851036 Jun 2017 CN
107221336 Sep 2017 CN
107534725 Jan 2018 CN
108172235 Jun 2018 CN
109087664 Dec 2018 CN
208190895 Dec 2018 CN
109727604 May 2019 CN
110010147 Jul 2019 CN
306391029 Mar 2021 CN
2941485 Apr 1981 DE
0077546430001 Mar 2020 EM
0381498 Aug 1990 EP
0594098 Apr 1994 EP
0869697 Oct 1998 EP
1180914 Feb 2002 EP
1184676 Mar 2002 EP
0944228 Jun 2003 EP
1439526 Jul 2004 EP
1651001 Apr 2006 EP
1727344 Nov 2006 EP
1906707 Apr 2008 EP
1952393 Aug 2008 EP
1962547 Aug 2008 EP
2133867 Dec 2009 EP
2159789 Mar 2010 EP
2197219 Jun 2010 EP
2360940 Aug 2011 EP
2710788 Mar 2014 EP
2721837 Apr 2014 EP
2772910 Sep 2014 EP
2778310 Sep 2014 EP
2942975 Nov 2015 EP
2988527 Feb 2016 EP
3131311 Feb 2017 EP
2393601 Mar 2004 GB
2446620 Aug 2008 GB
S63144699 Jun 1988 JP
H01260967 Oct 1989 JP
H0241099 Feb 1990 JP
H05260589 Oct 1993 JP
H07336790 Dec 1995 JP
3175622 Jun 2001 JP
2003060530 Feb 2003 JP
2003087890 Mar 2003 JP
2004349806 Dec 2004 JP
2004537232 Dec 2004 JP
2005323084 Nov 2005 JP
2006094389 Apr 2006 JP
2006101499 Apr 2006 JP
4120646 Aug 2006 JP
4258472 Aug 2006 JP
4196956 Sep 2006 JP
2006340151 Dec 2006 JP
4760160 Jan 2007 JP
4752403 Mar 2007 JP
2007089058 Apr 2007 JP
4867579 Jun 2007 JP
2007208503 Aug 2007 JP
2007228069 Sep 2007 JP
2007228070 Sep 2007 JP
2007274131 Oct 2007 JP
2007274463 Oct 2007 JP
2007288679 Nov 2007 JP
2008005347 Jan 2008 JP
2008042754 Feb 2008 JP
2008154056 Jul 2008 JP
2008259022 Oct 2008 JP
2008263336 Oct 2008 JP
2008312002 Dec 2008 JP
2009206671 Sep 2009 JP
2010028653 Feb 2010 JP
2010114554 May 2010 JP
2010268129 Nov 2010 JP
2011015018 Jan 2011 JP
4779748 Sep 2011 JP
2012165189 Aug 2012 JP
5028944 Sep 2012 JP
5139111 Feb 2013 JP
5306565 Oct 2013 JP
5685173 Mar 2015 JP
2016051038 Apr 2016 JP
2016051038 Apr 2016 JP
100298300 May 2001 KR
100901464 Jun 2009 KR
100960781 Jun 2010 KR
1020130033723 Apr 2013 KR
300856915 May 2016 KR
201331932 Aug 2013 TW
I484478 May 2015 TW
1997008896 Mar 1997 WO
1998047291 Oct 1998 WO
2000030402 May 2000 WO
2003073786 Sep 2003 WO
2003088429 Oct 2003 WO
2004027754 Apr 2004 WO
2004090865 Oct 2004 WO
2006049260 May 2006 WO
2006071119 Jul 2006 WO
2006114015 Nov 2006 WO
2006121896 Nov 2006 WO
2007045971 Apr 2007 WO
2008074249 Jun 2008 WO
2008125523 Oct 2008 WO
2009039783 Apr 2009 WO
2009109069 Sep 2009 WO
2010001508 Jan 2010 WO
2010091999 Aug 2010 WO
2010140084 Dec 2010 WO
2010144148 Dec 2010 WO
2011104501 Sep 2011 WO
2012122132 Sep 2012 WO
2012140435 Oct 2012 WO
2012160459 Nov 2012 WO
2012174159 Dec 2012 WO
2013016986 Feb 2013 WO
2013182118 Dec 2013 WO
2014156292 Oct 2014 WO
2016176429 Nov 2016 WO
2016179211 Nov 2016 WO
2017208022 Dec 2017 WO
2018140444 Aug 2018 WO
2018140618 Aug 2018 WO
2018211806 Nov 2018 WO
2019231630 Dec 2019 WO
2020168873 Aug 2020 WO
2020191354 Sep 2020 WO
211843001 Nov 2020 WO
Non-Patent Literature Citations (277)
Entry
“Philips Hue Bulbs and Wireless Connected Lighting System,” Web page https://www.philips-hue.com/en-in, 8 pp, Sep. 23, 2020, retrieved from Internet Archive Wayback Machine, <https://web.archive.org/web/20200923171037/https://www.philips-hue.com/en-in> on Sep. 27, 2021.
“Vsa 2050 II Digitally Steerable Column Speaker,” Web page https://www.rcf.it/en_US/products/product-detail/vsa-2050-ii/972389, 15 pages, Dec. 24, 2018.
Advanced Network Devices, IPSCM Ceiling Tile IP Speaker, Feb. 2011,2 pgs.
Advanced Network Devices, IPSCM Standard 2′ by 2′ Ceiling Tile Speaker, 2 pgs.
Affes, et al., “A Signal Subspace Tracking Algorithm for Microphone Array Processing of Speech,” IEEE Trans. on Speech and Audio Processing, vol. 5, No. 5, Sep. 1997, pp. 425-437.
Affes, et al., “A Source Subspace Tracking Array of Microphones for Double Talk Situations,” 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, May 1996, pp. 909-912.
Affes, et al., “An Algorithm for Multisource Beamforming and Multitarget Tracking,” IEEE Trans. on Signal Processing, vol. 44, No. 6, Jun. 1996, pp. 1512-1522.
Affes, et al., “Robust Adaptive Beamforming via LMS-Like Target Tracking,” Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 1994, pp. IV-269-IV-272.
Ahonen, et al., “Directional Analysis of Sound Field with Linear Microphone Array and Applications in Sound Reproduction,” Audio Engineering Socity, Convention Paper 7329, May 2008, 11 pp.
Alarifi, et al., “Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances,” Sensors 2016, vol. 16, No. 707, 36 pp.
Amazon webpage for Metalfab MFLCRFG (last visited Apr. 22, 2020) available at <https://www.amazon.com/RETURN-FILTERGRILLE-Drop-Ceiling/dp/B0064Q9A7I/ref=sr 12?dchild=1&keywords=drop+ceiling+return+air+grille&qid=1585862723&s=hi&sr=1-2>, 11 pp.
Armstrong “Walls” Catalog available at <https://www.armstrongceilings.com/content/dam/armstrongceilings/commercial/north-america/catalogs/armstrong-ceilings-wallsspecifiers-reference.pdf>, 2019, 30 pp.
Armstrong Tectum Ceiling & Wall Panels Catalog available at <https://www.armstrongceilings.com/content/dam/armstrongceilings/commercial/north-america/brochures/tectum-brochure.pdf>, 2019, 16 pp.
Armstrong Woodworks Concealed Catalog available at <https://sweets.construction.com/swts_content_files/3824/442581.pdf>, 2014, 6 pp.
Armstrong Woodworks Walls Catalog available at <https://www.armstrongceilings.com/pdbupimagesclg/220600.pdf/download/data-sheet-woodworks-walls.pdf>, 2019, 2 pp.
Armstrong World Industries, Inc., I-Ceilings Sound Systems Speaker Panels, 2002, 4 pgs.
Armstrong, Acoustical Design: Exposed Structure, available at <https://www.armstrongceilings.com/pdbupimagesclg/217142.pdf/download/acoustical-design-exposed-structurespaces-brochure.pdf>, 2018, 19 pp.
Armstrong, Ceiling Systems, Brochure page for Armstrong Softlook, 1995, 2 pp.
Armstrong, Excerpts from Armstrong 2011-2012 Ceiling Wall Systems Catalog, available at <https://web.archive.org/web/20121116034120/http://www.armstrong.com/commceilingsna/en_us/pdf/ceilings_catalog_screen-2011.pdf>, as early as 2012, 162 pp.
Armstrong, i-Ceilings, Brochure, 2009, 12 pp.
Arnold, et al., “A Directional Acoustic Array Using Silicon Micromachined Piezoresistive Microphones,” Journal of the Acoustical Society of America, 113(1), Jan. 2003, 10 pp.
Atlas Sound, I128SYSM IP Compliant Loudspeaker System with Microphone Data Sheet, 2009, 2 pgs.
Atlas Sound, 1′X2′ IP Speaker with Micophone for Suspended Ceiling Systems, https://www.atlasied.com/i128sysm, retrieved Oct. 25, 2017, 5 pgs.
Audio Technica, ES945 Omnidirectional Condenser Boundary Microphones, https://eu.audio-technica.com/resources/ES945%20Specifications.pdf, 2007, 1 pg.
Audix Microphones, Audix Introduces Innovative Ceiling Mies, http://audixusa.com/docs_12/latest_news/EFplFkAAkIOtSdolke.shtml, Jun. 2011, 6 pgs.
Audix Microphones, M70 Flush Mount Ceiling Mic, May 2016, 2 pgs.
Automixer Gated, Information Sheet, MIT, Nov. 2019, 9 pp.
AVNetwork, “Top Five Conference Room Mic Myths,” Feb. 25, 2015, 14 pp.
Beh, et al., “Combining Acoustic Echo Cancellation and Adaptive Beamforming for Achieving Robust Speech Interface in Mobile Robot,” 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 2008, pp. 1693-1698.
Benesty, et al., “A New Class of Doubletalk Detectors Based on Cross-Correlation,” IEEE Transactions on Speech and Audio Processing, vol. 8, No. 2, Mar. 2000, pp. 168-172.
Benesty, et al., “Adaptive Algorithms for Mimo Acoustic Echo Cancellation,” AI2 Allen Institute for Artifical Intelligence, 2003.
Benesty, et al., “Differential Beamforming,” Fundamentals of Signal Enhancement and Array Signal Processing, First Edition, 2017, 39 pp.
Benesty, et al., “Frequency-Domain Adaptive Filtering Revisited, Generalization to the Multi-Channel Case, and Application to Acoustic Echo Cancellation,” 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing Proceedings, Jun. 2000, pp. 789-792.
Benesty, et. al., “Microphone Array Signal Processing,” Springer, 2010, 20 pp.
Berkun, et al., “Combined Beamformers for Robust Broadband Regularized Superdirective Beamforming,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 23, No. 5, May 2015, 10 pp.
Beyer Dynamic, Classis BM 32-33-34 DE-EN-FR 2016, 1 pg.
Beyer Dynamic, Classis-BM-33-PZ A1, 2013, 1 pg.
BNO055, Intelligent 9-axis absolute orientation sensor, Data sheet, Bosch, Nov. 2020, 118 pp.
Boyd, et al., Convex Optimization, Mar. 15, 1999, 216 pgs.
Brandstein, et al., “Microphone Arrays: Signal Processing Techniques and Applications,” Digital Signal Processing, Springer-Verlag Berlin Heidelberg, 2001, 401 pgs.
Brooks, et al., “A Quantitative Assessment of Group Delay Methods for Identifying Glottal Closures in Voiced Speech,” IEEE Transaction on Audio, Speech, and Language Processing, vol. 14, No. 2, Mar. 2006, 11 pp.
Bruel & Kjaer, by J.J. Christensen and J. Hald, Technical Review: Beamforming, No. 1, 2004, 54 pgs.
BSS Audio, Soundweb London Application Guides, 2010, 120 pgs.
Buchner, et al., “An Acoustic Human-Machine Interface with Multi-Channel Sound Reproduction,” IEEE Fourth Workshop on Multimedia Signal Processing, Oct. 2001, pp. 359-364.
Buchner, et al., “An Efficient Combination of Multi-Channel Acoustic Echo Cancellation with a Beamforming Microphone Array,” International Workshop on Hands-Free Speech Communication (HSC2001), Apr. 2001, pp. 55-58.
Buchner, et al., “Full-Duplex Communication Systems Using Loudspeaker Arrays and Microphone Arrays,” IEEE International Conference on Multimedia and Expo, Aug. 2002, pp. 509-512.
Buchner, et al., “Generalized Multichannel Frequency-Domain Adaptive Filtering: Efficient Realization and Application to Hands-Free Speech Communication,” Signal Processing 85, 2005, pp. 549-570.
Buchner, et al., “Multichannel Frequency-Domain Adaptive Filtering with Application to Multichannel Acoustic Echo Cancellation,” Adaptive Signal Processing, 2003, pp. 95-128.
Buck, “Aspects of First-Order Differential Microphone Arrays in the Presence of Sensor Imperfections,” Transactions on Emerging Telecommunications Technologies, 13.2, 2002, 8 pp.
Buck, et al., “First Order Differential Microphone Arrays for Automotive Applications,” 7th International Workshop on Acoustic Echo and Noise Control, Darmstadt University of Technology, Sep. 10-13, 2001, 4 pp.
Buck, et al., “Self-Calibrating Microphone Arrays for Speech Signal Acquisition: A Systematic Approach,” Signal Processing, vol. 86, 2006, pp. 1230-1238.
Burton, et al., “A New Structure for Combining Echo Cancellation and Beamforming in Changing Acoustical Environments,” IEEE International Conference on Acoustics, Speech and Signal Processing, 2007, pp. 1-77-1-80.
BZ-3a Installation Instructions, XEDIT Corporation, Available at <chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Fwww.servoreelers.com%2Fmt-content%2Fuploads%2F2017%2F05%2Fbz-a-3universal-2017c.pdf&clen=189067&chunk=true>, 1 p.
Cabral, et al., Glottal Spectral Separation for Speech Synthesis, IEEE Journal of Selected Topics in Signal Processing, 2013, 15 pp.
Campbell, “Adaptive Beamforming Using a Microphone Array for Hands-Free Telephony,” Virginia Polytechnic Institute and State University, Feb. 1999, 154 pgs.
Canetto, et al., “Speech Enhancement Systems Based on Microphone Arrays,” VI Conference of the Italian Society for Applied and Industrial Mathematics, May 27, 2002, 9 pp.
Cao, “Survey on Acoustic Vector Sensor and its Applications in Signal Processing” Proceedings of the 33rd Chinese Control Conference, Jul. 2014, 17 pp.
Cech, et al., “Active-Speaker Detection and Localization with Microphones and Cameras Embedded into a Robotic Head,” IEEE-RAS International Conference on Humanoid Robots, Oct. 2013, pp. 203-210.
Chan, et al., “Uniform Concentric Circular Arrays with Frequency-Invariant Characteristics-Theory, Design, Adaptive Beamforming and DOA Estimation,” IEEE Transactions on Signal Processing, vol. 55, No. 1, Jan. 2007, pp. 165-177.
Chau, et al., “A Subband Beamformer on an Ultra Low-Power Miniature DSP Platform,” 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, 4 pp.
Chen, et al., “A General Approach to the Design and Implementation of Linear Differential Microphone Arrays,” Signal and Information Processing Association Annual Summit and Conference, 2013 Asia-Pacific, IEEE, 7 pp.
Chen, et al., “Design and Implementation of Small Microphone Arrays,” PowerPoint Presentation, Northwestern Polytechnical University and Institut national de la recherche scientifique, Jan. 1, 2014, 56 pp.
Chen, et al., “Design of Robust Broadband Beamformers with Passband Shaping Characteristics using Tikhonov Regularization,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 17, No. 4, May 2009, pp. 565-681.
Chou, “Frequency-Independent Beamformer with Low Response Error,” 1995 International Conference on Acoustics, Speech, and Signal Processing, pp. 2995-2998, May 9, 1995, 4 pp.
Chu, “Desktop Mic Array for Teleconferencing,” 1995 International Conference on Acoustics, Speech, and Signal Processing, May 1995, pp. 2999-3002.
Circuit Specialists webpage for an aluminum enclosure, available at <https://www.circuitspecialists.com/metal-instrument-enclosure-la7.html?otaid=gpl&gclid=EAIalQobChMI2JTw-Ynm6AIVgbblCh3F4QKuEAkYBiABEgJZMPD_BwE>, 3 pp, 2019.
ClearOne Introduces Ceiling Microphone Array With Built-In Dante Interface, Press Release; GlobeNewswire, Jan. 8, 2019, 2 pp.
ClearOne Launches Second Generation of its Groundbreaking Beamforming Microphone Array, Press Release, Acquire Media, Jun. 1, 2016, 2 pp.
ClearOne to Unveil Beamforming Microphone Array with Adaptive Steering and Next Generation Acoustic Echo Cancellation Technology, Press Release, InfoComm, Jun. 4, 2012, 1 p.
ClearOne, Clearly Speaking Blog, “Advanced Beamforming Microphone Array Technology for Corporate Conferencing Systems,” Nov. 11, 2013, 5 pp., http://www.clearone.com/blog/advanced-beamforming-microphone-array-technology-for-corporate-conferencing-systems/.
ClearOne, Beamforming Microphone Array, Mar. 2012, 6 pgs.
ClearOne, Ceiling Microphone Array Installation Manual, Jan. 9, 2012, 20 pgs.
ClearOne, Converge/Converge Pro, Manual, 2008, 51 pp.
ClearOne, Professional Conferencing Microphones, Brochure, Mar. 2015, 3 pp.
Coleman, “Loudspeaker Array Processing for Personal Sound Zone Reproduction,” Centre for Vision, Speech and Signal Processing, 2014, 239 pp.
Cook, et al., An Alternative Approach to Interpolated Array Processing for Uniform Circular Arrays, Asia-Pacific Conference on Circuits and Systems, 2002, pp. 411-414.
Cox, et al., “Robust Adaptive Beamforming,” IEEE Trans. Acoust., Speech, and Signal Processing, vol. ASSP-35, No. 10, Oct. 1987, pp. 1365-1376.
CTG Audio, Ceiling Microphone CTG CM-01, Jun. 5, 2008, 2 pgs.
CTG Audio, CM-01 & CM-02 Ceiling Microphones Specifications, 2 pgs.
CTG Audio, CM-01 & CM-02 Ceiling Microphones, 2017, 4 pgs.
CTG Audio, CTG FS-400 and RS-800 with “Beamforming” Technology, Datasheet, as early as 2009, 2 pp.
CTG Audio, CTG User Manual for the FS-400/800 Beamforming Mixers, Nov. 2008, 26 pp.
CTG Audio, Expand Your IP Teleconferencing to Full Room Audio, Obtained from website htt.)://www ct audio com/ex and-, our-i - teleconforencino-to-ful-room-audio-while-conquennc.1-echo-cancelation-issues Mull, 2014.
CTG Audio, Frequently Asked Questions, as early as 2009, 2 pp.
CTG Audio, Installation Manual and User Guidelines for the Soundman SM 02 System, May 2001, 29 pp.
CTG Audio, Installation Manual, Nov. 21, 2008, 25 pgs.
CTG Audio, Introducing the CTG FS-400 and FS-800 with Beamforming Technology, as early as 2008, 2 pp.
CTG Audio, Meeting the Demand for Ceiling Mies in the Enterprise 5 Best Practices, Brochure, 2012, 9 pp.
CTG Audio, White on White—Introducing the CM-02 Ceiling Microphone, https://ctgaudio.com/white-on-white-introducing-the-cm-02-ceiling-microphone/, Feb. 20, 2014, 3 pgs.
Dahl et al., Acoustic Echo Cancelling with Microphone Arrays, Research Report Mar. 1995, Univ. of Karlskrona/Ronneby, Apr. 1995, 64 pgs.
Decawave, Application Note: APR001, UWB Regulations, a Summary of Worldwide Telecommunications Regulations governing the use of Ultra-Wideband radio, Version 1.2, 2015, 63 pp.
Desiraju, et al., “Efficient Multi-Channel Acoustic Echo Cancellation Using Constrained Sparse Filter Updates in the Subband Domain,” Acoustic Speech Enhancement Research, Sep. 2014, 4 pp.
DiBiase et al., Robust Localization in Reverberent Rooms, in Brandstein, ed., Microphone Arrays: Techniques and Applications, 2001, Springer-Verlag Berlin Heidelberg, pp. 157-180.
Diethorn, “Audio Signal Processing for Next-Generation Multimedia Communication Systems,” Chapter 4, 2004, 9 pp.
Digikey webpage for Converta box (last visited Apr. 22, 2020) <https://www.digikey.com/product-detail/en/bud-industries/CU-452-A/377-1969-ND/439257?utm_adgroup=Boxes&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Boxes%2C%20Enclosures%2C%20Racks_NEW&utm_term=&utm_content=Boxes&gclid=EAIalQobChMI2JTw-Ynm6AIVgbblCh3F4QKuEAkYCSABEgKybPD_BwE>, 3 pp.
Digikey webpage for Pomona Box (last visited Apr. 22, 2020) available at <https://www.digikey.com/product-detail/en/pomonaelectronics/3306/501-2054-ND/736489>, 2 pp.
Digital Wireless Conference System, MCW-D 50, Beyerdynamic Inc., 2009, 18 pp.
Do et al., A Real-Time SRP-PHAT Source Location Implementation using Stochastic Region Contraction (SRC) on a Large-Aperture Microphone Array, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP '07, , Apr. 2007, pp. I-121-I-124.
Dominguez, et al., “Towards an Environmental Measurement Cloud: Delivering Pollution Awareness to the Public,” International Journal of Distributed Sensor Networks, vol. 10, Issue 3, Mar. 31, 2014, 17 pp.
Dormehl, “HoloLens concept lets you control your smart home via augmented reality,” digitaltrends, Jul. 26, 2016, 12 pp.
Double Condenser Microphone SM 69, Datasheet, Georg Neumann GmbH, available at <https://ende.neumann.com/product_files/7453/download>, 8 pp.
Eargle, “The Microphone Handbook,” Elar Publ. Co., 1st ed., 1981, 4 pp.
Enright, Notes From Logan, June edition of Scanlines, Jun. 2009, 9 pp.
Fan, et al., “Localization Estimation of Sound Source by Microphones Array,” Procedia Engineering 7, 2010, pp. 312-317.
Firoozabadi, et al., “Combination of Nested Microphone Array and Subband Processing for Multiple Simultaneous Speaker Localization,” 6th International Symposium on Telecommunications, Nov. 2012, pp. 907-912.
Flanagan et al., Autodirective Microphone Systems, Acustica, vol. 73, 1991, pp. 58-71.
Flanagan, et al., “Computer-Steered Microphone Arrays for Sound Transduction in Large Rooms,” J. Acoust. Soc. Am. 78 (5), Nov. 1985, pp. 1508-1518.
Fohhn Audio New Generation of Beam Steering Systems Available Now, audioXpress Staff, May 10, 2017, 8 pp.
Fox, et al., “A Subband Hybrid Beamforming for In-Car Speech Enhancement,” 20th European Signal rocessing Conference, Aug. 2012, 5 pp.
Frost, III, An Algorithm for Linearly Constrained Adaptive Array Processing, Proc. IEEE, vol. 60, No. 8, Aug. 1972, pp. 926-935.
Gannot et al., Signal Enhancement using Beamforming and Nonstationarity with Applications to Speech, IEEE Trans. on Signal Processing, vol. 49, No. 8, Aug. 2001, pp. 1614-1626.
Gansler et al., A Double-Talk Detector Based on Coherence, IEEE Transactions on Communications, vol. 44, No. 11, Nov. 1996, pp. 1421-1427.
Gazor et al., Robust Adaptive Beamforming via Target Tracking, IEEE Transactions on Signal Processing, vol. 44, No. 6, Jun. 1996, pp. 1589-1593.
Gazor et al., Wideband Multi-Source Beamforming with Adaptive Array Location Calibration and Direction Finding, 1995 International Conference on Acoustics, Speech, and Signal Processing, May 1995, pp. 1904-1907.
Gentner Communications Corp., AP400 Audio Perfect 400 Audioconferencing System Installation & Operation Manual, Nov. 1998, 80 pgs.
Gentner Communications Corp., XAP 800 Audio Conferencing System Installation & Operation Manual, Oct. 2001, 152 pgs.
Gil-Cacho et al., Multi-Microphone Acoustic Echo Cancellation Using Multi-Channel Warped Linear Prediction of Common Acoustical Poles, 18th European Signal Processing Conference, Aug. 2010, pp. 2121-2125.
Giuliani, et al., “Use of Different Microphone Array Configurations for Hands-Free Speech Recognition in Noisy and Reverberant Environment,” IRST—Istituto per la Ricerca Scientifica e Tecnologica, Sep. 22, 1997, 4 pp.
Gritton et al., Echo Cancellation Algorithms, IEEE ASSP Magazine, vol. 1, issue 2, Apr. 1984, pp. 30-38.
Hald, et al., “A class of optimal broadband phased array geometries designed for easy construction,” 2002 Int'l Congress & Expo, on Noise Control Engineering, Aug. 2002, 6 pp.
Hamalainen, et al., “Acoustic Echo Cancellation for Dynamically Steered Microphone Array Systems,” 2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Oct. 2007, pp. 58-61.
Hayo, Virtual Controls for Real Life, Web page downloaded from https://hayo.io/ on Sep. 18, 2019, 19 pp.
Herbordt et al., A Real-time Acoustic Human-Machine Front-End for Multimedia Applications Integrating Robust Adaptive Beamforrning and Stereophonic Acoustic Echo Cancellation, 7th International Conference on Spoken Language Processing, Sep. 2002, 4 pgs.
Herbordt et al., GSAEC—Acoustic Echo Cancellation embedded into the Generalized Sidelobe Canceller, 10th European Signal Processing Conference, Sep. 2000, 5 pgs.
Herbordt et al., Multichannel Bin-Wise Robust Frequency-Domain Adaptive Filtering and Its Application to Adaptive Beamforming, IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, No. 4, May 2007, pp. 1340-1351.
Herbordt, “Combination of Robust Adaptive Beamforming with Acoustic Echo Cancellation for Acoustic Human/Machine Interfaces,” Friedrich-Alexander University, 2003, 293 pgs.
Herbordt, et al., Joint Optimization of LCMV Beamforming and Acoustic Echo Cancellation for Automatic Speech Recognition, IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 2005, pp. III-77-III-80.
Holm, “Optimizing Microphone Arrays for use in Conference Halls,” Norwegian University of Science and Technology, Jun. 2009, 101 pp.
Huang et al., Immersive Audio Schemes: The Evolution of Multiparty Teleconferencing, IEEE Signal Processing Magazine, Jan. 2011, pp. 20-32.
ICONYX Gen5, Product Overview; Renkus-Heinz, Dec. 24, 2018, 2 pp.
International Search Report and Written Opinion for PCT/US2016/022773 dated Jun. 10, 2016.
International Search Report and Written Opinion for PCT/US2016/029751 dated Nov. 28, 2016, 21 pp.
International Search Report and Written Opinion for PCT/US2018/013155 dated Jun. 8, 2018.
International Search Report and Written Opinion for PCT/US2019/031833 dated Jul. 24, 2019, 16 PP-.
International Search Report and Written Opinion for PCT/US2019/033470 dated Jul. 31, 2019, 12 pp.
International Search Report and Written Opinion for PCT/US2019/051989 dated Jan. 10, 2020, 15 pp.
International Search Report and Written Opinion for PCT/US2020/024063 dated Aug. 31, 2020, 18 pp.
International Search Report and Written Opinion for PCT/US2020/035185 dated Sep. 15, 2020, 11 pp.
International Search Report and Written Opinion for PCT/US2020/058385 dated Mar. 31, 2021, 20 pp.
International Search Report and Written Opinion for PCT/US2021/070625 dated Sep. 17, 2021, 17 pp.
International Search Report for PCT/US2020/024005 dated Jun. 12, 2020, 12 pp.
Invensense, “Microphone Array Beamforming,” Application Note AN-1140, Dec. 31, 2013, 12 pp.
Invensense, Recommendations for Mounting and Connecting InvenSense MEMS Microphones, Application Note AN-1003, 2013, 11 pp.
Ishii et al., Investigation on Sound Localization using Multiple Microphone Arrays, Reflection and Spatial Information, Japanese Society for Artificial Intelligence, JSAI Technical Report, SIG-Challenge-B202-11, 2012, pp. 64-69.
Ito et al., Aerodynamic/Aeroacoustic Testing in Anechoic Closed Test Sections of Low-speed Wind Tunnels, 16th AIAA/CEAS Aeroacoustics Conference, 2010, 11 pgs.
Johansson et al., Robust Acoustic Direction of Arrival Estimation using Root-SRP-PHAT, a Realtime Implementation, IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 2005, 4 pgs.
Johansson, et al., Speaker Localisation using the Far-Field SRP-PHAT in Conference Telephony, 2002 International Symposium on Intelligent Signal Processing and Communication Systems, 5 pgs.
Johnson, et al., “Array Signal Processing: Concepts and Techniques,” p. 59, Prentice Hall, 1993, 3 pp.
Julstrom et al., Direction-Sensitive Gating: A New Approach to Automatic Mixing, J. Audio Eng. Soc., vol. 32, No. 7/8, Jul./Aug. 1984, pp. 490-506.
Kahrs, Ed., The Past, Present, and Future of Audio Signal Processing, IEEE Signal Processing Magazine, Sep. 1997, pp. 30-57.
Kallinger et al., Multi-Microphone Residual Echo Estimation, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 2003, 4 pgs.
Kammeyer, et al., New Aspects of Combining Echo Cancellers with Beamformers, IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 2005, pp. III-137-III-140.
Kellermann, A Self-Steering Digital Microphone Array, 1991 International Conference on Acoustics, Speech, and Signal Processing, Apr. 1991, pp. 3581-3584.
Kellermann, Acoustic Echo Cancellation for Beamforming Microphone Arrays, in Brandstein, ed., Microphone Arrays: Techniques and Applications, 2001, Springer-Verlag Berlin Heidelberg, pp. 281-306.
Kellermann, Integrating Acoustic Echo Cancellation with Adaptive Beamforming Microphone Arrays, Forum Acusticum, Berlin, Mar. 1999, pp. 1-4.
Kellermann, Strategies for Combining Acoustic Echo Cancellation and Adaptive Beamforming Microphone Arrays, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 1997, 4 pgs.
Klegon, “Achieve Invisible Audio with the MXA910 Ceiling Array Microphone,” Jun. 27, 2016, 10 pp.
Knapp, et al., The Generalized Correlation Method for Estimation of Time Delay, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-24, No. 4, Aug. 1976, pp. 320-327.
Kobayashi et al., A Hands-Free Unit with Noise Reduction by Using Adaptive Beamformer, IEEE Transactions on Consumer Electronics, vol. 54, No. 1, Feb. 2008, pp. 116-122.
Kobayashi et al., A Microphone Array System with Echo Canceller, Electronics and Communications in Japan, Part 3, vol. 89, No. 10, Feb. 2, 2006, pp. 23-32.
Kolund{hacek over (z)}ija, et al., “Baffled circular loudspeaker array with broadband high directivity,” 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, 2010, pp. 73-76.
Lai, et al., “Design of Robust Steerable Broadband Beamformers with Spiral Arrays and the Farrow Filter Structure,” Proc. Intl. Workshop Acoustic Echo Noise Control, 2010, 4 pp.
Lebret, et al., Antenna Array Pattern Synthesis via Convex Cptimization, IEEE Trans. on Signal Processing, vol. 45, No. 3, Mar. 1997, pp. 526-532.
LecNet2 Sound System Design Guide, Lectrosonics, Jun. 2, 2006.
Lectrosonics, LecNet2 Sound System Design Guide, Jun. 2006, 28 pgs.
Lee et al., Multichannel Teleconferencing System with Multispatial Region Acoustic Echo Cancellation, International Workshop on Acoustic Echo and Noise Control (IWAENC2003), Sep. 2003, pp. 51-54.
Li, “Broadband Beamforming and Direction Finding Using Concentric Ring Array,” Ph.D. Dissertation, University of Missouri-Columbia, Jul. 2005, 163 pp.
Lindstrom et al., An Improvement of the Two-Path Algorithm Transfer Logic for Acoustic Echo Cancellation, IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, No. 4, May 2007, pp. 1320-1326.
Liu et al., Adaptive Beamforming with Sidelobe Control: A Second-Order Cone Programming Approach, IEEE Signal Proc. Letters, vol. 10, No. 11, Nov. 2003, pp. 331-334.
Liu, et al., “Frequency Invariant Beamforming in Subbands,” IEEE Conference on Signals, Systems and Computers, 2004, 5 pp.
Liu, et al., “Wideband Beamforming,” Wiley Series on Wireless Communications and Mobile Computing, pp. 143-198, 2010, 297 pp.
Lobo, et al., Applications of Second-Order Cone Programming, Linear Algebra and its Applications 284, 1998, pp. 193-228.
Luo et al., Wideband Beamforming with Broad Nulls of Nested Array, Third Int'l Conf. on Info. Science and Tech., Mar. 23-25, 2013, pp. 1645-1648.
Marquardt et al., A Natural Acoustic Front-End for Interactive TV in the EU-Project DICIT, IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Aug. 2009, pp. 894-899.
Martin, Small Microphone Arrays with Postfilters for Noise and Acoustic Echo Reduction, in Brandstein, ed., Microphone Arrays: Techniques and Applications, 2001, Springer-Verlag Berlin Heidelberg, pp. 255-279.
Maruo et al., On the Optimal Solutions of Beamformer Assisted Acoustic Echo Cancellers, IEEE Statistical Signal Processing Workshop, 2011, pp. 641-644.
Mccowan, Microphone Arrays: A Tutorial, Apr. 2001, 36 pgs.
MFLCRFG Datasheet, Metal_Fab Inc., Sep. 7, 2007, 1 p.
Microphone Array Primer, Shure Question and Answer Page, <https://service.shure.eom/s/article/microphone-array-primer?language=en_US>, Jan. 2019, 5 pp.
Milanovic, et al., “Design and Realization of FPGA Platform for Real Time Acoustic Signal Acquisition and Data Processing” 22nd Telecommunications Forum TELFOR, 2014, 6 pp.
Mohammed, A New Adaptive Beamformer for Optimal Acoustic Echo and Noise Cancellation with Less Computational Load, Canadian Conference on Electrical and Computer Engineering, May 2008, pp. 000123-000128.
Mohammed, A New Robust Adaptive Beamformer for Enhancing Speech Corrupted with Colored Noise, AICCSA, Apr. 2008, pp. 508-515.
Mohammed, Real-time Implementation of an efficient RLS Algorithm based on IIR Filter for Acoustic Echo Cancellation, AICCSA, Apr. 2008, pp. 489-494.
Mohan, et al., “Localization of multiple acoustic sources with small arrays using a coherence test,” Journal Acoustic Soc Am., 123(4), Apr. 2008, 12 pp.
Moulines, et al., “Pitch-Synchronous Waveform Processing Techniques for Text-to-Speech Synthesis Using Diphones,” Speech Communication 9, 1990, 15 pp.
Multichannel Acoustic Echo Cancellation, Obtained from website http://www.buchner-net.com/mcaec.html, Jun. 2011.
Myllyla et al., Adaptive Beamforming Methods for Dynamically Steered Microphone Array Systems, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Mar.-Apr. 2008, pp. 305-308.
New Shure Microflex Advance MXA910 Microphone With Intellimix Audio Processing Provides Greater Simplicity, Flexibility, Clarity, Press Release, Jun. 12, 2019, 4 pp.
Nguyen-Ky, et al., “An Improved Error Estimation Algorithm for Stereophonic Acoustic Echo Cancellation Systems,” 1st International Conference on Signal Processing and Communication Systems, Dec. 17-19, 2007, 5 pp.
Office Action for Taiwan Patent Application No. 105109900 dated May 5, 2017.
Office Action issued for Japanese Patent Application No. 2015-023781 dated Jun. 20, 2016, 4 pp.
Oh, et al., “Hands-Free Voice Communication in an Automobile With a Microphone Array,” 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, Mar. 1992, pp. 1-281-1-284.
Olszewski, et al., “Steerable Highly Directional Audio Beam Loudspeaker,” Interspeech 2005, 4 pp.
Omologo, Multi-Microphone Signal Processing for Distant-Speech Interaction, Human Activity and Vision Summer School (HAVSS), INRIA Sophia Antipolis, Oct. 3, 2012, 79 pgs.
Order, Conduct of the Proceeding, Clearone, Inc. v. Shure Acquisition Holdings, Inc., Nov. 2, 2020, 10 pp.
Pados et al., An Iterative Algorithm for the Computation of the MVDR Filter, IEEE Trans. on Signal Processing, vol. 49, No. 2, Feb. 2001, pp. 290-300.
Palladino, “This App Lets You Control Your Smarthome Lights via Augmented Reality,” Next Reality Mobile AR News, Jul. 2, 2018, 5 pp.
Parikh, et al., “Methods for Mitigating IP Network Packet Loss in Real Time Audio Streaming Applications,” GatesAir, 2014, 6 pp.
Pasha, et al., “Clustered Multi-channel Dereverberation for Ad-hoc Microphone Arrays,” Proceedings of APSIPA Annual Summit and Conference, Dec. 2015, pp. 274-278.
Petitioner's Motion for Sanctions, Clearone, Inc. v. Shure Acquisition Holdings, Inc., Aug. 24, 2020, 20 pp.
Pettersen, “Broadcast Applications for Voice-Activated Microphones,” db, Jul./Aug. 1985, 6 pgs.
Pfeifenberger, et al., “Nonlinear Residual Echo Suppression using a Recurrent Neural Network,” Interspeech 2020, 5 pp.
Phoenix Audio Technologies, “Beamforming and Microphone Arrays—Common Myths”, Apr. 2016, http://info.phnxaudio.com/blog/microphone-arrays-beamforming-myths-1, 19 pp.
Plascore, PCGA-XR1 3003 Aluminum Honeycomb Data Sheet, 2008, 2 pgs.
Polycom Inc., Vortex EF2211/EF2210 Reference Manual, 2003, 66 pgs.
Polycom, Inc., Polycom Soundstructure C16, C12, C8, and SR12 Design Guide, Nov. 2013, 743 pgs.
Polycom, Inc., Setting Up the Polycom HDX Ceiling Microphone Array Series, https://support.polycom.com/content/dam/polycom-support/products/Telepresence-and-Video/HDX%20Series/setup-maintenance/en/hdx_ceiling_microphone_array_setting_up.pdf, 2010, 16 pgs.
Polycom, Inc., Vortex EF2241 Reference Manual, 2002, 68 pgs.
Polycom, Inc., Vortex EF2280 Reference Manual, 2001, 60 pp.
Pomona, Model 3306, Datasheet, Jun. 9, 1999, 1 p.
Powers, et al., “Proving Adaptive Directional Technology Works: A Review of Studies,” The Hearing Review, Apr. 6, 2004, 5 pp.
Prime, et al., “Beamforming Array Optimisation Averaged Sound Source Mapping on a Model Wind Turbine,” ResearchGate, Nov. 2014, 10 pp.
Rabinkin et al., Estimation of Wavefront Arrival Delay Using the Cross-Power Spectrum Phase Technique, 132nd Meeting of the Acoustical Society of America, Dec. 1996, pp. 1-10.
Rane Corp., Halogen Acoustic Echo Cancellation Guide, AEC Guide Version 2, Nov. 2013, 16 pgs.
Rao, et al., “Fast LMS/Newton Algorithms for Stereophonic Acoustic Echo Cancelation,” IEEE Transactions on Signal Processing, vol. 57, No. 8, Aug. 2009.
Reuven et al., Joint Acoustic Echo Cancellation and Transfer Function GSC in the Frequency Domain, 23rd IEEE Convention of Electrical and Electronics Engineers in Israel, Sep. 2004, pp. 412-415.
Reuven et al., Joint Noise Reduction and Acoustic Echo Cancellation Using the Transfer-Function Generalized Sidelobe Canceller, Speech Communication, vol. 49, 2007, pp. 623-635.
Reuven, et al., “Multichannel Acoustic Echo Cancellation and Noise Reduction in Reverberant Environments Using the Transfer-Function GSC,” 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, Apr. 2007, 4 pp.
Ristimaki, Distributed Microphone Array System for Two-Way Audio Communication, Helsinki Univ. of Technology, Master's Thesis, Jun. 15, 2009, 73 pgs.
Rombouts et al., An Integrated Approach to Acoustic Noise and Echo Cancellation, Signal Processing 85, 2005, pp. 849-871.
Sällberg, “Faster Subband Signal Processing,” IEEE Signal Processing Magazine, vol. 30, No. 5, Sep. 2013, 6 pp.
Sasaki et al., A Predefined Command Recognition System Using a Ceiling Microphone Array in Noisy Housing Environments, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 2008, pp. 2178-2184.
Sennheiser, New microphone solutions for ceiling and desk installation, https://en-us.sennheiser.com/news-new-microphone-solutions-for-ceiling-and-desk-installation, Feb. 2011, 2 pgs.
Sennheiser, TeamConnect Ceiling, https://en-us.sennheiser.com/conference-meeting-rooms-teamconnect-ceiling, 2017, 7 pgs.
SerDes, Wikipedia article, last edited on Jun. 25, 2018; retrieved on Jun. 27, 2018, 3 pp., https://en.wikipedia.org/wiki/SerDes.
Sessler, et al., “Directional Transducers,” IEEE Transactions on Audio and Electroacoustics, vol. AU-19, No. 1, Mar. 1971, pp. 19-23.
Sessler, et al., “Toroidal Microphones,” Journal of Acoustical Society of America, vol. 46, No. 1, 1969, 10 pp.
Shure AMS Update, vol. 1, No. 1, 1983, 2 pgs.
Shure AMS Update, vol. 1, No. 2, 1983, 2 pgs.
Shure AMS Update, vol. 4, No. 4, 1997, 8 pgs.
Shure Debuts Microflex Advance Ceiling and Table Array Microphones, Press Release, Feb. 9, 2016, 4 pp.
Shure Inc., A910-HCM Hard Ceiling Mount, retrieved from website <http://www.shure.com/en-US/products/accessories/a910hcm> on Jan. 16, 2020, 3 pp.
Shure Inc., Microflex Advance, http://www.shure.com/americas/microflex-advance, 12 pgs.
Shure Inc., MX395 Low Profile Boundary Microphones, 2007, 2 pgs.
Shure Inc., MXA910 Ceiling Array Microphone, http://www.shure.com/americas/products/microphones/microflex-advance/mxa910-ceiling-array-microphone, 7 pp. 2009-2017.
Shure, MXA910 With IntelliMix, Ceiling Array Microphone, available at <https://www.shure.com/en-US/products/microphones/mxa910>, as early as 2020, 12 pp.
Shure, New MXA910 Variant Now Available, Press Release, Dec. 13, 2019, 5 pp.
Shure, Q&A in Response to Recent US Court Ruling on Shure MXA910, Available at <https://www.shure.com/en-US/meta/legal/q-and-a-inresponse-to-recent-us-court-ruling-on-shure-mxa910-response>, as early as 2020, 5 pp.
Shure, RK244G Replacement Screen and Grille, Datasheet, 2013, 1 p.
Shure, The Microflex Advance MXA310 Table Array Microphone, Available at <https://www.shure.com/en-US/products/microphones/mxa310>, as early as 2020, 12 pp.
Signal Processor MRX7-D Product Specifications, Yamaha Corporation, 2016.
Silverman et al., Performance of Real-Time Source-Location Estimators for a Large-Aperture Microphone Array, IEEE Transactions on Speech and Audio Processing, vol. 13, No. 4, Jul. 2005, pp. 593-606.
Sinha, Ch. 9: Noise and Echo Cancellation, in Speech Processing in Embedded Systems, Springer, 2010, pp. 127-142.
SM 69 Stereo Microphone, Datasheet, Georg Neumann GmbH, Available at <https://ende.neumann.com/product_files/6552/download>, 1 p.
Soda et al., Introducing Multiple Microphone Arrays for Enhancing Smart Home Voice Control, The Institute of Electronics, Information and Communication Engineers, Technical Report of IEICE, Jan. 2013, 6 pgs.
Soundweb London Application Guides, BSS Audio, 2010.
Symetrix, Inc., SymNet Network Audio Solutions Brochure, 2008, 32 pgs.
SymNet Network Audio Solutions Brochure, Symetrix, Inc., 2008.
Tan, et al., “Pitch Detection Algorithm: Autocorrelation Method and AMDF,” Department of Computer Engineering, Prince of Songkhla University, Jan. 2003, 6 pp.
Tandon, et al., “An Efficient, Low-Complexity, Normalized LMS Algorithm for Echo Cancellation,” 2nd Annual IEEE Northeast Workshop on Circuits and Systems, Jun. 2004, pp. 161-164.
Tetelbaum et al., Design and Implementation of a Conference Phone Based on Microphone Array Technology, Proc. Global Signal Processing Conference and Expo (GSPx), Sep. 2004, 6 pgs.
Tiete et al., SoundCompass: A Distributed MEMS Microphone Array-Based Sensor for Sound Source Localization, Sensors, Jan. 23, 2014, pp. 1918-1949.
TOACorp., Ceiling Mount Microphone AN-9001 Operating Instructions, http://www.toaelectronics.com/media/an9001_mt1e.pdf, 1 pg.
Togami, et al., “Subband Beamformer Combined with Time-Frequency ICA for Extraction of Target Source Under Reverberant Environments,” 17th European Signal Processing Conference, Aug. 2009, 5 pp.
U.S. Appl. No. 16/598,918, filed Oct. 10, 2019, 50 pp.
Van Compernolle, Switching Adaptive Filters for Enhancing Noisy and Reverberant Speech from Microphone Array Recordings, Proc. IEEE Inf. Conf. on Acoustics, Speech, and Signal Processing, Apr. 1990, pp. 833-836.
Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory, 2002, 54 pgs., pp. i-xxv, 90-95, 201-230.
Van Veen et al., Beamforming: A Versatile Approach to Spatial Filtering, IEEE ASSP Magazine, vol. 5, issue 2, Apr. 1988, pp. 4-24.
Vicente, “Adaptive Array Signal Processing Using the Concentric Ring Array and the Spherical Array,” Ph.D. Dissertation, University of Missouri, May 2009, 226 pp.
Wang et al., Combining Superdirective Beamforming and Frequency-Domain Blind Source Separation for Highly Reverberant Signals, EURASIP Journal on Audio, Speech, and Music Processing, vol. 2010, pp. 1-13.
Warsitz, et al., “Blind Acoustic Beamforming Based on Generalized Eigenvalue Decomposition,” IEEE Transactions on Audio, Speech and Language Processing, vol. 15, No. 5, 2007, 11 pp.
Weinstein, et al., “LOUD: A 1020-Node Microphone Array and Acoustic Beamformer,” 14th International Congress on Sound & Vibration, Jul. 2007, 8 pgs.
Weinstein, et al., “LOUD: A 1020-Node Modular Microphone Array and Beamformer for Intelligent Computing Spaces,” MIT Computer Science and Artifical Intelligence Laboratory, 2004, 18 pp.
Wung, “A System Approach to Multi-Channel Acoustic Echo Cancellation and Residual Echo Suppression for Robust Hands-Free Teleconferencing,” Georgia Institute of Technology, May 2015, 167 pp.
XAP Audio Conferencing Brochure, ClearOne Communications, Inc., 2002.
Yamaha Corp., MRX7-D Signal Processor Product Specifications, 2016, 12 pgs.
Yamaha Corp., PJP-100H IP Audio Conference System Owner's Manual, Sep. 2006, 59 pgs.
Yamaha Corp., PJP-EC200 Conference Echo Canceller Brochure, Oct. 2009, 2 pgs.
Yan et al., Convex Optimization Based Time-Domain Broadband Beamforming with Sidelobe Control, Journal of the Acoustical Society of America, vol. 121, No. 1, Jan. 2007, pp. 46-49.
Yensen et al., Synthetic Stereo Acoustic Echo Cancellation Structure with Microphone Array Beamforming for VOIP Conferences, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, Jun. 2000, pp. 817-820.
Yermeche, et al., “Real-Time DSP Implementation of a Subband Beamforming Algorithm for Dual Microphone Speech Enhancement,” 2007 IEEE International Symposium on Circuits and Systems, 4 pp.
Zavarehei, et al., “Interpolation of Lost Speech Segments Using LP-HNM Model with Codebook Post-Processing,” IEEE Transactions on Multimedia, vol. 10, No. 3, Apr. 2008, 10 pp.
Zhang, et al., “F-T-LSTM based Complex Network for Joint Acoustic Echo Cancellation and Speech Enhancement,” Audio, Speech and Language Processing Group, Jun. 2021, 5 pp.
Zhang, et al., “Multichannel Acoustic Echo Cancelation in Multiparty Spatial Audio Conferencing with Constrained Kalman Filtering,” 11th International Workshop on Acoustic Echo and Noise Control, Sep. 14, 2008, 4 pp.
Zhang, et al., “Selective Frequency Invariant Uniform Circular Broadband Beamformer,” EURASIP Journal on Advances in Signal Processing, vol. 2010, pp. 1-11.
Zheng, et al., “Experimental Evaluation of a Nested Microphone Array Wth Adaptive Noise Cancellers,” IEEE Transactions on Instrumentation and Measurement, vol. 53, No. 3, Jun. 2004, 10 pp.
Matheja, et al., “Dynamic Signal Combining for Distributed Microphone Systems in Car Environments,” 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, May 22, 2011, 6 pp.
Related Publications (1)
Number Date Country
20230057506 A1 Feb 2023 US
Provisional Applications (1)
Number Date Country
62855491 May 2019 US
Continuations (1)
Number Date Country
Parent 16887407 May 2020 US
Child 17717584 US