1. Field of the Invention
The present invention relates generally to personal audio devices that include adaptive noise cancellation (ANC) and multiple drivers for differing frequency bands.
2. Background of the Invention
Wireless telephones, such as mobile/cellular telephones, cordless telephones, and other consumer audio devices, such as MP3 players, are in widespread use. Performance of such devices with respect to intelligibility can be improved by providing ANC using a reference microphone to measure ambient acoustic events and then using signal processing to insert an anti-noise signal into the output of the device to cancel the ambient acoustic events.
While most audio systems implemented for personal audio devices rely on a single output transducer, in the case of transducers mounted on the housing of a wireless telephone, or a pair of transducers when earspeakers are used or when a wireless telephone or other device employs stereo speakers, for high quality audio reproduction, it may be desirable to provide separate transducers for high and low frequencies, as in high quality earspeakers. However, when implementing ANC in such systems, the latency introduced by the crossover that splits the signals between the low frequency transducer and the high frequency transducer introduces delay, which reduces the effectiveness of the ANC system, due to the increased latency of operation.
Therefore, it would be desirable to provide a personal audio device, including a wireless telephone and/or earspeakers that provide low-latency ANC operation while using multiple output transducers that handle different frequency bands.
The above-stated objectives of providing a personal audio device having ANC and employing multiple output transducers for handling different frequency bands, is accomplished in a personal audio system, a method of operation, and an integrated circuit.
The personal audio device includes both a low-frequency output transducer and a high-frequency transducer for reproducing a source audio signal for playback to a listener, and anti-noise signals for countering the effects of ambient audio sounds in the acoustic outputs of transducers. The personal audio device also includes the integrated circuit to provide adaptive noise-canceling (ANC) functionality. The method is a method of operation of the personal audio system and integrated circuit. A reference microphone is mounted on the device housing to provide a reference microphone signal indicative of the ambient audio sounds. The personal audio system further includes an ANC processing circuit for adaptively generating the anti-noise signals from the reference microphone signal, such that the anti-noise signals cause substantial cancellation of the ambient audio sounds at their corresponding transducers. Adaptive filters are used to generate the anti-noise signals by filtering the reference microphone signal.
The foregoing and other objectives, features, and advantages of the invention will be apparent from the following, more particular, description of the preferred embodiment of the invention, as illustrated in the accompanying drawings.
The present invention encompasses noise canceling techniques and circuits that can be implemented in a personal audio system, such as a wireless telephone and connected earbuds. The personal audio system includes an adaptive noise canceling (ANC) circuit that measures and attempts to cancel the ambient acoustic environment at the earbuds or other output transducer location such as on the housing of a personal audio device that receives or generates the source audio signal. Multiple transducers are used, including a low-frequency and a high-frequency transducer that reproduce corresponding frequency bands of the source audio to provide a high quality audio output. The ANC circuit generates separate anti-noise signals which are provided to respective ones of the multiple transducers, to cancel ambient acoustic events at the transducers. A reference microphone is provided to measure the ambient acoustic environment, which provides an input to separate adaptive filters that generate the anti-noise signals, so that low-latency is maintained by eliminating a need for crossover filtering of the generated anti-noise. The source audio crossover can then be placed ahead of the summation of source audio frequency band-specific components with their corresponding anti-noise signals, and the adaptive filters can be controlled to generate anti-noise only in the frequency ranges appropriate for their corresponding transducers.
Wireless telephone 10 includes adaptive noise canceling (ANC) circuits and features that inject anti-noise signals into transducers SPKLH, SPKLL, SPKRH and SPKRL to improve intelligibility of the distant speech and other audio reproduced by transducers SPKLH, SPKLL, SPKRH and SPKRL An exemplary circuit 14 within wireless telephone 10 includes an audio integrated circuit 20 that receives the signals from reference microphones R1, R2, a near speech microphone NS, and error microphones E1, E2 and interfaces with other integrated circuits such as an RF integrated circuit 12 containing the wireless telephone transceiver. In other implementations, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that contains control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit. Alternatively, the ANC circuits may be included within the housing of earbuds EB1, EB2 or in a module located along wired connections between wireless telephone 10 and earbuds EB1, EB2. For the purposes of illustration, the ANC circuits will be described as provided within wireless telephone 10, but the above variations are understandable by a person of ordinary skill in the art and the consequent signals that are required between earbuds EB1, EB2, wireless telephone 10, and a third module, if required, can be easily determined for those variations. Near speech microphone NS is provided at a housing of wireless telephone 10 to capture near-end speech, which is transmitted from wireless telephone 10 to the other conversation participant(s). Alternatively, near speech microphone NS may be provided on the outer surface of the housing of one of earbuds EB1, EB2, on a boom affixed to one of earbuds EB1, EB2, or on a pendant located between wireless telephone 10 and either or both of earbuds EB1, EB2.
In general, the ANC techniques illustrated herein measure ambient acoustic events (as opposed to the output of transducers SPKLH, SPKLL, SPKRH and SPKRL and/or the near-end speech) impinging on reference microphones R1, R2 and also measure the same ambient acoustic events impinging on error microphones E1, E2. The ANC processing circuits of integrated circuits 20A, 20B individually adapt an anti-noise signal generated from the output of the corresponding reference microphone R1, R2 to have a characteristic that minimizes the amplitude of the ambient acoustic events at the corresponding error microphone E1, E2. Since acoustic path PL(z) extends from reference microphone R1 to error microphone E1, the ANC circuit in audio integrated circuit 20A is essentially estimating acoustic path PL(z) combined with removing effects of electro-acoustic paths SLH(z) and Sn(z) that represent, respectively, the response of the audio output circuits of audio integrated circuit 20A and the acoustic/electric transfer function of transducers SPKLH and SPKLL. The estimated response includes the coupling between transducers SPKLH, SPKLL and error microphone E1 in the particular acoustic environment which is affected by the proximity and structure of ear 5A and other physical objects and human head structures that may be in proximity to earbud EB1. Similarly, audio integrated circuit 20B estimates acoustic path PR(z) combined with removing effects of electro-acoustic paths SRH(z) and SRL(z) that represent, respectively, the response of the audio output circuits of audio integrated circuit 20B and the acoustic/electric transfer function of transducers SPKRH and SPKRL.
Referring now to
Audio integrated circuit 20A includes an analog-to-digital converter (ADC) 21A for receiving the reference microphone signal from reference microphone R1 and generating a digital representation ref of the reference microphone signal. Audio integrated circuit 20A also includes an ADC 21B for receiving the error microphone signal from error microphone E1 and generating a digital representation err of the error microphone signal, and an ADC 21C for receiving the near speech microphone signal from near speech microphone NS and generating a digital representation of near speech microphone signal ns. (Audio integrated circuit 20B receives the digital representation of near speech microphone signal ns from audio integrated circuit 20A via the wireless or wired connections as described above.) Audio integrated circuit 20A generates an output for driving transducer SPKLH from an amplifier A1, which amplifies the output of a digital-to-analog converter (DAC) 23A that receives the output of a combiner 26A. A combiner 26C combines left-channel internal audio signal ial and source audio ds, which is received from a radio frequency (RF) integrated circuit 22. Combiner 26A combines source audio dsh+ialh, which is the high-frequency band component of the output of combiner 26C with high-frequency band anti-noise signal anti-noiselh generated by a left-channel ANC circuit 30, which by convention has the same polarity as the noise in reference microphone signal ref and is therefore subtracted by combiner 26A. Combiner 26A also combines an attenuated high-frequency portion of near speech signal ns, i.e., sidetone information sth, so that the user of wireless telephone 10 hears their own voice in proper relation to downlink speech ds. Near speech signal ns is also provided to RF integrated circuit 22 and is transmitted as uplink speech to the service provider via an antenna ANT. Similarly, left-channel audio integrated circuit 20A generates an output for driving transducer SPKLL from an amplifier A2, which amplifies the output of a digital-to-analog converter (DAC) 23B that receives the output of a combiner 26B. Combiner 26B combines source audio dsl+iall, which is the low-frequency band component of the output of combiner 26C with low-frequency band anti-noise signal anti-noisell generated by ANC circuit 30, which by convention has the same polarity as the noise in reference microphone signal ref and is therefore subtracted by combiner 26B. Combiner 26B also combines an attenuated portion of near speech signal ns, i.e., sidetone low-frequency information stl.
Referring now to
In addition to error microphone signal err, the other signal processed along with the output of filter 34B by W coefficient control block 31A includes an inverted amount of the source audio (ds+iar) including downlink audio signal ds and internal audio ian processed by a secondary path filter 34A having response SErh(z), of which response SErhCOPY(z) is a copy. Source audio (ds+iar) is first filtered before being provided to high-frequency channel 50A by a high-pass filter 35A, which passes only the frequencies to be rendered by the high-frequency transducer SPKLH or SPKRH. Similarly, the source audio (ds+iar) provided to low-frequency channel 50B is first filtered by a low-pass filter 35B, which passes only frequencies to be rendered by the low-frequency transducer SPKLL or SPKRL. Thus, high-pass filter 35A and low-pass filter 35B form a cross-over with respect to source audio (ds+iar), so that only the appropriate frequencies are passed to high-frequency channel 50A and low-frequency channel 50B, respectively, and having bandwidths appropriate to respective transducers SPKLH, SPKLL or SPKRH, SPKRL. By injecting an inverted amount of source audio (ds+iar) that has been filtered by response SErh(z), adaptive filter 32A is prevented from adapting to the relatively large amount of source audio present in error microphone signal err. By transforming the inverted copy of source audio (ds+iar) with the estimate of the response of path Srh(z), the source audio that is removed from error microphone signal err before processing should match the expected version of source audio (ds+iar) reproduced at error microphone signal err. The source audio amounts match because the electrical and acoustical path of Srh(z) is the path taken by source audio (ds+iar) to arrive at error microphone E. Filter 34B is not an adaptive filter, per se, but has an adjustable response that is tuned to match the response of secondary path adaptive filter 34A, so that the response of filter 34B tracks the adapting of secondary path adaptive filter 34A. To implement the above, secondary path adaptive filter 34A has coefficients controlled by an SE coefficient control block 33A. Secondary path adaptive filter 34A processes the low or high-frequency source audio (ds+iar) to provide a signal representing the expected source audio delivered to error microphone E. Secondary path adaptive filter 34A is thereby adapted to generate a signal from source audio (ds+iar), that when subtracted from error microphone signal err, forms an error signal e containing the content of error microphone signal err that is not due to source audio (ds+iar). Combiner 36C removes the filtered source audio (ds+iar) from error microphone signal err to generate the above-described error signal e.
Each of the high-frequency channel 50A and low-frequency channel 50B can operate independently to generate respective anti-noise signals anti-noiseh and anti-noisel. However, since error signal e and reference microphone signal ref may contain frequencies of any frequency in the audio band, without band-limiting anti-noise signals anti-noiseh and anti-noisel, they may contain components that should not be sent to their respective high- and low-frequency transducers SPKRH/SPKLH and SPKRL/SPKLL. Therefore, a noise injection technique is used to control the response Wrh(z) of adaptive filter 32A. A noise source 37 generates an output noise signal nh(z) that is supplied to a copy WrhCOPY(z) of the response Wrh(z) of adaptive filter 32A provided by an adaptive filter 32B. A combiner 36A adds noise signal nh(z) to the output of adaptive filter 34B that is provided to W coefficient control 31A. Noise signal nh(z), as shaped by filter 32B, is subtracted from the output of combiner 36C by a combiner 36B so that noise signal nh(z) is asymmetrically added to the correlation inputs to W coefficient control 31A, with the result that the response Wrh(z) of adaptive filter 32A is biased by the completely correlated injection of noise signal nh(z) to each correlation input to W coefficient control 31A. Since the injected noise appears directly at the reference input to W coefficient control 31A, does not appear in error microphone signal err, and only appears at the other input to W coefficient control 31A via the combining of the filtered noise at the output of filter 32B by combiner 36B, W coefficient control 31A will adapt Wrh(z) to attenuate the frequencies present in nh(z). The content of noise signal nh(z) does not appear in the anti-noise signal, only in the response Wrh(z) of adaptive filter 32A which will have amplitude decreases at the frequencies/bands in which noise signal nh(z) has energy.
In order to prevent low-frequencies from being generated in anti-noise signal anti-noiseh, noise source 37 generates noise having a spectrum that has energy in the low-frequency bands, which will cause W coefficient control 31A to decrease the gain of adaptive filter 32A in those low frequency bands in an attempt to cancel the apparent source of ambient acoustic sound due to injected noise signal nh(z). For example, a white noise source could be filtered by a response similar to the response of low-pass filter 35B for use as noise source 37 in high-frequency channel 50A, which will cause adaptive filter 32A to have low gain in the regions of the pass-band of low-pass filter 35B, By doing the same for low-frequency channel 50B, i.e. filtering a white noise source with a response matching the response of high-pass filter 35A, a cross-over is effectively formed by the adaptation of adaptive filters 32A in high-frequency channel 50A and low-frequency channel 50B that prevents undesirable frequencies in respective anti-noise signals anti-noiseh and anti-noisel. A similar construct could be formed around secondary path adaptive filter 34A, but since the input to secondary path adaptive filter 34A is already filtered by a respective one of filters 35A, 35B to remove out-of-band energy, such noise injection should not be needed to remove undesirable frequencies from the output of secondary path adaptive filter 34A. One advantage of using noise-injection, rather than additional filtering, to remove undesirable cross-over energy from anti-noise signals anti-noiseh and anti-noisel is that additional latency is not introduced other than any latency due to the change in response due to noise source 37.
Referring now to
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form, and details may be made therein without departing from the spirit and scope of the invention.
This U.S. patent application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application Ser. No. 61/783,267 filed on Mar. 14, 2013.
Number | Date | Country | |
---|---|---|---|
61783267 | Mar 2013 | US |