Low-latency multi-driver adaptive noise canceling (ANC) system for a personal audio device

Information

  • Patent Grant
  • 9955250
  • Patent Number
    9,955,250
  • Date Filed
    Wednesday, July 6, 2016
    8 years ago
  • Date Issued
    Tuesday, April 24, 2018
    6 years ago
Abstract
A personal audio device including multiple output transducers for reproducing different frequency bands of a source audio signal, includes an adaptive noise canceling (ANC) circuit that adaptively generates an anti-noise signal for each of the transducers from at least one microphone signal that measures the ambient audio to generate anti-noise signals. The anti-noise signals are generated by separate adaptive filters such that the anti-noise signals cause substantial cancelation of the ambient audio at their corresponding transducers. The use of separate adaptive filters provides low-latency operation, since a crossover is not needed to split the anti-noise into the appropriate frequency bands. The adaptive filters can be implemented or biased to generate anti-noise only in the frequency band corresponding to the particular adaptive filter. The anti-noise signals are combined with source audio of the appropriate frequency band to provide outputs for the corresponding transducers.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to personal audio devices that include adaptive noise cancellation (ANC) and multiple drivers for differing frequency bands.


2. Background of the Invention


Wireless telephones, such as mobile/cellular telephones, cordless telephones, and other consumer audio devices, such as MP3 players, are in widespread use. Performance of such devices with respect to intelligibility can be improved by providing ANC using a reference microphone to measure ambient acoustic events and then using signal processing to insert an anti-noise signal into the output of the device to cancel the ambient acoustic events.


While most audio systems implemented for personal audio devices rely on a single output transducer, in the case of transducers mounted on the housing of a wireless telephone, or a pair of transducers when earspeakers are used or when a wireless telephone or other device employs stereo speakers, for high quality audio reproduction, it may be desirable to provide separate transducers for high and low frequencies, as in high quality earspeakers. However, when implementing ANC in such systems, the latency introduced by the crossover that splits the signals between the low frequency transducer and the high frequency transducer introduces delay, which reduces the effectiveness of the ANC system, due to the increased latency of operation.


Therefore, it would be desirable to provide a personal audio device, including a wireless telephone and/or earspeakers that provide low-latency ANC operation while using multiple output transducers that handle different frequency bands.


SUMMARY OF THE INVENTION

The above-stated objectives of providing a personal audio device having ANC and employing multiple output transducers for handling different frequency bands, is accomplished in a personal audio system, a method of operation, and an integrated circuit.


The personal audio device includes both a low-frequency output transducer and a high-frequency transducer for reproducing a source audio signal for playback to a listener, and anti-noise signals for countering the effects of ambient audio sounds in the acoustic outputs of transducers. The personal audio device also includes the integrated circuit to provide adaptive noise-canceling (ANC) functionality. The method is a method of operation of the personal audio system and integrated circuit. A reference microphone is mounted on the device housing to provide a reference microphone signal indicative of the ambient audio sounds. The personal audio system further includes an ANC processing circuit for adaptively generating the anti-noise signals from the reference microphone signal, such that the anti-noise signals cause substantial cancellation of the ambient audio sounds at their corresponding transducers. Adaptive filters are used to generate the anti-noise signals by filtering the reference microphone signal.


The foregoing and other objectives, features, and advantages of the invention will be apparent from the following, more particular, description of the preferred embodiment of the invention, as illustrated in the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is an illustration of an exemplary wireless telephone 10 and a pair of earbuds EB1 and EB2.



FIG. 1B is a schematic diagram of circuits within wireless telephone 10.



FIG. 2 is a block diagram of circuits within wireless telephone 10.



FIG. 3 is a block diagram depicting signal processing circuits and functional blocks of various exemplary ANC circuits that can be used to implement ANC circuit 30 of CODEC integrated circuit 20A of FIG. 2.



FIG. 4 is a block diagram depicting signal processing circuits and functional blocks within CODEC integrated circuit 20.





DESCRIPTION OF ILLUSTRATIVE EMBODIMENT

The present invention encompasses noise canceling techniques and circuits that can be implemented in a personal audio system, such as a wireless telephone and connected earbuds. The personal audio system includes an adaptive noise canceling (ANC) circuit that measures and attempts to cancel the ambient acoustic environment at the earbuds or other output transducer location such as on the housing of a personal audio device that receives or generates the source audio signal. Multiple transducers are used, including a low-frequency and a high-frequency transducer that reproduce corresponding frequency bands of the source audio to provide a high quality audio output. The ANC circuit generates separate anti-noise signals which are provided to respective ones of the multiple transducers, to cancel ambient acoustic events at the transducers. A reference microphone is provided to measure the ambient acoustic environment, which provides an input to separate adaptive filters that generate the anti-noise signals, so that low-latency is maintained by eliminating a need for crossover filtering of the generated anti-noise. The source audio crossover can then be placed ahead of the summation of source audio frequency band-specific components with their corresponding anti-noise signals, and the adaptive filters can be controlled to generate anti-noise only in the frequency ranges appropriate for their corresponding transducers.



FIG. 1A shows a wireless telephone 10 and a pair of earbuds EB1 and EB2, each attached to a corresponding ear 5A, 5B of a listener. Illustrated wireless telephone 10 is an example of a device in which the techniques disclosed herein may be employed, but it is understood that not all of the elements or configurations illustrated in wireless telephone 10, or in the circuits depicted in subsequent illustrations, are required. Wireless telephone 10 is connected to earbuds EB1, EB2 by a wired or wireless connection, e.g., a BLUETOOTH™ connection (BLUETOOTH is a trademark of Bluetooth SIG, Inc.). Earbuds EB1, EB2 each have a corresponding pair of transducers SPKLH/SPKLL and SPKRH/SPKRL, respectively, which reproduce source audio including distant speech received from wireless telephone 10, ringtones, stored audio program material, and injection of near-end speech (i.e., the speech of the user of wireless telephone 10). Transducers SPKLH and SPKRH are high-frequency transducers or “tweeters” that reproduce the higher range of audible frequencies and transducers SPKLL and SPKRL are low-frequency transducers or “woofers” that reproduce a lower range of audio frequencies. The source audio also includes any other audio that wireless telephone 10 is required to reproduce, such as source audio from web-pages or other network communications received by wireless telephone 10 and audio indications such as battery low and other system event notifications. Reference microphones R1, R2 are provided on a surface of a housing of respective earbuds EB1, EB2 for measuring the ambient acoustic environment. Another pair of microphones, error microphones E1, E2, are provided in order to further improve the ANC operation by providing a measure of the ambient audio combined with the audio reproduced by respective transducer pairs SPKLH/SPKLL and SPKRH/SPKRL close to corresponding ears 5A, 5B, when earbuds EB1, EB2 are inserted in the outer portion of ears 5A, 5B.


Wireless telephone 10 includes adaptive noise canceling (ANC) circuits and features that inject anti-noise signals into transducers SPKLH, SPKLL, SPKRH and SPKRL to improve intelligibility of the distant speech and other audio reproduced by transducers SPKLH, SPKLL, SPKRH and SPKRL An exemplary circuit 14 within wireless telephone 10 includes an audio integrated circuit 20 that receives the signals from reference microphones R1, R2, a near speech microphone NS, and error microphones E1, E2 and interfaces with other integrated circuits such as an RF integrated circuit 12 containing the wireless telephone transceiver. In other implementations, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that contains control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit. Alternatively, the ANC circuits may be included within the housing of earbuds EB1, EB2 or in a module located along wired connections between wireless telephone 10 and earbuds EB1, EB2. For the purposes of illustration, the ANC circuits will be described as provided within wireless telephone 10, but the above variations are understandable by a person of ordinary skill in the art and the consequent signals that are required between earbuds EB1, EB2, wireless telephone 10, and a third module, if required, can be easily determined for those variations. Near speech microphone NS is provided at a housing of wireless telephone 10 to capture near-end speech, which is transmitted from wireless telephone 10 to the other conversation participant(s). Alternatively, near speech microphone NS may be provided on the outer surface of the housing of one of earbuds EB1, EB2, on a boom affixed to one of earbuds EB1, EB2, or on a pendant located between wireless telephone 10 and either or both of earbuds EB1, EB2.



FIG. 1B shows a simplified schematic diagram of audio integrated circuits 20A, 20B that include ANC processing, as coupled to reference microphones R1, R2, which provide a measurement of ambient audio sounds Ambient1, Ambient 2 that is filtered by the ANC processing circuits within audio integrated circuits 20A, 20B, located within corresponding earbuds EB1, EB2. Audio integrated circuits 20A, 20B may be alternatively combined in a single integrated circuit such as integrated circuit 20 within wireless telephone 10. Audio integrated circuits 20A, 20B generate outputs for their corresponding channels that are amplified by an associated one of amplifiers A1-A4 and which are provided to the corresponding transducer pairs SPKLH/SPKLL and SPKRH/SPKRL. Audio integrated circuits 20A, 20B receive the signals (wired or wireless depending on the particular configuration) from reference microphones R1, R2, near speech microphone NS and error microphones E1, E2. Audio integrated circuits 20A, 20B also interface with other integrated circuits such as RF integrated circuit 12 containing the wireless telephone transceiver shown in FIG. 1A. In other configurations, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that contains control circuits and other functionality for implementing the entirety of the personal audio device, such as a MP3 player-on-a-chip integrated circuit. Alternatively, multiple integrated circuits may be used, for example, when a wireless connection is provided from each of earbuds EB1, EB2 to wireless telephone 10 and/or when some or all of the ANC processing is performed within earbuds EB1, EB2 or a module disposed along a cable connecting wireless telephone 10 to earbuds EB1, EB2.


In general, the ANC techniques illustrated herein measure ambient acoustic events (as opposed to the output of transducers SPKLH, SPKLL, SPKRH and SPKRL and/or the near-end speech) impinging on reference microphones R1, R2 and also measure the same ambient acoustic events impinging on error microphones E1, E2. The ANC processing circuits of integrated circuits 20A, 20B individually adapt an anti-noise signal generated from the output of the corresponding reference microphone R1, R2 to have a characteristic that minimizes the amplitude of the ambient acoustic events at the corresponding error microphone E1, E2. Since acoustic path PL(z) extends from reference microphone R1 to error microphone E1, the ANC circuit in audio integrated circuit 20A is essentially estimating acoustic path PL(z) combined with removing effects of electro-acoustic paths SLH(z) and SLL(z) that represent, respectively, the response of the audio output circuits of audio integrated circuit 20A and the acoustic/electric transfer function of transducers SPKLH and SPKLL. The estimated response includes the coupling between transducers SPKLH, SPKLL and error microphone E1 in the particular acoustic environment which is affected by the proximity and structure of ear 5A and other physical objects and human head structures that may be in proximity to earbud EB1. Similarly, audio integrated circuit 20B estimates acoustic path PR(z) combined with removing effects of electro-acoustic paths SRH(z) and SRL(z) that represent, respectively, the response of the audio output circuits of audio integrated circuit 20B and the acoustic/electric transfer function of transducers SPKRH and SPKRL.


Referring now to FIG. 2, circuits within earbuds EB1, EB2 and wireless telephone 10 are shown in a block diagram. The circuit shown in FIG. 2 further applies to the other configurations mentioned above, except that signaling between CODEC integrated circuit 20 and other units within wireless telephone 10 are provided by cables or wireless connections when audio integrated circuits 20A, 20B are located outside of wireless telephone 10, e.g., within corresponding earbuds EB1, EB2. In such a configuration, signaling between a single integrated circuit 20 that implements integrated circuits 20A-20B and error microphones E1, E2, reference microphones R1, R2 and transducers SPKLH, SPKLL, SPKRH and SPKRL are provided by wired or wireless connections when audio integrated circuit 20 is located within wireless telephone 10. In the illustrated example, audio integrated circuits 20A, 20B are shown as separate and substantially identical circuits, so only audio integrated circuit 20A will be described in detail below.


Audio integrated circuit 20A includes an analog-to-digital converter (ADC) 21A for receiving the reference microphone signal from reference microphone R1 and generating a digital representation ref of the reference microphone signal. Audio integrated circuit 20A also includes an ADC 21B for receiving the error microphone signal from error microphone E1 and generating a digital representation err of the error microphone signal, and an ADC 21C for receiving the near speech microphone signal from near speech microphone NS and generating a digital representation of near speech microphone signal ns. (Audio integrated circuit 20B receives the digital representation of near speech microphone signal ns from audio integrated circuit 20A via the wireless or wired connections as described above.) Audio integrated circuit 20A generates an output for driving transducer SPKLH from an amplifier A1, which amplifies the output of a digital-to-analog converter (DAC) 23A that receives the output of a combiner 26A. A combiner 26C combines left-channel internal audio signal ial and source audio ds, which is received from a radio frequency (RF) integrated circuit 22. Combiner 26A combines source audio dsh+ialh, which is the high-frequency band component of the output of combiner 26C with high-frequency band anti-noise signal anti-noiselh generated by a left-channel ANC circuit 30, which by convention has the same polarity as the noise in reference microphone signal ref and is therefore subtracted by combiner 26A. Combiner 26A also combines an attenuated high-frequency portion of near speech signal ns, i.e., sidetone information sth, so that the user of wireless telephone 10 hears their own voice in proper relation to downlink speech ds. Near speech signal ns is also provided to RF integrated circuit 22 and is transmitted as uplink speech to the service provider via an antenna ANT. Similarly, left-channel audio integrated circuit 20A generates an output for driving transducer SPKLL from an amplifier A2, which amplifies the output of a digital-to-analog converter (DAC) 23B that receives the output of a combiner 26B. Combiner 26B combines source audio dsl+iall, which is the low-frequency band component of the output of combiner 26C with low-frequency band anti-noise signal anti-noisell generated by ANC circuit 30, which by convention has the same polarity as the noise in reference microphone signal ref and is therefore subtracted by combiner 26B. Combiner 26B also combines an attenuated portion of near speech signal ns, i.e., sidetone low-frequency information stl.


Referring now to FIG. 3, an example of details within ANC circuit 30 are shown, and as may be used to implement audio integrated circuit 20B of FIG. 2. An identical circuit is used to implement audio integrated circuit 20A, with changes to the channel labels within the diagram as noted below. A high-frequency channel 50A and a low-frequency channel 50B are provided, for generating anti-noise signals anti-noiserh and anti-noiserl, respectively. In the description below, where signal and response labels contained the letter “r” indicating the right channel, the letter would be replaced with “l” to indicate the left channel in another circuit according to FIG. 3 as implemented within audio integrated circuit 20A of FIG. 2. Where signals and responses are labeled with the letter “h” for low-frequency in high-frequency channel 50A, the corresponding elements in low-frequency channel 50B would be replaced with signals and responses labeled with the letter “l”. An adaptive filter 32A receives reference microphone signal ref and under ideal circumstances, adapts its transfer function Wrh(z) to be Pr(z)/Srh(z) to generate anti-noise signal anti-noiserh. The coefficients of adaptive filter 32A are controlled by a W coefficient control block 31A that uses a correlation of two signals to determine the response of adaptive filter 32A, which generally minimizes, in a least-mean squares sense, those components of reference microphone signal ref that are present in error microphone signal err. While the example disclosed herein uses an adaptive filter 32A, connected in a feed-forward configuration, the techniques disclosed herein can be implemented in a noise-canceling system having fixed or programmable filters, where the coefficients of adaptive filter 32A are pre-set, selected or otherwise not continuously adapted, and also alternatively or in combination with the fixed-filter topology, the techniques disclosed herein can be applied in feedback ANC systems or hybrid feedback/feed-forward ANC systems. The signals provided as inputs to W coefficient control block 31A are the reference microphone signal ref as shaped by a copy of an estimate of the response of path Srh(z) provided by a filter 34B and another signal provided from the output of a combiner 36C that includes error microphone signal err. By transforming reference microphone signal ref with a copy of the estimate of the response of path Srh(z), SErhCOPY(z), and minimizing the portion of the error signal that correlates with components of reference microphone signal ref, adaptive filter 32A adapts to the desired response of Pr(z)/Srh(z).


In addition to error microphone signal err, the other signal processed along with the output of filter 34B by W coefficient control block 31A includes an inverted amount of the source audio (ds+iar) including downlink audio signal ds and internal audio ian processed by a secondary path filter 34A having response SErh(z), of which response SErhCOPY(z) is a copy. Source audio (ds+iar) is first filtered before being provided to high-frequency channel 50A by a high-pass filter 35A, which passes only the frequencies to be rendered by the high-frequency transducer SPKLH or SPKRH. Similarly, the source audio (ds+iar) provided to low-frequency channel 50B is first filtered by a low-pass filter 35B, which passes only frequencies to be rendered by the low-frequency transducer SPKLL or SPKRL. Thus, high-pass filter 35A and low-pass filter 35B form a cross-over with respect to source audio (ds+iar), so that only the appropriate frequencies are passed to high-frequency channel 50A and low-frequency channel 50B, respectively, and having bandwidths appropriate to respective transducers SPKLH, SPKLL or SPKRH, SPKRL. By injecting an inverted amount of source audio (ds+iar) that has been filtered by response SErh(z), adaptive filter 32A is prevented from adapting to the relatively large amount of source audio present in error microphone signal err. By transforming the inverted copy of source audio (ds+iar) with the estimate of the response of path Srh(z), the source audio that is removed from error microphone signal err before processing should match the expected version of source audio (ds+iar) reproduced at error microphone signal err. The source audio amounts match because the electrical and acoustical path of Srh(z) is the path taken by source audio (ds+iar) to arrive at error microphone E. Filter 34B is not an adaptive filter, per se, but has an adjustable response that is tuned to match the response of secondary path adaptive filter 34A, so that the response of filter 34B tracks the adapting of secondary path adaptive filter 34A. To implement the above, secondary path adaptive filter 34A has coefficients controlled by an SE coefficient control block 33A. Secondary path adaptive filter 34A processes the low or high-frequency source audio (ds+iar) to provide a signal representing the expected source audio delivered to error microphone E. Secondary path adaptive filter 34A is thereby adapted to generate a signal from source audio (ds+iar), that when subtracted from error microphone signal err, forms an error signal e containing the content of error microphone signal err that is not due to source audio (ds+iar). Combiner 36C removes the filtered source audio (ds+iar) from error microphone signal err to generate the above-described error signal e.


Each of the high-frequency channel 50A and low-frequency channel 50B can operate independently to generate respective anti-noise signals anti-noiseh and anti-noisel. However, since error signal e and reference microphone signal ref may contain frequencies of any frequency in the audio band, without band-limiting anti-noise signals anti-noiseh and anti-noisel, they may contain components that should not be sent to their respective high- and low-frequency transducers SPKRH/SPKLH and SPKRL/SPKLL. Therefore, a noise injection technique is used to control the response Wrh(z) of adaptive filter 32A. A noise source 37 generates an output noise signal nh(z) that is supplied to a copy WrhCOPY(z) of the response Wrh(z) of adaptive filter 32A provided by an adaptive filter 32B. A combiner 36A adds noise signal nh(z) to the output of adaptive filter 34B that is provided to W coefficient control 31A. Noise signal nh(z), as shaped by filter 32B, is subtracted from the output of combiner 36C by a combiner 36B so that noise signal nh(z) is asymmetrically added to the correlation inputs to W coefficient control 31A, with the result that the response Wrh(z) of adaptive filter 32A is biased by the completely correlated injection of noise signal nh(z) to each correlation input to W coefficient control 31A. Since the injected noise appears directly at the reference input to W coefficient control 31A, does not appear in error microphone signal err, and only appears at the other input to W coefficient control 31A via the combining of the filtered noise at the output of filter 32B by combiner 36B, W coefficient control 31A will adapt Wrh(z) to attenuate the frequencies present in nh(z). The content of noise signal nh(z) does not appear in the anti-noise signal, only in the response Wrh(z) of adaptive filter 32A which will have amplitude decreases at the frequencies/bands in which noise signal nh(z) has energy.


In order to prevent low-frequencies from being generated in anti-noise signal anti-noiseh, noise source 37 generates noise having a spectrum that has energy in the low-frequency bands, which will cause W coefficient control 31A to decrease the gain of adaptive filter 32A in those low frequency bands in an attempt to cancel the apparent source of ambient acoustic sound due to injected noise signal nh(z). For example, a white noise source could be filtered by a response similar to the response of low-pass filter 35B for use as noise source 37 in high-frequency channel 50A, which will cause adaptive filter 32A to have low gain in the regions of the pass-band of low-pass filter 35B, By doing the same for low-frequency channel 50B, i.e. filtering a white noise source with a response matching the response of high-pass filter 35A, a cross-over is effectively formed by the adaptation of adaptive filters 32A in high-frequency channel 50A and low-frequency channel 50B that prevents undesirable frequencies in respective anti-noise signals anti-noiseh and anti-noisel. A similar construct could be formed around secondary path adaptive filter 34A, but since the input to secondary path adaptive filter 34A is already filtered by a respective one of filters 35A, 35B to remove out-of-band energy, such noise injection should not be needed to remove undesirable frequencies from the output of secondary path adaptive filter 34A. One advantage of using noise-injection, rather than additional filtering, to remove undesirable cross-over energy from anti-noise signals anti-noiseh and anti-noisel is that additional latency is not introduced other than any latency due to the change in response due to noise source 37.


Referring now to FIG. 4, a block diagram of an ANC system is shown for implementing ANC techniques as depicted in FIG. 3 and having a processing circuit 40 as may be implemented within audio integrated circuits 20A, 20B of FIG. 2, which is illustrated as combined within one circuit, but could be implemented as two or more processing circuits that inter-communicate. Processing circuit 40 includes a processor core 42 coupled to a memory 44 in which are stored program instructions comprising a computer program product that may implement some or all of the above-described ANC techniques, as well as other signal processing. Optionally, a dedicated digital signal processing (DSP) logic 46 may be provided to implement a portion of, or alternatively all of, the ANC signal processing provided by processing circuit 40. Processing circuit 40 also includes ADCs 21A-21E, for receiving inputs from reference microphone R1, error microphone E1, near speech microphone NS, reference microphone R2, and error microphone E2, respectively. In alternative embodiments in which one or more of reference microphone R1, error microphone E1, near speech microphone NS, reference microphone R2, and error microphone E2 have digital outputs or are communicated as digital signals from remote ADCs, the corresponding ones of ADCs 21A-21E are omitted and the digital microphone signal(s) are interfaced directly to processing circuit 40. DAC 23A and amplifier A1 are also provided by processing circuit 40 for providing the transducer output signal to transducer SPKLH, including anti-noise as described above. Similarly, DACs 23B-23D and amplifiers A2-A4 provide other transducer output signals to transducer pairs SPKLH, SPKLL, SPKRH and SPKRL. The transducer output signals may be digital output signals for provision to modules that reproduce the digital output signals acoustically.


While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form, and details may be made therein without departing from the spirit and scope of the invention.

Claims
  • 1. A personal audio system, comprising: a source of audio for reproduction, wherein the source of audio provides a source audio signal;a first transducer for reproducing high-frequency content of the source audio signal for playback to a listener and a first anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the first transducer, wherein the first transducer is a high-frequency transducer of an earspeaker;a second transducer for reproducing low-frequency content of the source audio signal for playback to the listener and a second anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the second transducer, wherein the second transducer is a low-frequency transducer of the earspeaker;a third transducer for reproducing high-frequency content of a second source audio signal and a third anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the third transducer;a fourth transducer for reproducing low-frequency content of the second source audio signal and a fourth anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the fourth transducer;at least one microphone for providing at least one microphone signal indicative of the ambient audio sounds; anda processing circuit that generates the first anti-noise signal from the at least one microphone signal using a first adaptive filter to reduce the presence of the ambient audio sounds at the first transducer and the second transducer in conformity with the at least one microphone signal, wherein the processing circuit generates the second anti-noise signal from the at least one microphone signal using a second adaptive filter to reduce the presence of the ambient audio sounds at the first transducer and the second transducer in conformity with the at least one microphone signal, wherein the processing circuit restricts content of the first anti-noise signal to a first predetermined frequency range by limiting a first frequency response of the first adaptive filter to the first predetermined frequency range, and wherein the processing circuit restricts content of the second anti-noise signal to a second predetermined frequency range by limiting a second response of the second adaptive filter to a second predetermined frequency range, wherein the first predetermined frequency range and the second predetermined frequency range are substantially different, and wherein the processing circuit further generates the third anti-noise signal and the fourth anti-noise signal from the at least one microphone signal using a third filter to reduce the presence of the ambient audio sounds at the third transducer in conformity with the at least one microphone signal, wherein the processing circuit generates the fourth anti-noise signal from the at least one microphone signal using a fourth filter to reduce the presence of the ambient audio sounds at the fourth transducer in conformity with the at least one microphone signal.
  • 2. The personal audio device of claim 1, wherein the at least one microphone comprises: an error microphone for providing an error microphone signal indicative of the ambient audio sounds and acoustic outputs of the first transducer and the second transducer; anda reference microphone for providing a reference microphone signal indicative of the ambient audio sounds, wherein the first adaptive filter has a first coefficient generator that adapts to minimize components of the reference microphone signal present in the error microphone signal, and wherein the processing circuit restricts adaptation of the first frequency response by altering the frequency content of a first signal input to the first coefficient generator, and wherein the second adaptive filter has a second coefficient generator that adapts to minimize components of the reference microphone signal present in the error microphone signal, and wherein the processing circuit restricts adaptation of the first frequency response by altering the frequency content of a second signal input to the second coefficient generator.
  • 3. The personal audio device of claim 2, wherein the processing circuit alters the frequency content of the first signal input to the first coefficient generator by injecting a first additional signal having first predetermined frequency content in the first predetermined frequency range into the first signal input to the first coefficient generator, and wherein the processing circuit alters the frequency content of the second signal input to the second coefficient generator by injecting a second additional signal having second predetermined frequency content in the second predetermined frequency range into the second signal input to the second coefficient generator.
  • 4. The personal audio device of claim 3, wherein the first additional signal and the second additional signal are noise signals.
  • 5. A method of countering effects of ambient audio sounds by a personal audio system, the method comprising: measuring ambient audio sounds with at least one microphone to produce at least one microphone signal;first generating a first anti-noise signal from the at least one microphone signal using a first adaptive filter to reduce the presence of the ambient audio sounds at a first transducer in conformity with the at least one microphone signal, wherein the first generating restricts content of the first anti-noise signal to a first predetermined frequency range by limiting a first frequency response of the first adaptive filter to the first predetermined frequency range, wherein the first transducer is a high-frequency transducer of an earspeaker;second generating a second anti-noise signal from the at least one microphone signal using a second adaptive filter to reduce the presence of the ambient audio sounds at a second transducer in conformity with the at least one microphone signal, wherein the second generating restricts content of the second anti-noise signal to a second predetermined frequency range by limiting a second frequency response of the second adaptive filter to the second predetermined frequency range wherein the first predetermined frequency range and the second predetermined frequency range are substantially different, wherein the second transducer is a low-frequency transducer of the earspeaker;providing a source of audio for reproduction, wherein the source of audio provides a source audio signal;reproducing high-frequency content of the source audio signal and the first anti-noise signal with the first transducer;reproducing low-frequency content of the source audio signal and the second anti-noise signal with the second transducer;reproducing high-frequency content of a second source audio signal and a third anti-noise signal with a third transducer for countering the effects of ambient audio sounds in an acoustic output of the third transducer;reproducing low-frequency content of the second source audio signal and a fourth anti-noise signal with a fourth transducer for countering the effects of ambient audio sounds in an acoustic output of the fourth transducer;generating the third anti-noise signal and the fourth anti-noise signal from the at least one microphone signal using a third filter to reduce the presence of the ambient audio sounds at the third transducer and the fourth transducer in conformity with the at least one microphone signal; andgenerating the fourth anti-noise signal from the at least one microphone signal using a fourth filter to reduce the presence of the ambient audio sounds at the third transducer and the fourth transducer in conformity with the at least one microphone signal.
  • 6. The method of claim 5, wherein the measuring the ambient audio sounds is performed with a reference microphone to generate a reference microphone signal, and wherein the method further comprises measuring the ambient audio sounds and acoustic outputs of the first transducer and the second transducer with an error microphone to generate an error microphone signal, wherein the first generating comprises adapting coefficients of a first coefficient generator that controls the first frequency response to minimize components of the reference microphone signal present in the error microphone signal, and wherein the second generating comprises adapting coefficients of a second coefficient generator that controls the second frequency response to minimize components of the reference microphone signal present in the error microphone signal, wherein the first generating restricts adaptation of the first frequency response by altering frequency content of a first signal input to the first coefficient generator, and wherein the second generating restricts adaptation of the second frequency response by altering frequency content of a second signal input to the second coefficient generator.
  • 7. The method of claim 6, wherein the first generating restricts adaptation of the first frequency response by injecting a first additional signal having a first predetermined frequency content in the first predetermined frequency range into at least one first signal input to the first coefficient generator, and wherein the second generating restricts adaptation of the second frequency response by injecting a second additional signal having a second predetermined frequency content in the second predetermined frequency range into at least one second signal input to the second coefficient generator.
  • 8. The method of claim 7, wherein the first additional signal and the second additional signal are noise signals.
  • 9. An integrated circuit for implementing at least a portion of a personal audio system, comprising: a source of audio for reproduction, wherein the source of audio provides a source audio signal;a first output for providing a first output signal to a first transducer for reproducing high-frequency content of the source audio signal and a first anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the first transducer, wherein the first transducer is a high-frequency transducer of an earspeaker;a second output for providing a second output signal to a second transducer for reproducing low-frequency content of the source audio signal including both second source audio for playback to a listener and a second anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the second transducer, wherein the second transducer is a low-frequency transducer of the earspeaker;a third output for providing a third output signal to a third transducer for reproducing high-frequency content of a second source audio signal and a third anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the third transducer;a fourth output for providing a fourth output signal to a fourth transducer for reproducing low-frequency content of the second source audio signal and a fourth anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the fourth transducer;at least one microphone input for providing at least one microphone signal indicative of the ambient audio sounds; anda processing circuit that generates the first anti-noise signal from the at least one microphone signal using a first adaptive filter to reduce the presence of the ambient audio sounds at the first transducer and the second transducer in conformity with the at least one microphone signal, wherein the processing circuit generates the second anti-noise signal from the at least one microphone signal using a second adaptive filter to reduce the presence of the ambient audio sounds at the first transducer and the second transducer in conformity with the at least one microphone signal, wherein the processing circuit restricts content of the first anti-noise signal to a first predetermined frequency range by limiting a first frequency response of the first adaptive filter to the first predetermined frequency range, and wherein the processing circuit restricts content of the second anti-noise signal to a second predetermined frequency range by limiting a second response of the second adaptive filter to a second predetermined frequency range, wherein the first predetermined frequency range and the second predetermined frequency range are substantially different, and wherein the processing circuit further generates the third anti-noise signal and the fourth anti-noise signal from the at least one microphone signal using a third filter to reduce the presence of the ambient audio sounds at the third transducer and the fourth transducer in conformity with the at least one microphone signal, wherein the processing circuit generates the fourth anti-noise signal from the at least one microphone signal using a fourth filter to reduce the presence of the ambient audio sounds at the third transducer and the fourth transducer in conformity with the at least one microphone signal.
  • 10. The integrated circuit of claim 9, wherein the at least one microphone input comprises a reference microphone input for receiving a reference microphone signal indicative of the ambient audio sounds and further comprises an error microphone input for receiving an error microphone signal indicative of the ambient audio sounds and acoustic outputs of the first transducer and the second transducer, wherein the first adaptive filter has a first coefficient generator that adapts to minimize components of the reference microphone signal present in the error microphone signal, and wherein the processing circuit restricts adaptation of the first frequency response by altering the frequency content of a first signal input to the first coefficient generator, and wherein the second adaptive filter has a second coefficient generator that adapts to minimize components of the reference microphone signal present in the error microphone signal, and wherein the processing circuit restricts adaptation of the first frequency response by altering the frequency content of a second signal input to the second coefficient generator.
  • 11. The integrated circuit of claim 10, wherein the processing circuit alters the frequency content of the first signal input to the first coefficient generator by injecting a first additional signal having a first predetermined frequency content in the first predetermined frequency range into the first signal input to the first coefficient generator, and wherein the processing circuit alters the frequency content of the second signal input to the second coefficient generator by injecting a second additional signal having a second predetermined frequency content in the second predetermined frequency range into the second signal input to the second first coefficient generator.
  • 12. The integrated circuit of claim 11, wherein the first additional signal and the second additional signal are noise signals.
Parent Case Info

This U.S. patent application is a Continuation of U.S. patent application Ser. No. 13/968,007 filed on Aug. 15, 2013, published as U.S. Patent Publication No. 20140270222 on Sep. 18, 2014, and claims priority thereto under 35 U.S.C. § 120. U.S. patent application Ser. No. 13/968,007 claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 61/783,267 filed on Mar. 14, 2013 and this U.S. patent application claims priority to the above-referenced U.S. Provisional patent application thereby.

US Referenced Citations (326)
Number Name Date Kind
4020567 Webster May 1977 A
4352962 LaMothe Oct 1982 A
4649507 Inaba et al. Mar 1987 A
4926464 Schley-May May 1990 A
4998241 Brox et al. Mar 1991 A
5018202 Takahashi May 1991 A
5021753 Chapman Jun 1991 A
5044373 Northeved et al. Sep 1991 A
5117401 Feintuch May 1992 A
5204827 Fujita et al. Apr 1993 A
5251263 Andrea et al. Oct 1993 A
5278913 Delfosse et al. Jan 1994 A
5321759 Yuan Jun 1994 A
5337365 Hamabe et al. Aug 1994 A
5359662 Yuan et al. Oct 1994 A
5377276 Terai et al. Dec 1994 A
5386477 Popovich et al. Jan 1995 A
5410605 Sawada et al. Apr 1995 A
5425105 Lo Jun 1995 A
5445517 Kondou et al. Aug 1995 A
5465413 Enge et al. Nov 1995 A
5481615 Eatwell et al. Jan 1996 A
5548681 Gleaves et al. Aug 1996 A
5550925 Hori et al. Aug 1996 A
5559893 Krokstad et al. Sep 1996 A
5563819 Nelson Oct 1996 A
5586190 Trantow et al. Dec 1996 A
5633795 Popovich May 1997 A
5640450 Watanabe Jun 1997 A
5668747 Ohashi Sep 1997 A
5687075 Stothers Nov 1997 A
5696831 Inanaga et al. Dec 1997 A
5699437 Finn Dec 1997 A
5706344 Finn Jan 1998 A
5740256 Castello Da Costa et al. Apr 1998 A
5768124 Stothers et al. Jun 1998 A
5809152 Nakamura et al. Sep 1998 A
5815582 Claybaugh et al. Sep 1998 A
5832095 Daniels Nov 1998 A
5852667 Pan et al. Dec 1998 A
5909498 Smith Jun 1999 A
5940519 Kuo Aug 1999 A
5946391 Dragwidge et al. Aug 1999 A
5991418 Kuo Nov 1999 A
6041126 Terai et al. Mar 2000 A
6118878 Jones Sep 2000 A
6181801 Puthuff et al. Jan 2001 B1
6185300 Romesburg Feb 2001 B1
6219427 Kates et al. Apr 2001 B1
6278786 McIntosh Aug 2001 B1
6282176 Hemkumar Aug 2001 B1
6304179 Lolito et al. Oct 2001 B1
6317501 Matsuo Nov 2001 B1
6418228 Terai et al. Jul 2002 B1
6434246 Kates et al. Aug 2002 B1
6434247 Kates et al. Aug 2002 B1
6445799 Taenzer et al. Sep 2002 B1
6522746 Marchok et al. Feb 2003 B1
6542436 Myllyla Apr 2003 B1
6606382 Gupta Aug 2003 B2
6650701 Hsiang et al. Nov 2003 B1
6683960 Fujii et al. Jan 2004 B1
6738482 Jaber May 2004 B1
6766292 Chandran Jul 2004 B1
6768795 Feltstrom et al. Jul 2004 B2
6792107 Tucker et al. Sep 2004 B2
6847721 Zhang et al. Jan 2005 B2
6850617 Weigand Feb 2005 B1
6917688 Yu et al. Jul 2005 B2
6940982 Watkins Sep 2005 B1
6996241 Ray et al. Feb 2006 B2
7003093 Prabhu et al. Feb 2006 B2
7016504 Shennib Mar 2006 B1
7034614 Robinson et al. Apr 2006 B2
7058463 Ruha et al. Jun 2006 B1
7092514 Trump et al. Aug 2006 B2
7103188 Jones Sep 2006 B1
7110864 Restrepo et al. Sep 2006 B2
7142894 Ichikawa et al. Nov 2006 B2
7162044 Woods Jan 2007 B2
7177433 Sibbald Feb 2007 B2
7181030 Rasmussen et al. Feb 2007 B2
7242778 Csermak et al. Jul 2007 B2
7321913 McGrath Jan 2008 B2
7330739 Somayajula Feb 2008 B2
7340064 Onishi et al. Mar 2008 B2
7359520 Brennan et al. Apr 2008 B2
7365669 Melanson Apr 2008 B1
7368918 Henson et al. May 2008 B2
7406179 Ryan Jul 2008 B2
7441173 Restrepo et al. Oct 2008 B2
7466838 Mosely Dec 2008 B1
7492889 Ebenezer Feb 2009 B2
7555081 Keele, Jr. Jun 2009 B2
7643641 Haulick et al. Jan 2010 B2
7680456 Muhammad et al. Mar 2010 B2
7742746 Xiang et al. Jun 2010 B2
7742790 Konchitsky et al. Jun 2010 B2
7792312 Inoue et al. Sep 2010 B2
7817808 Konchitsky et al. Oct 2010 B2
7885417 Christoph Feb 2011 B2
7885420 Hetherington et al. Feb 2011 B2
7895036 Hetherington et al. Feb 2011 B2
7925307 Horowitz et al. Apr 2011 B2
7953231 Ishida May 2011 B2
8014519 Mohammed et al. Sep 2011 B2
8019050 Mactavish et al. Sep 2011 B2
8019103 Kates Sep 2011 B2
8085966 Amsel Dec 2011 B2
8098837 Inoue et al. Jan 2012 B2
8107637 Asada et al. Jan 2012 B2
8111835 Inoue et al. Feb 2012 B2
8116472 Mizuno Feb 2012 B2
8126161 Togami et al. Feb 2012 B2
8135140 Shridhar et al. Mar 2012 B2
8144888 Berkhoff et al. Mar 2012 B2
8155330 Chen Apr 2012 B2
8155334 Joho et al. Apr 2012 B2
8165312 Clemow Apr 2012 B2
8165313 Carreras Apr 2012 B2
8184816 Ramakrishnan et al. May 2012 B2
8184822 Carreras et al. May 2012 B2
8189799 Shridhar et al. May 2012 B2
8194880 Avendano Jun 2012 B2
8194881 Haulick et al. Jun 2012 B2
8194882 Every et al. Jun 2012 B2
8199923 Christoph Jun 2012 B2
8218779 Isberg Jul 2012 B2
8218782 Asada et al. Jul 2012 B2
8229106 Greiss et al. Jul 2012 B2
8229127 Jorgensen et al. Jul 2012 B2
8249262 Chua et al. Aug 2012 B2
8249535 Ridgers et al. Aug 2012 B2
8254589 Mitsuhata Aug 2012 B2
8270625 Sommerfeldt et al. Sep 2012 B2
8280065 Nadjar et al. Oct 2012 B2
8285344 Kahn et al. Oct 2012 B2
8290177 Jeong et al. Oct 2012 B2
8290537 Lee et al. Oct 2012 B2
8306240 Pan et al. Nov 2012 B2
8311243 Tucker et al. Nov 2012 B2
8315405 Bakalos et al. Nov 2012 B2
8320591 Wurtz Nov 2012 B1
8325934 Kuo Dec 2012 B2
8331604 Saito et al. Dec 2012 B2
8345888 Carreras et al. Jan 2013 B2
8345890 Avendano et al. Jan 2013 B2
8355512 Pan et al. Jan 2013 B2
8374358 Buck et al. Feb 2013 B2
8374362 Ramakrishnan et al. Feb 2013 B2
8379884 Horibe et al. Feb 2013 B2
8385559 Theverapperuma et al. Feb 2013 B2
8385560 Solbeck et al. Feb 2013 B2
8401200 Tiscareno et al. Mar 2013 B2
8401204 Odent et al. Mar 2013 B2
8428274 Shiraishi et al. Apr 2013 B2
8442251 Jensen et al. May 2013 B2
8472682 Guissin et al. Jun 2013 B2
8498589 Husted et al. Jul 2013 B2
8515089 Nicholson Aug 2013 B2
8526627 Asao et al. Sep 2013 B2
8526628 Massie et al. Sep 2013 B1
8532310 Gauger, Jr. et al. Sep 2013 B2
8539012 Clark Sep 2013 B2
8548176 Bright Oct 2013 B2
8554556 Yu Oct 2013 B2
8559648 Christoph Oct 2013 B2
8559661 Tanghe Oct 2013 B2
8600085 Chen et al. Dec 2013 B2
8644521 Christoph et al. Feb 2014 B2
8681999 Theverapperuma et al. Mar 2014 B2
8682250 Magrath et al. Mar 2014 B2
8693699 Fellers et al. Apr 2014 B2
8693700 Bakalos et al. Apr 2014 B2
8693701 Scarlett et al. Apr 2014 B2
8706482 Konchitsky Apr 2014 B2
8718291 Alves et al. May 2014 B2
8737633 Sibbald et al. May 2014 B2
8737636 Park et al. May 2014 B2
8744100 Kojima Jun 2014 B2
8744844 Klein Jun 2014 B2
8750531 Delano et al. Jun 2014 B2
8774952 Kim et al. Jul 2014 B2
8775172 Konchitsky et al. Jul 2014 B2
8804974 Melanson Aug 2014 B1
8842848 Donaldson et al. Sep 2014 B2
8848936 Kwatra et al. Sep 2014 B2
8855330 Taenzer Oct 2014 B2
8903101 Christoph et al. Dec 2014 B2
8907829 Naderi Dec 2014 B1
8908877 Abdollahzadeh Milani et al. Dec 2014 B2
8909524 Stoltz et al. Dec 2014 B2
8942387 Elko et al. Jan 2015 B2
8942976 Li et al. Jan 2015 B2
8948407 Alderson et al. Feb 2015 B2
8948410 Van Leest Feb 2015 B2
8953813 Loeda Feb 2015 B2
8958571 Kwatra et al. Feb 2015 B2
8977545 Zeng et al. Mar 2015 B2
9014387 Hendrix et al. Apr 2015 B2
9020065 Wyville Apr 2015 B2
9020158 Wertz et al. Apr 2015 B2
9020160 Gauger, Jr. Apr 2015 B2
9031251 Alcock May 2015 B2
9037458 Park et al. May 2015 B2
9053697 Park et al. Jun 2015 B2
9055367 Li et al. Jun 2015 B2
9058801 Po et al. Jun 2015 B2
9066176 Hendrix et al. Jun 2015 B2
9071724 Do et al. Jun 2015 B2
9076427 Alderson et al. Jul 2015 B2
9076431 Kamath et al. Jul 2015 B2
9082387 Hendrix et al. Jul 2015 B2
9082391 Yermeche et al. Jul 2015 B2
9094744 Lu et al. Jul 2015 B1
9106989 Li et al. Aug 2015 B2
9107010 Abdollahzadeh Milani et al. Aug 2015 B2
9113243 Nielsen et al. Aug 2015 B2
9123321 Alderson et al. Sep 2015 B2
9123325 Iseki et al. Sep 2015 B2
9129586 Bajic et al. Sep 2015 B2
9131294 Bright Sep 2015 B2
9135907 Fellers et al. Sep 2015 B2
9142205 Alderson et al. Sep 2015 B2
9142207 Hendrix et al. Sep 2015 B2
9142221 Sun et al. Sep 2015 B2
9153226 Wurm Oct 2015 B2
9202455 Park et al. Dec 2015 B2
9202456 Lee et al. Dec 2015 B2
9203366 Eastty Dec 2015 B2
9204232 Klemmensen Dec 2015 B2
9208769 Azmi Dec 2015 B2
9208771 Zhou et al. Dec 2015 B2
9226066 Ohta et al. Dec 2015 B2
9226068 Hendrix et al. Dec 2015 B2
9230532 Lu et al. Jan 2016 B1
9253560 Goldstein et al. Feb 2016 B2
9264808 Zhou et al. Feb 2016 B2
9291697 Kim et al. Mar 2016 B2
9294836 Zhou et al. Mar 2016 B2
9478212 Sorensen et al. Oct 2016 B1
20010053228 Jones Dec 2001 A1
20040017921 Mantovani Jan 2004 A1
20050018862 Fisher Jan 2005 A1
20050117754 Sakawaki Jun 2005 A1
20060013408 Lee Jan 2006 A1
20060018460 McCree Jan 2006 A1
20060035593 Leeds Feb 2006 A1
20060055910 Lee Mar 2006 A1
20060133636 Harvey Jun 2006 A1
20060153400 Fujita et al. Jul 2006 A1
20060159282 Borsch Jul 2006 A1
20060161428 Fouret Jul 2006 A1
20060251266 Saunders et al. Nov 2006 A1
20070033029 Sakawaki Feb 2007 A1
20070047742 Taenzer et al. Mar 2007 A1
20070076896 Hosaka et al. Apr 2007 A1
20070208520 Zhang et al. Sep 2007 A1
20070258597 Rasmussen et al. Nov 2007 A1
20070297620 Choy Dec 2007 A1
20090034748 Sibbald Feb 2009 A1
20090175461 Nakamura et al. Jul 2009 A1
20100014683 Maeda et al. Jan 2010 A1
20100014685 Wurm Jan 2010 A1
20100061564 Clemow et al. Mar 2010 A1
20100082339 Konchitsky et al. Apr 2010 A1
20100124335 Wessling et al. May 2010 A1
20100166203 Peissig et al. Jul 2010 A1
20100166206 Macours Jul 2010 A1
20100226210 Kordis et al. Sep 2010 A1
20100284546 DeBrunner et al. Nov 2010 A1
20100296666 Lin Nov 2010 A1
20100310086 Magrath et al. Dec 2010 A1
20110026724 Doclo Feb 2011 A1
20110091047 Konchitsky et al. Apr 2011 A1
20110099010 Zhang Apr 2011 A1
20110116654 Chan et al. May 2011 A1
20110288860 Schevciw et al. Nov 2011 A1
20110317848 Ivanov et al. Dec 2011 A1
20120135787 Kusunoki et al. May 2012 A1
20120140917 Nicholson et al. Jun 2012 A1
20120155666 Nair Jun 2012 A1
20120179458 Oh et al. Jul 2012 A1
20120259626 Li Oct 2012 A1
20120263317 Shin et al. Oct 2012 A1
20120281850 Hyatt Nov 2012 A1
20120300960 Mackay et al. Nov 2012 A1
20120308025 Hendrix et al. Dec 2012 A1
20120308027 Kwatra Dec 2012 A1
20120308028 Kwatra et al. Dec 2012 A1
20130010982 Elko et al. Jan 2013 A1
20130156238 Birch et al. Jun 2013 A1
20130243198 Van Rumpt Sep 2013 A1
20130243225 Yokota Sep 2013 A1
20130301846 Alderson et al. Nov 2013 A1
20130301848 Zhou et al. Nov 2013 A1
20130315403 Samuelsson Nov 2013 A1
20130343571 Rayala et al. Dec 2013 A1
20140016803 Puskarich Jan 2014 A1
20140036127 Pong et al. Feb 2014 A1
20140044275 Goldstein et al. Feb 2014 A1
20140086425 Jensen et al. Mar 2014 A1
20140146976 Rundle May 2014 A1
20140177851 Kitazawa et al. Jun 2014 A1
20140177890 Hojlund et al. Jun 2014 A1
20140211953 Alderson et al. Jul 2014 A1
20140270222 Hendrix et al. Sep 2014 A1
20140294182 Axelsson et al. Oct 2014 A1
20140307887 Alderson Oct 2014 A1
20140307888 Alderson et al. Oct 2014 A1
20140314244 Yong Oct 2014 A1
20140314246 Hellman Oct 2014 A1
20140314247 Zhang Oct 2014 A1
20140341388 Goldstein et al. Nov 2014 A1
20150092953 Abdollahzadeh Milani et al. Apr 2015 A1
20150104032 Kwatra et al. Apr 2015 A1
20150161980 Alderson et al. Jun 2015 A1
20150161981 Kwatra Jun 2015 A1
20150163592 Alderson Jun 2015 A1
20150195646 Kumar et al. Jul 2015 A1
20150256660 Kaller et al. Sep 2015 A1
20150256953 Kwatra et al. Sep 2015 A1
20150269926 Alderson et al. Sep 2015 A1
20150296296 Lu et al. Oct 2015 A1
20150365761 Alderson et al. Dec 2015 A1
20160063988 Hendrix et al. Mar 2016 A1
Foreign Referenced Citations (78)
Number Date Country
101552939 Oct 2009 CN
102011013343 Sep 2012 DE
0412902 Feb 1991 EP
0756407 Jan 1997 EP
0898266 Feb 1999 EP
1691577 Aug 2006 EP
1880699 Jan 2008 EP
1921603 May 2008 EP
1947642 Jul 2008 EP
2133866 Dec 2009 EP
2216774 Aug 2010 EP
2237573 Oct 2010 EP
2259250 Dec 2010 EP
2395500 Dec 2011 EP
2395501 Dec 2011 EP
2551845 Jan 2013 EP
2401744 Nov 2004 GB
2436657 Oct 2007 GB
2455821 Jun 2009 GB
2455824 Jun 2009 GB
2455828 Jun 2009 GB
2484722 Apr 2012 GB
2539280 Dec 2016 GB
52071502 May 1977 JP
03162099 Jul 1991 JP
H05265468 Oct 1993 JP
05341792 Dec 1993 JP
06006246 Jan 1994 JP
H06-186985 Jul 1994 JP
H06232755 Aug 1994 JP
07098592 Apr 1995 JP
07104769 Apr 1995 JP
H017106886 Apr 1995 JP
07240989 Sep 1995 JP
07325588 Dec 1995 JP
H07334169 Dec 1995 JP
H08227322 Sep 1996 JP
H10247088 Sep 1998 JP
H10257159 Sep 1998 JP
10294989 Nov 1998 JP
H11305783 Nov 1999 JP
2000089770 Mar 2000 JP
2002010355 Jan 2002 JP
2004007107 Jan 2004 JP
2006217542 Aug 2006 JP
2007003994 Jan 2007 JP
2007060644 Mar 2007 JP
2007175486 Jul 2007 JP
2008015046 Jan 2008 JP
2010277025 Dec 2010 JP
2011055494 Mar 2011 JP
2011061449 Mar 2011 JP
WO 199113429 Sep 1991 WO
WO 1993004529 Mar 1993 WO
WO 1994007212 Mar 1994 WO
WO 1999011045 Mar 1999 WO
WO 2003015074 Feb 2003 WO
WO 2003015275 Feb 2003 WO
WO 2004009007 Jan 2004 WO
WO 2004017303 Feb 2004 WO
WO 2006125061 Nov 2006 WO
WO 2006128768 Dec 2006 WO
WO 2007007916 Jan 2007 WO
WO 2007011337 Jan 2007 WO
WO 2007110807 Oct 2007 WO
WO 2007113487 Nov 2007 WO
WO 2009041012 Apr 2009 WO
WO 2009110087 Sep 2009 WO
WO 2009155696 Dec 2009 WO
WO 2010117714 Oct 2010 WO
WO 2010131154 Nov 2010 WO
WO 2012134874 Oct 2012 WO
WO-2013106370 Jul 2013 WO
WO 2015038255 Mar 2015 WO
WO 2015088639 Jun 2015 WO
WO 2015088651 Jun 2015 WO
WO 2016054186 Apr 2016 WO
WO-2016100602 Jun 2016 WO
Non-Patent Literature Citations (62)
Entry
Wu, et al., “Decoupling feedforward and feedback structures in hybrid active noise control systems for uncorrelated narrowband disturbances”, Journal of Sound and Vibration, vol. 350, Aug. 18, 2015, pp. 1-10, Elsevier.
Lopez-Caudana, et al., “A Hybrid Noise Cancelling Algorithm with Secondary Path Estimation”, WSEAS Transactions on Signal Processing, vol. 4, No. 12, Dec. 2008, pp. 677-687, Mexico.
Goeckler, H.G. et al., “Efficient Multirate Digital Filters Based on Fractional Polyphase Decomposition for Subnyquist Processing”, Proceedings of the European Conference on Circuit Theory & Design, vol. 1, Jan. 1, 1999, pp. 409-412.
U.S. Appl. No. 13/686,353, filed Nov. 27, 2012, Hendrix, et al.
U.S. Appl. No. 13/794,979, filed Mar. 12, 2013, Alderson, et al.
U.S. Appl. No. 14/210,537, filed Mar. 14, 2014, Abdollahzadeh Milani, et.
U.S. Appl. No. 14/210,589, filed Mar. 14, 2014, Abdollahzadeh Milani, et.
U.S. Appl. No. 13/721,832, filed Dec. 20, 2012, Lu, et al.
U.S. Appl. No. 13/968,013, filed Aug. 15, 2013, Abdollahzadeh Milani et.
U.S. Appl. No. 15/070,564, filed Mar. 15, 2016, Zhou, et al.
U.S. Appl. No. 15/130,271, filed Apr. 15, 2016, Hendrix, et al.
Pfann, et al., “LMS Adaptive Filtering with Delta-Sigma Modulated Input Signals,” IEEE Signal Processing Letters, Apr. 1998, pp. 95-97, vol. 5, No. 4, IEEE Press, Piscataway, NJ.
Toochinda, et al. “A Single-Input Two-Output Feedback Formulation for ANC Problems,” Proceedings of the 2001 American Control Conference, Jun. 2001, pp. 923-928, vol. 2, Arlington, VA.
Kuo, et al., “Active Noise Control: A Tutorial Review,” Proceedings of the IEEE, Jun. 1999, pp. 943-973, vol. 87, No. 6, IEEE Press, Piscataway, NJ.
Johns, et al., “Continuous-Time LMS Adaptive Recursive Filters,” IEEE Transactions on Circuits and Systems, Jul. 1991, pp. 769-778, vol. 38, No. 7, IEEE Press, Piscataway, NJ.
Shoval, et al., “Comparison of DC Offset Effects in Four LMS Adaptive Algorithms,” IEEE Transactions on Circuits and Systems II: Analog and Digital Processing, Mar. 1995, pp. 176-185, vol. 42, Issue 3, IEEE Press, Piscataway, NJ.
Mali, Dilip, “Comparison of DC Offset Effects on LMS Algorithm and its Derivatives,” International Journal of Recent Trends in Engineering, May 2009, pp. 323-328, vol. 1, No. 1, Academy Publisher.
Kates, James M., “Principles of Digital Dynamic Range Compression,” Trends in Amplification, Spring 2005, pp. 45-76, vol. 9, No. 2, Sage Publications.
Gao, et al., “Adaptive Linearization of a Loudspeaker,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 14-17, 1991, pp. 3589-3592, Toronto, Ontario, CA.
Silva, et al., “Convex Combination of Adaptive Filters With Different Tracking Capabilities,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 15-20, 2007, pp. III 925-928, vol. 3, Honolulu, HI, USA.
Akhtar, et al., “A Method for Online Secondary Path Modeling in Active Noise Control Systems,” IEEE International Symposium on Circuits and Systems, May 23-26, 2005, pp. 264-267, vol. 1, Kobe, Japan.
Davari, et al., “A New Online Secondary Path Modeling Method for Feedforward Active Noise Control Systems,” IEEE International Conference on Industrial Technology, Apr. 21-24, 2008, pp. 1-6, Chengdu, China.
Lan, et al., “An Active Noise Control System Using Online Secondary Path Modeling With Reduced Auxiliary Noise,” IEEE Signal Processing Letters, Jan. 2002, pp. 16-18, vol. 9, Issue 1, IEEE Press, Piscataway, NJ.
Liu, et al., “Analysis of Online Secondary Path Modeling With Auxiliary Noise Scaled by Residual Noise Signal,” IEEE Transactions on Audio, Speech and Language Processing, Nov. 2010, pp. 1978-1993, vol. 18, Issue 8, IEEE Press, Piscataway, NJ.
Black, John W., “An Application of Side-Tone in Subjective Tests of Microphones and Headsets”, Project Report No. NM 001 064.01.20, Research Report of the U.S. Naval School of Aviation Medicine, Feb. 1, 1954, 12 pages (pp. 1-12 in pdf), Pensacola, FL, US.
Peters, Robert W., “The Effect of High-Pass and Low-Pass Filtering of Side-Tone Upon Speaker Intelligibility”, Project Report No. NM 001 064.01.25, Research Report of the U.S. Naval School of Aviation Medicine, Aug. 16, 1954, 13 pages (pp. 1-13 in pdf), Pensacola, FL, US.
Lane, et al., “Voice Level: Autophonic Scale, Perceived Loudness, and the Effects of Sidetone”, The Journal of the Acoustical Society of America, Feb. 1961, pp. 160-167, vol. 33, No. 2., Cambridge, MA, US.
Liu, et al., “Compensatory Responses to Loudness-shifted Voice Feedback During Production of Mandarin Speech”, Journal of the Acoustical Society of America, Oct. 2007, pp. 2405-2412, vol. 122, No. 4.
Paepcke, et al., “Yelling in the Hall: Using Sidetone to Address a Problem with Mobile Remote Presence Systems”, Symposium on User Interface Software and Technology, Oct. 16-19, 2011, 10 pages (pp. 110 in pdf), Santa Barbara, CA, US.
Therrien, et al., “Sensory Attenuation of Self-Produced Feedback: The Lombard Effect Revisited”, PLOS One, Nov. 2012, pp. 1-7, vol. 7, Issue 11, e49370, Ontario, Canada.
Abdollahzadeh Milani, et al., “On Maximum Achievable Noise Reduction in ANC Systems”,2010 IEEE International Conference on Acoustics Speech and Signal Processing, Mar. 14-19, 2010, pp. 349-352, Dallas, TX, US.
Cohen, Israel, “Noise Spectrum Estimation in Adverse Environments: Improved Minima Controlled Recursive Averaging”, IEEE Transactions on Speech and Audio Processing, Sep. 2003, pp. 1-11, vol. 11, Issue 5, Piscataway, NJ, US.
Ryan, et al., “Optimum Near-Field Performance of Microphone Arrays Subject to a Far-Field Beampattern Constraint”, J. Acoust. Soc. Am., Nov. 2000, pp. 2248-2255, 108 (5), Pt. 1, Ottawa, Ontario, Canada.
Cohen, et al., “Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech Enhancement”, IEEE Signal Processing Letters, Jan. 2002, pp. 12-15, vol. 9, No. 1, Piscataway, NJ, US.
Martin, Rainer, “Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum Statistics”, IEEE Transactions on Speech and Audio Processing, Jul. 2001, pp. 504-512, vol. 9, No. 5, Piscataway, NJ, US.
Martin, Rainer, “Spectral Subtraction Based on Minimum Statistics”, Signal Processing VII Theories and Applications, Proceedings of EUSIPCO-94, 7th European Signal Processing Conference, Sep. 13-16, 1994, pp. 1182-1185, vol. III, Edinburgh, Scotland, U.K.
Booij, et al., “Virtual sensors for local, three dimensional, broadband multiple-channel active noise control and the effects on the quiet zones”, Proceedings of the International Conference on Noise and Vibration Engineering, ISMA 2010, Sep. 20-22, 2010, pp. 151-166, Leuven.
Kuo, et al., “Residual noise shaping technique for active noise control systems”, J. Acoust. Soc. Am. 95 (3), Mar. 1994, pp. 1665-1668.
Lopez-Gaudana, Edgar Omar, “Active Noise Cancellation: The Unwanted Signal and The Hybrid Solution”, Adaptive Filtering Applications, Dr. Lino Garcia (Ed.), Jul. 2011, pp. 49-84, ISBN: 978-953-307306-4, InTech.
Senderowicz, et al., “Low-Voltage Double-Sampled Delta-Sigma Converters”, IEEE Journal on Solid- State Circuits, Dec. 1997, pp. 1907-1919, vol. 32, No. 12, Piscataway, NJ.
Hurst, et al., “An improved double sampling scheme for switched-capacitor delta-sigma modulators”, 1992 IEEE Int. Symp. On Circuits and Systems, May 10-13, 1992, vol. 3, pp. 1179-1182, San Diego, CA.
Campbell, Mikey, “Apple looking into self-adjusting earbud headphones with noise cancellation tech”, Apple Insider, Jul. 4, 2013, pp. 1-10 (10 pages in pdf), downloaded on May 14, 2014 from http://appleinsider.com/articles/13/07/04/apple-looking-into-self-adjusting-earbud-headphones-with-noise-cancellation-tech.
Jin, et al. “A simultaneous equation method-based online secondary path modeling algorithm for active noise control”, Journal of Sound and Vibration, Apr. 25, 2007, pp. 455-474, vol. 303, No. 3-5, London, GB.
Erkelens, et al., “Tracking of Nonstationary Noise Based on Data-Driven Recursive Noise Power Estimation”, IEEE Transactions on Audio Speech and Language Processing, Aug. 2008, pp. 1112-1123, vol. 16, No. 6, Piscataway, NJ, US.
Rao, et al., “A Novel Two State Single Channel Speech Enhancement Technique”, India Conference (INDICON) 2011 Annual IEEE, IEEE, Dec. 2011, 6 pages (pp. 1-6 in pdf), Piscataway, NJ, US.
Rangachari, et al., “A noise-estimation algorithm for highly non-stationary environments”, Speech Communication, Feb. 2006, pp. 220-231, vol. 48, No. 2. Elsevier Science Publishers.
Parkins, et al., “Narrowband and broadband active control in an enclosure using the acoustic energy density”, J. Acoust. Soc. Am. Jul. 2000, pp. 192-203, vol. 108, issue 1, US.
Feng, Jinwei et al., “A broadband self-tuning active noise equaliser”, Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 62, No. 2, Oct. 1, 1997, pp. 251-256.
Zhang, Ming et al., “A Robust Online Secondary Path Modeling Method with Auxiliary Noise Power Scheduling Strategy and Norm Constraint Manipulation”, IEEE Transactions on Speech and Audio Processing, IEEE Service Center, New York, NY, vol. 11, No. 1, Jan. 1, 2003.
Lopez-Gaudana, Edgar et al., “A hybrid active noise cancelling with secondary path modeling”, 51st Midwest Symposium on Circuits and Systems, 2008, MWSCAS 2008, Aug. 10, 2008, pp. 277-280.
Widrow, B., et al., Adaptive Noise Cancelling; Principles and Applications, Proceedings of the IEEE, Dec. 1975, pp. 1692-1716, vol. 63, No. 13, IEEE, New York, NY, US.
Morgan, et al., A Delayless Subband Adaptive Filter Architecture, IEEE Transactions on Signal Processing, IEEE Service Center, Aug. 1995, pp. 1819-1829, vol. 43, No. 8, New York, NY, US.
Rafaely, Boaz, “Active Noise Reducing Headset—an Overview”, The 2001 International Congress and Exhibition on Noise Control Engineering, Aug. 27-30, 2001, 10 pages (pp. 1-10 in pdf), The Netherlands.
Ray, et al., “Hybrid Feedforward-Feedback Active Noise Reduction for Hearing Protection and Communication”, The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, Jan. 2006, pp. 2026-2036, vol. 120, No. 4, New York, NY.
Office Action in U.S. Appl. No. 13/968,007 dated Apr. 16, 2015, 38 pages (pp. 1-38 in pdf).
Notice of Allowance in U.S. Appl. No. 13/968,007 dated Sep. 23, 2015, 14 pages (pp. 1-14 in pdf).
Notice of Allowance in U.S. Appl. No. 13/968,007 dated May 5, 2016, 7 pages (pp. 1-7 in pdf).
International Search Report and Written Opinion in PCT/US2014/016833 dated Jun. 2, 2014, 13 pages (pp. 1-13 in pdf).
Written Opinion of the International Preliminary Examining Authority in PCT/US2014/016833 dated Mar. 3, 2015, 4 pages (pp. 1-4 in pdf).
International Preliminary Report on Patentability in PCT/US2014/016833 dated Jun. 19, 2015, 31 pages (pp. 1-31 in pdf).
U.S. Appl. No. 14/832,585, filed Aug. 21, 2015, Zhou.
U.S. Appl. No. 15/241,375, filed Aug. 19, 2016, Lu, et al.
Related Publications (1)
Number Date Country
20160316291 A1 Oct 2016 US
Provisional Applications (1)
Number Date Country
61783267 Mar 2013 US
Continuations (1)
Number Date Country
Parent 13968007 Aug 2013 US
Child 15202644 US