The present invention relates generally to a modular, low lethal projectile system.
In 2021, approximately 694,050 violent crimes were reported in the US. As such, it is not unreasonable for one to want to carry a firearm for protection. However, some states and/or municipalities have made it very difficult to obtain carry permits for lethal weapons that may be used for self-defense, including many high population density cities that have a history of high violent crime rates. An alternative to lethal weapons, such as firearms, is non-lethal weapons, including stun guns and pepper spray. However, firearm advocates would be quick to point out that these alternatives are inferior to firearms for self-defense for multiple reasons. Additionally, many self-defense experts say that simply showing a firearm to one's attacker can actually act as a deterrent since many victims of violent crimes are seen as easy targets. Therefore, there is a very strong psychological component to self-defense that current non-lethal weapons can't trigger in the same way lethal firearms can regardless of how much easier it is to obtain non-lethal weapons.
On the other hand, though law enforcement are able to carry lethal weapons for use in the line of duty, they must be very careful to determine when it is appropriate to use lethal force non-lethal force. This is especially true when trying to establish order during chaotic situations, such as riots and domestic violence incidents. Various tools, equipment, and weapons are deployed by law enforcement to help immobilize violent offenders and unruly mobs, but even non-lethal weapons currently used by law enforcement have resulted in fatalities as well as severe physical trauma. In particular, rubber/polymer slugs and beanbags fired from shotguns have been responsible for numerous deaths and trauma, particularly when they strike the head and neck areas of a target.
One of the more common forms of a non-lethal weapon used for crowd control comprises gas powered firearms (such as air guns and/or paintball guns) configured to propel chili powder filled projectiles at a target. When the chili powder filled projectile strikes a target, it breaks, resulting in the chili powder being dispersed throughout the immediate surroundings. The suspended chili powder burns people's eyes, faces, and noses, causing said people to experience a choking feeling that can leave them unable to breath. This in turn results in said people ceasing their unruly behavior so that order may be restored. Unfortunately, gas powered firearms require an air tank and a loading system, which is needed in addition to other firearms law enforcement personnel might be carrying. Further, some gas-powered firearms don't work as well in colder weather due to the liquified gas under high pressure leaking into the gas powered firearm through the regulator, which can ultimately result in misfires and damage to the gas powered firearm.
Accordingly, a need exists in the art for an improved low lethal projectile system that can be fired from traditional firearms.
A modular, low lethal projectile system configured to fire from traditional firearms is provided. In one aspect, the system of the present disclosure is configured to allow a user to easily create customized, non-lethal projectiles that will have consistent results. In another aspect, the system is configured to be used with lethal firearms in situations where non-lethal force is desired. In yet another aspect, the system is configured to such that only modular, low lethal projectile may be loaded into firearms. In yet another aspect, the system is configured to reduce the chance of injury by providing a shell configured to shatter upon impact. Generally, the system of the present disclosure is configured to provide a modular, low lethal projectile that can be used with both lethal firearms and non-lethal firearms.
The modular, low lethal projectile system generally comprises exterior shell, propellant cartridge, and projectile assembly. The exterior shell preferably comprises an outer wall, internal structure, first internal cavity, and second internal cavity. A first opening on an expulsion end of said exterior shell allows for access to the first internal cavity and a second opening on a rear end allows for access to the second internal cavity. A projectile mounting area of the first internal cavity allows for the mounting of a projectile therein whereas a propellant mounting area of the second internal cavity allows for the mounting of a propellant cartridge therein. Materials that may be used to create the exterior shell include, but are not limited to, polymer, metal, or any combination thereof. In a preferred embodiment, the exterior shell is made of injection molded polymer.
The propellant cartridge preferably comprises a cartridge primer, hollow casing, wadding, and propellant. The cartridge primer may comprise a cylindrical cup, a primer mixture, and an anvil, wherein the cylindrical cup comprises a cylindrical base, interior sidewall, and exterior sidewall. The primer mixture is disposed on the cylindrical base of the cylindrical cup in a way such it is interposed between the lower surface of the anvil and the cylindrical base of the cylindrical cup. The anvil of the cartridge primer may be located in the cylindrical cup and may comprise an upper surface, lower surface, and side surface. In a preferred embodiment, the anvil may be part of the sidewall in a way such that the anvil is a part of the cylindrical cup. A striking surface may be formed with a portion of the cylindrical base of the cylindrical cup, wherein the striking surface is adjacent to a portion of the primer material that is interposed between the lower surface of the anvil and the cylindrical base of the cylindrical cup. In this way, striking the exterior surface of the cylindrical cup may cause the anvil to ignite the primer material. In a preferred embodiment, the propellant cartridge is a rimfire blank.
The propellant cartridge is composed of a capsule tube and a sealing member. The capsule tube is preferably an injection-molded polymer tube with a closed end and an open end, wherein said open end is opposite said closed end and is configured to so that an effective composition may be added to an internal cavity of said capsule tube. The sealing member secures to the open end of the capsule tube and seals off the open end so that no effective composition can be removed. The capsule tube is preferably configured in a way such that it shatters when the propellant cartridge is ejected from the exterior shell and strikes a target. When shattered in this manner, the effective composition loaded within the capsule tube is spread out or attached to the target. Substances that may act as the effective composition include, but are not limited to, irritant powder, irritant liquid, irritant gas, therapeutic powder, therapeutic liquid, marking powder, marking liquid, particles with deterrent effects, or their combinations.
The foregoing summary has outlined some features of the system and method of the present disclosure so that those skilled in the pertinent art may better understand the detailed description that follows. Additional features that form the subject of the claims will be described hereinafter. Those skilled in the pertinent art should appreciate that they can readily utilize these features for designing or modifying other structures for carrying out the same purpose of the system and method disclosed herein. Those skilled in the pertinent art should also realize that such equivalent designs or modifications do not depart from the scope of the system and method of the present disclosure.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
In the Summary above and in this Detailed Description, and the claims below, and in the accompanying drawings, reference is made to particular features, including method steps, of the invention. It is to be understood that the disclosure of the invention in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the invention, or a particular claim, that feature can also be used, to the extent possible, in combination with/or in the context of other particular aspects of the embodiments of the invention, and in the invention generally. The term “comprises” and grammatical equivalents thereof are used herein to mean that other components, ingredients, steps, etc. are optionally present. For example, an article “comprising” components A, B, and C can contain only components A, B, and C, or can contain not only components A, B, and C, but also one or more other components.
As illustrated in
As illustrated in
The exterior shell 201 preferably comprises an outer wall 205, internal structure 210, first internal cavity 215A, and second internal cavity 220A. A first opening 215 on an expulsion end of said exterior shell 201 allows for access to the first internal cavity 215A and a second opening 220 on a rear end of said exterior shell 201 allows for access to the second internal cavity 220A. A projectile mounting area 215B of the first internal cavity 215A allows for the mounting of a projectile assembly 401 therein whereas a propellant mounting area 220B of the second internal cavity 220A allows for the mounting of a propellant cartridge 301 therein. In a preferred embodiment, a projectile assembly 401 may be inserted into said first internal cavity 215A via said first opening 215 and positioned within said first internal cavity 215A in a way such that the projectile assembly 401 is seated above a top point of the internal structure 210 of the exterior shell 201 and against said projectile mounting area 215B. The propellant cartridge 301 may be inserted into said second internal cavity 220A via said second opening 220 and positioned within said second internal cavity 220A in a way such that the propellant cartridge 301 is seated below the top point of the internal structure 210 of the exterior shell 201 and mounted against said propellant mounting area 220B defined by said internal structure 210. In a preferred embodiment, as illustrated in
As illustrated in
As illustrated in
The casing base 310 may comprise a top surface, bottom surface, and a sidewall. The bottom surface of the casing base 310 may be configured to accept an at least one cartridge primer 305. In the preferred embodiment, as shown in
The hollow casing 315 is preferably incorporated into the cartridge primer 305 in a way such that the cartridge primer 305 and hollow casing 315 create a propellant cartridge 301 in the form of a rimfire casing. The exterior surface of the propellant cartridge 301 may have a groove where the casing base 310 and hollow casing 315 connect. The hollow casing 315 may comprise a cylindrical portion that defines a bottom end and a tapered section that defines a top end. In a preferred embodiment, the top end of the hollow casing 315 may remain open so that the propellant cartridge 301 may be filled with propellant 325 and wadding 320. In another preferred embodiment, the tapered section may have a continuous cylindrical wall extending outwardly from the open top end to the cylindrical portion. The cylindrical portion may have a continuous cylindrical wall extending vertically from said tapered section to said casing base 310.
In a preferred embodiment, the propellant cartridge 301 has a base diameter of about 0.278 inches (in), casing diameter of about 0.226 in, and casing length of approximately 0.613 inches, which is approximately the base diameter, casing diameter, and casing length of a .22 Long Rifle casing. The neck diameter of the propellant cartridge 301 is preferably configured in a way such that it is secured against the propellant mounting area 220B when the propellant cartridge 301 is placed within the second internal cavity 220A. In a preferred embodiment, the neck diameter is no more than 1 millimeter wider than the diameter of the second opening 220. However, one with skill in the art will appreciate that the propellant cartridge 301 may comprise of any base diameter, shoulder width, height, and neck diameter that will allow for a propellant 325 to ignite within the propellant cartridge 301 and allow for the resulting hot, expanding gasses to transfer from the propellant cartridge 301 (located within the second internal cavity) to the first internal cavity 215A with minimal to no losses.
As mentioned previously, the propellant cartridge 301 may be substantially filled with a propellant 325 that deflagrates upon ignition of the at least one cartridge primer 305. Upon deflagration of the propellant 325, the interior of the propellant cartridge 301 may fill with hot, expanding gasses. As the gasses expand, pressure may build within the propellant cartridge 301. Because the wadding 320 is configured to plug the propellant cartridge 301, pressure may build behind the wadding 320 before expanding into the first internal cavity 215A. As pressure builds within the first internal cavity 215A, it may lead to the expulsion of the projectile assembly 401 from the exterior shell 201 and through a borehole 605D of a barrel assembly 605 of a firearm 601. Because of the design of the projectile assembly 401, high pressures may build behind the projectile within the exterior shell 201, allowing a user to use less propellant 325 to obtain higher projectile assembly 401 velocities. A lower amount of propellant 325 may create a larger amount of unfilled space within the propellant cartridge 301 for the propellant 325 to react, which may increase the efficiency in which propellant 325 deflagrates within the propellant cartridge 301 and the chamber 605B of the barrel assembly 605.
As illustrated in
In a preferred embodiment, the effective composition 415 is a capsaicin rich powder, such as chili powder. For instance, as illustrated in
As illustrated in
The main body 412C of the buffer unit 412 preferably comprises at least two conical sealing sections 412D that are configured to make substantial contact with the projectile mounting area 215B of the exterior shell 201. The at least two conical sealing sections 412D prevent expanding gasses from pushing past the projectile assembly 401 and into the barrel body 605A. As such, the at least two conical sealing sections 412D ensure that pressure builds up behind the projectile and subsequently propels the projectile assembly 401 out the exterior shell 201 and barrel body 605A of the firearm 601 from which it is fired. Additionally, some preferred embodiments of the at least two conical sealing sections 412D may be configured in a way such that at least one contacts the barrel body 605A as the sealed projectile assembly 401 is propelled through the barrel body 605A. When a top conical sealing section is configured in such a way, it may prevent gasses from escaping around the projectile as it moves from the exterior shell 201 and into the barrel body 605A since the top conical sealing section will make contact with the bore of the barrel body 605A prior to the bottom conical sealing section losing contact with the exterior shell 201, as illustrated in
In another preferred embodiment, as illustrated in
As mentioned previously, a projectile assembly 401 may be placed within the first internal cavity 215A of the exterior shell 201 via the first opening 215 of said exterior shell 201. As illustrated in
For instance, standard 12-gauge loads may have an average overall length between 2.5 inches and 3.5 inches and a hull rated to withstand a maximum of 11,500 psi pressure created by deflagration of about 20 grains of smokeless powder and 85 grains of black powder. The modular, low lethal projectile system 100 may have an average overall length greater than what the firearm 601 is normally configured to load, which is possible due to the rounded design of the projectile protruding from the expulsion end of the exterior shell 201, as illustrated in
In a preferred embodiment, as illustrated in
In a preferred embodiment, the magazine 701 is a drum magazine 701. The magazine 701 may comprise a housing, first guide, second guide, sprocket assembly, and magazine 701 spring. The housing protects the plurality of modular, low lethal projectile systems 100 loaded within the housing and holds them in place so that they may be provided to the firearm 601 via the magazine well. The first and second guides are rotatably secured within the housing and are concentric with one another so that cartridges may be inserted therein. In a preferred embodiment, the first guide is configured with a protrusion 705 so that it may only accept exterior shell 201s having said notch 225A. The sprocket assembly may rotate the guides within the housing, which causes the modular, low lethal projectiles to be guided to the magazine well and loading port. The magazine 701 spring provides the force that causes the sprocket assembly to rotate. Whenever a modular, low lethal projectile is stripped from the magazine 701 by the firearm 601, the next modular, low lethal projectile system 100 is pushed into position by the magazine 701 spring, sprocket assembly, and guides so that continuous, uninterrupted firing may be achieved.
In another embodiment, the magazine 701 may be a tubular, rotary, pan, or helical magazine 701. In a preferred embodiment, the modular, low lethal projectile systems 100 may stack in a single row within the magazine 701, but one with skill in the art will recognize that the modular, low lethal projectile system 100 may stack within the magazine 701 in any manner without departing from the inventive subject matter as disclosed herein so long as the magazine 701 can provide the firearm 601 with said modular, low lethal projectile system 100 via a magazine well. Additionally, because the preferred embodiment of the magazine 701 requires a protrusion 705, only modular, low lethal projectile systems 100 having said notch 225A may be loaded therein, preventing the loading of ammunition configured to critically wound people. However, the arrangement of the notch 225A on the exterior shell 201 has no effect on the loading of modular, low lethal projectiles in traditional magazines 701 that are currently available. In other words, lethal ammunition currently available cannot be loaded into the preferred embodiment of the magazine 701 described herein but a modular, low lethal projectile systems 100 having a notch 225A can be loaded into traditional magazines 701 configured to fire lethal ammunition.
In order to fire a modular, low lethal projectile systems 100 from a firearm 601, the user preferably applies a force to the propellant cartridge 301 via a firing pin 710 in order to deflagrate the propellant 325 within. In a preferred embodiment, the firing pin 710 may transfer energy from a trigger mechanism of the firearm 601 to the cartridge primer 305 of the propellant cartridge 301. The firing pin 710 may comprise a rod with a striking end and a punching end, wherein said striking end may be struck in a way such that the firing pin 710 may transfer energy to the cartridge primer 305 via the punching end. In a preferred embodiment, the firing pin 710 may be made of a hardened material in order to reduce the chance of the firing pin 710 bending. In another preferred embodiment, the firing pin 710 may be made of a lightweight material to allow for a quicker and more efficient transfer of energy from the firing pin 710 to the cartridge primer 305. For instance, a firing pin 710 made of a titanium alloy may have the qualities of being both hardened and lightweight, whereas a firing pin 710 made of a lightweight polymer may possess the quality of being lightweight but not hardened.
In yet another preferred embodiment, the punching end of the firing pin 710 may be rounded. By rounding the punching end of the firing pin 710, a user may ensure the cartridge primer 305 of the propellant cartridge 301 may be indented rather than pierced, which may reduce the chance that the cartridge primer 305 may fail to ignite. However, one with skill in the art may appreciate that the firing pin 710 may comprise of any shape and any material that may allow the firing pin 710 to transfer a force to a cartridge primer 305 in a way such that the firing pin 710 may ignite the cartridge primer material 305B, which may subsequently deflagrate the propellant 325 of the propellant cartridge 301.
The firing pin 710 may be floating or spring-loaded. The only force acting on a firing pin 710 that is floating is the force transferred to the firing pin 710 from the user. Though the bolt may be stopped by the modular, non-lethal projectile system 100 and chamber 605B, a floating firing pin 710 may continue to move forward within the bolt due to its own inertia. If the firing pin's 610's momentum is great enough, the propellant 325 in the propellant cartridge 301 may be deflagrated after the firing pin 710 causes the cartridge primer material 305B of the at least one cartridge primer 305 to ignite. To lessen the possibility of an unintentional deflagration of the propellant 325, the firing pin 710 may be constructed of a lightweight material. Alternatively, the bolt assembly may further comprise a firing pin 710 spring to make the firing pin 710 spring-loaded. The firing pin 710 spring may be positioned within the bolt body in a way such that the firing pin 710 spring forces the firing pin 710 away from the cartridge primer 305. In a preferred embodiment, the firing pin 710 spring may be weak enough to not significantly impede the transfer of energy from the hammer to the at least one cartridge primer 305 but strong enough to counter the inertia of the firing pin 710 as it moves forward within the bolt body. In this way, the firing pin 710 may only contact the at least one cartridge primer 305 when a force is applied to the firing pin 710 via a component, such as a hammer.
In a preferred embodiment, the exterior shell 201 and a firing pin 710 of a firearm 601 (as the dash line indicated in
A barrel assembly 605 operably connected to the firing pin 710 may guide the projectile assembly 401 and hot, expanding gasses to a desired target. The barrel assembly 605 may comprise of a barrel body 605A, chamber 605B, and muzzle 605C. The barrel body 605A is the elongated portion of the barrel assembly 605 made of a hardened material comprising a chamber end and muzzle end. A borehole 605D extending from the chamber end to the muzzle end may be configured to allow the projectile assembly 401 to pass from the chamber to the muzzle of the barrel assembly 605. In a preferred embodiment, the diameter of the borehole 605D and dimensional uniformity of the borehole 605D is the same from the chamber end to the muzzle end. In another preferred embodiment, the barrel assembly 605 may be configured to withstand pressures greater than 15,000 pounds per square inch (psi). In yet another preferred embodiment, the barrel assembly 605 may be made of machined steel alloy, carbon fiber, or a combination thereof; however, one with skill in the art may appreciate that the barrel assembly 605 may comprise of any material that may allow the barrel assembly 605 to withstand pressures of greater than 15,000 psi.
The barrel assembly 605 may be configured in a way such that the modular, low lethal projectile system 100 may be inserted into the barrel assembly 605 via the chamber 605B. The chamber 605B is preferably connected to the chamber end of the barrel body 605A and may be configured to house a modular, low lethal projectile system 100 of a particular size so that the modular, low lethal projectile system 100 fits snuggly within the chamber 605B, allowing the firing pin 710 to consistently strike the cartridge primer 305 of the propellant cartridge 301. Upon insertion of a modular, low lethal projectile system 100 into the chamber 605B, a portion of the projectile assembly 401 may be inserted into the chamber end of the borehole 605D, as illustrated in
In another preferred embodiment, the borehole 605D may have the same circumference as the at least two conical sealing sections of the buffer unit 412 so the buildup of gasses behind the projectile assembly 401 is increased, thus increasing the pressure behind the projectile and effectively increasing the velocity of the projectile assembly 401 as it passes through the barrel body 605A via the borehole 605D. In yet another preferred embodiment, the muzzle end of the barrel body 605A may comprise helical grooves to cause the projectile assembly 401 to spin as it exits the muzzle end. Preferably, the helical grooves may cause the projectile assembly 401 to perform a full revolution once every twenty-eight inches it travels after exiting the barrel assembly 605. However, the helical grooves may cause the projectile assembly 401 to perform a full revolution as low as once every seven inches or as high as once every thirty-five inches without departing from the inventive subject matter described herein.
Once the user has created the sealed projectile assembly, a user may seat the sealed projectile assembly within the first internal cavity of the exterior shell during step 925, wherein the sealed projectile assembly is secured against the projectile mounting area of said first internal cavity. The user may secure the entire sealed projectile assembly within the exterior shell or only a portion of the exterior shell, depending on the size of the exterior shell relative the sealed projectile assembly as well as the desired size of the expansion chamber created within the exterior shell between the buffer of the sealed projectile assembly and the internal structure. The user may secure the propellant cartridge within the second internal cavity of the exterior shell during step 930, wherein the propellant cartridge is secured against the propellant mounting area of said second internal cavity. The user may proceed to terminate step 935 once the propellant cartridge and sealed projectile assembly are secured within the exterior shell.
The implementations set forth in the foregoing description do not represent all implementations consistent with the subject matter described herein but are examples consistent with the disclosed subject matter. Although variations have been described in detail above, other modifications or additions may be possible. In particular, further features and/or variations may be provided in addition to those set forth herein. For example, the implementations described above may be directed to various combinations and subcombinations of the disclosed features and/or combinations and subcombinations of several further features disclosed above. In addition, the logic flow depicted in the accompanying figures and/or described herein do not necessarily require the particular order shown, or sequential order, to achieve desirable results. It will be readily understood to those skilled in the art that various other changes in the details, materials, and arrangements of the parts and method stages which have been described and illustrated in order to explain the nature of this inventive subject matter may be made without departing from the principles and scope of the present disclosure.
This application is a continuation in part of and claims the benefit of U.S. application Ser. No. 17/875,952, filed on Jul. 28, 2022, which application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17875952 | Jul 2022 | US |
Child | 18091439 | US |