The present invention relates generally to improvements in low light vision and thermal imaging devices and specifically to providing thermionic cooling for such devices.
Devices to enhance vision under low light conditions, known as night vision devices, and thermal imaging devices have long been available and relied on by the military and law enforcement agencies in the performance of their duties. These devices may be used alone or in combination to provide images to a viewer when there is very little environmental illumination or when it is completely dark and there is no ambient light. The technology for both low light vision and thermal imaging devices has improved significantly since each was first introduced, and these devices are capable of generating increasingly clearer images in a range of environments. Several generations of low light or night vision devices have been developed and named. The current generation, although not officially designated such, is commonly referred to as Gen-IV and includes an automatic gated power supply system that regulates photocathode voltage, allowing instantaneous adaptation to changing light conditions. The Gen-IV devices have a thin or removed ion barrier, which decreases the quantity of electrons usually rejected by the micro-channel plate positioned within the device, reducing image noise and permitting operation with a luminous sensitivity at 2,850 K of only 700. U.S. Pat. No. 6,911,652 to Walkenstein is illustrative of available low light imaging devices structured for use in a tactical environment where insufficient lighting is available and/or stealth is required. This type of device operates effectively at ambient temperatures to generate an image that is a combination of a thermal image and a photon based image.
It was discovered that the use of a cryogenically cooled focal plane array in a thermal imaging device, in which a photoelectrically responsive detector is cooled to a temperature in the cryogenic range, reduces unwanted thermal noise. Cooling the detector to cryogenic temperatures, below 0° C., allows an electrical response to invisible infrared light much deeper into the infrared part of the spectrum than was previously possible. A thermal imaging system with elements cooled as described produces vastly improved resolution and sensitivity. Cryogenically cooled systems are able to “see” a difference as small as 0.1° C. from more than 300 meters away. Providing the cryogenic cooling capability required to reduce thermal noise has presented challenges, however. The Dewar vessel initially used in this system required a supply of a cryogenic fluid, such as liquid nitrogen, that had to be provided and replenished by the user of a night vision or thermal imaging device cooled in this manner. Reverse Sterling-cycle coolers have been used more recently to develop cryogenic cooling, but these coolers are not only noisy, unreliable, and have maintenance problems, but the devices using them are very inefficient and require a strong power source.
The thermal imaging device described in U.S. Pat. No. 5,663,562 to Jones et al represents an improvement over the cryogenically cooled devices described above. To cool its detector to a sufficiently low temperature that thermally excited electrons do not cause an undesirably high level of electric noise that would hide the desired photoelectric image signal, the Jones et al device provides a Dewar vessel with a multistage reversed Peltier-effect, or thermoelectric, cooler. While the Jones et al device overcomes many disadvantages of cryogenically cooled thermal imaging devices, it is not suggested that the need for a Dewar vessel could be eliminated. Additionally, thermoelectric coolers are usually limited because of their inefficiency. Some manufacturers claim as high as a 10% of Carnot efficiency for thermoelectric coolers. In operation, however, efficiencies in the range of about 5% or less of Carnot appear to be more common. A 5% efficient device requires 20 watts of electrical power that must be disposed of to provide one watt of cooling. Thermoelectric coolers that can produce a large cooling effect, moreover, tend to be large, on the order of 1 cm2, for example, and even larger with the packaging that is necessary to dispose of the large amount of heat generated by their operation. The size of these devices limits their usefulness in many low light vision and thermal imaging applications.
Cooling devices that overcome disadvantages of thermoelectric coolers are known. U.S. Pat. No. 5,955,772 to Shakouri et al, for example, discloses a heterostructure thermionic cooler intended to replace a thermoelectric cooler, primarily in integrated circuits. It is noted that the heterostructure thermionic device specifically described in this patent could be a single pixel or multiple pixels of a thermal imaging system. It is not suggested, however, that this heterostructure thermionic device could provide cooling for a low light vision device or for a thermal imaging device to produce superior resolution and sensitivity and/or to reduce thermal noise.
A need exists, therefore, for improved cooling in low light vision devices and thermal imaging devices that provides the increased resolution and sensitivity and reduced thermal noise advantages and benefits of cryogenically cooled devices within a smaller more lightweight footprint than is presently available.
It is a primary object of the present invention to overcome the deficiencies of the prior art and to provide improved and effective cooling elements capable of producing increased resolution and sensitivity and reduced thermal noise in low light vision devices and thermal imaging devices.
It is another object of the present invention to provide thermionic cooling elements designed to effectively cool low light vision devices and thermal imaging devices, thereby enhancing images produced by these devices.
It is an additional object of the present invention to provide a thermionic or thermotunneling gap diode device capable of producing images in low light vision and thermal imaging devices with increased resolution and sensitivity and decreased thermal noise in the virtual absence of environmental illumination.
It is a further object of the present invention to provide improved low light vision and thermal imaging devices cooled by thermionic or thermotunneling means that are lighter, more efficient, and have a smaller footprint than previously available devices.
It is yet a further object of the present invention to provide improved low light vision and thermal imaging devices cooled by thermionic or thermotunneling means designed to function cooperatively with Avto Metals™ structures in the devices to achieve higher operating efficiencies than heretofore possible.
It is yet an additional object of the present invention to provide improved cooling in low light vision and thermal imaging devices practical for use in a wide range of military, civilian, law enforcement, and space applications.
In accordance with the aforesaid objects, improved low light vision and thermal imaging devices are provided. The devices of the present invention employ thermionic or thermotunneling cooling, with and without the use of Avto Metals™, to operate efficiently with minimal light or in the complete absence of environmental illumination produce superior resolution and sensitivity and significantly reduced thermal noise that are light in weight, have a decreased footprint, and are useful in a wide range of military, law enforcement, civilian, and other applications.
Other objects and advantages will be apparent from the following description, drawings, and claims.
The improved low light vision and thermal imaging devices of the present invention achieve superior resolution, sensitivity, and noise reduction under extreme low light conditions as well as in the complete absence of environmental illumination. The devices of the present invention are capable of sensing radiation of wavelengths of 0.5 to 1.0 μm in the visible spectrum, as well as radiation in the near infrared spectrum and up to wavelengths of 10 μm in the far infrared spectrum and of providing effective cooling for their image sensors. The light weight and small footprint possible with the present devices contribute further to their desirability for use in cooling low light vision and thermal imaging devices that are intended to be used in a variety of tactical and stealth situations. Low light vision and thermal imaging devices in accordance with the present invention can be configured for effective use in a wide range of military, civilian, and law enforcement applications, although other applications are also contemplated to be within the scope of the present invention.
The device of
The image optics element 26 preferably includes mirrors (not shown) positioned to reflect light that originated with the scene to be viewed to a detector assembly 28 designed to detect infrared and/or visible light spectrum radiation and convert the detected radiation to electrical signals, which are transmitted ultimately to produce an image of the scene viewed. Detector assemblies that perform this function are known in the art, and it is contemplated that a range of detector assemblies could be suitable for this purpose. The detector assembly 28 must be cooled to a sufficiently low temperature that thermally excited electrons do not cause an undesirably high level of electrical noise and hide the desired photoelectric image signal. A thermionic and/or thermotunneling cooling assembly 30, described in detail below in connection with
To provide a visible image to be viewed by a user of the low light vision and/or thermal imaging device 10, the device may include an assembly 32 that includes a projection element. Such projection elements are known in the art and may be configured in a number of different ways. A resolution element 29 is preferably provided within the chamber 18 that interacts with the detector 28 and the scanning mirror 24 to reflect light to an ocular lens element 34 and, ultimately, to provide an image with very sharp resolution to the eyes of a viewer or operator 36 using the device 10 to view the scene 12. Many variations of such resolution element structures are known and could be used in the present low light vision and thermal imaging device. Alternatively, an image of the scene 12 could be transmitted to a display monitor (not shown) for simultaneous viewing by a number of viewers.
While the viewer 36 shown in
A cooling assembly that is particularly preferred for these purposes is a thermionic and/or thermotunneling converter or gap diode device and may further be a device that employs Avto Metals™ to reduce electron work function and increase tunneling current. The provision of a sufficiently low electron work function in a device of the present invention produces the efficiencies and sensitivities previously mentioned. The use of Avto Metals™ in the cooling assembly makes the achievement of a Carnot efficiency that exceeds 10% a possibility. Examples of suitable thermionic and thermotunneling devices are described in commonly owned U.S. Patent Application Publications Nos. US2007/00135055 to Walitzki and US2009/0223548 to Walitzki et al, the disclosures of which are incorporated herein by reference. Other thermionic and/or thermotunneling devices could also be used, with or without the electron work function reduction produced by Avto Metals™. Avto Metals™ and the reduction of electron work function and efficiencies achieved by devices formed of Avto Metals™ are described in commonly owned U.S. Pat. No. 6,117,344 to Cox et al; U.S. Pat. No. 6,281,514 to Tavkhelidze; U.S. Pat. No. 6,495,843 to Tavkhelidze; U.S. Pat. No. 6,531,703 to Tavkhelidze; and U.S. Pat. No. 7,074,498 to Tavkhelidze et al. The disclosures of the aforementioned patents are incorporated herein by reference.
The preferred cooling assembly 30 is constructed to increase cooling power by increasing tunneling and thermionic emission of electrons, particularly those electrons excited by photons of infrared light falling on the detector 28. One preferred cooling assembly 30 is a thermotunneling converter that includes a pair of facing electrodes 40 and 42 separated by a gap 44 that is preferably maintained at a distance on the order of 5-10 nm by a plurality of spacers 46. Other structures for maintaining the gap 44 at a constant distance are also known and could be used, such as, for example, the arrangement of protrusions described below. The spacers 46 are particularly effective for this purpose, however, and allow fabrication of the cooling assembly 30 at a much lower cost than using piezo-electric actuators and the like. One portion 48 of electrode 40 is in heat transfer contact with the detector 28 or an equivalent structure in the low light vision and/or thermal imaging device 10 that requires cooling. A similarly located portion 50 of electrode 42 is in heat transfer contact with a heat sink 52. A bond pad 54, preferably spaced as far apart as possible from portions 48 and 50 on respective electrodes 40 and 42, secures the electrodes together and minimizes thermal leakage. One preferred distance, designated by arrow 58, between the active area of the electrodes in contact with the detector 28 and the heat sink 52 and the bond pad 54, is on the order of 5 mm, which limits the thermal leakage through the bond pad. Other distances could also be effectively employed.
Arrows 56 indicate the direction of heat flow through the thermotunneling converter from the detector 28, through electrode 40, bond pad 54, and electrode 42 to heat sink 52. This heat flow path provides extremely effective cooling for the detector in low light vision and thermal imaging devices, especially when electrode surfaces are formed to benefit from electron work function reduction and increased electron tunneling and cooling capacity associated with the use of Avto Metals™.
The structure of the thermotunneling cooling assembly shown in
The electrodes 40 and 42 may be formed of materials other than quartz to produce a cooling assembly 30 with a cooling capacity that produces improved low light vision and thermal imaging devices. Suitable electrode materials could include, for example, silicon, sapphire, and/or silicon or sapphire supporting a layer of a material selected to increase tunneling and thermionic emissions of electrons, such as, for example, copper, silver, titanium, and/or other materials known to be useful for this purpose. The Avto Metals™ described in the commonly owned patents incorporated by reference above produce especially efficient thermionic devices that are able to work effectively at significantly lower temperatures than was previously thought possible. These materials are illustrative only and not intended to be limiting. Other materials useful for the described function are also intended to be included within the scope of the present invention.
The electrodes 40 and 42 have been described as separated by spacers 46 to maintain a gap 44 between them. Alternatively, facing surfaces of the electrodes could be configured to create a gap between the electrodes by forming protrusions on each facing surface. The distance of the gap is determined by the height and spacing of the protrusions. In addition to the patents noted above that describe Avto Metals™, commonly owned U.S. Patent Application Publication No. US2008/0224124 to Tavkhelidze, the disclosure of which is incorporated herein by reference, further describes the beneficial effects on electron behavior of forming protrusions on an electrode surface in a thermotunneling converter device such as cooling assembly 30. Electrodes in a cooling assembly 30, such as that described in connection with the present invention, can be custom designed using this geometry to provide efficient and sensitive cooling.
A cooling assembly 30 like that described above can readily be incorporated into even the smallest low light vision and/or thermal imaging device because of its very small size and light weight. The extremely effective cooling produced by electron tunneling, particularly when Avto metals are incorporated in the assembly, produces superior sensitivity and image resolution compared to available low light vision and thermal imaging devices and may be effectively used in a wide range of such devices. Illustrative examples of possible applications for the superior resolution achieved by usable and practicable device of the present invention include a wide range of military, law enforcement, civilian, and other applications. While improved low light or night vision goggles, binoculars, weapon sights, and the like will be common uses of the present invention with which the public is most familiar, defense and space applications are more likely to benefit from the improvements possible with the devices of the present invention. For example, thermionic or thermotunneling cooling, both alone and in conjunction with Avto Metals™, in low light and thermal imaging devices as described herein will be provide heretofore unknown efficiencies in missile defense systems, whether such systems are land or sea based, satellite or missile based, or in any other form. Thermally cooled imager devices of the present invention, as described herein, will also be able to provide sufficiently specific information that will enable users of the devices to spot incoming missiles before or after separation of dummy or decoy warheads.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
The present invention will find its primary applicability in providing improved low light vision and thermal imaging devices useful in a wide range of military, civilian, law enforcement, and other applications where a light weight device with superior resolution and sensitivity is desired.
This application claims priority from U.S. Provisional Application No. 61/561,048, filed Nov. 17, 2011, the disclosure of which is fully incorporated herein.
Number | Date | Country | |
---|---|---|---|
61561048 | Nov 2011 | US |