The present disclosure relates to seals and more particularly, to a low load seal with an outer diameter flap.
This section provides background information related to the present disclosure which is not necessarily prior art.
Seals are commonly used for sealing a gap disposed around an outer surface of an inner member received within a bore of an outer member, such as a fuel injector, a spark plug tube or a shaft. Conventional seals incorporate a rubber outer dimension (OD) for engaging a bore and may have various inner dimension (ID) seal configurations for engaging a shaft or other inner member.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
A seal for insertion in a bore in an outer member and engaging an inner member received in the bore. The seal includes an annular insert having an elastomeric body over-molded on the annular insert and an inner seal extending radially inward from the annular insert. The inner seal including an inboard sealing surface and the elastomeric body over-molded on the annular insert defining an outer portion including an outboard sealing surface including an annular flap on an exterior side of the annular insert that, in an installed position, is adapted to be compressed between the outer annular insert and the outer member.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
With reference to
For purposes of discussion, the inner member 12 can be a shaft, while the outer member 14 can be a bore. It is appreciated that while the specific examples provided herein relate to a shaft and bore arrangement, the teachings may be similarly applicable to other sealing arrangements and are not limited to a shaft and bore arrangement, as described herein.
With specific reference now to
The inboard sealing surface 28 of the seal 10 can be disposed on an annular flap 42 of the inner seal which can extend at an angle relative to an inner annular insert 44 in an un-installed condition and in an installed condition is adapted to be compressed between the inner annular insert 44 and the inner member 12.
The web portion 24 is adapted to flex to accommodate the inner seal 22 being radially offset relative to the outer portion 20 so that the inner seal 22 can maintain contact with the inner member 12 upon movement of the inner member 12 relative to the outer member 14. It is noted that the outer annular flap 30 is designed to have an interference fit within the inner surface within the bore 14 and that the inner annular flap 42 has an interference fit with the outer surface of the inner member 12. The annular flaps 30, 42 allow for reduction in the rubber stress as compared to a solid rubber bead, and allows the inner seal 22 and outer portion 20 to follow the shaft under a thermal cycle from hot to cold and vice versa, and due to other movement, such as vibration and part-to-part shift. This provides improved shaft followability as compared to prior designs. The outer flap 30 allows the design to be made with looser tolerance and less structure to counter extreme forces from rubber containment. This provides more design freedom in controlling force and improving design longevity due to thermal variation and component movement.
As shown in
With reference to
The inner seal 122 can have a generally conical shape in its un-installed position, and can have an interference fit with the outer surface 16 of the inner member 12 in its installed position. The inner seal 122 would be deformed to engage the inner member 12 with generally cylindrical contact with the surface 16. The outer annular flap 128 can be provided with radially outwardly extending increased thickness regions at its distal end that provide additional loading on the annular flap in its assembled condition that generally correspond to the tapered region 50 of the interior surface 18 of the bore in the outer member. In the installed position, the increased thickness region 140 at the distal end of the annular flap 128 causes the distal portion to maintain compression in the tapered region 50 of the interior surface of the outer member 14.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application is a divisional of U.S. patent application Ser. No. 13/475476, filed on May 18, 2012. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2834616 | Stephens | May 1958 | A |
RE24940 | Stephens | Feb 1961 | E |
4147367 | Smith et al. | Apr 1979 | A |
4274641 | Cather, Jr. | Jun 1981 | A |
4448461 | Otto | May 1984 | A |
5711616 | Gassmann et al. | Jan 1998 | A |
5979904 | Balsells | Nov 1999 | A |
6053502 | Hallenstvedt | Apr 2000 | A |
6702293 | Endo et al. | Mar 2004 | B2 |
7798497 | Wagner et al. | Sep 2010 | B2 |
8002287 | Wagner | Aug 2011 | B2 |
8210543 | Erl | Jul 2012 | B2 |
8424398 | Wagner et al. | Apr 2013 | B2 |
20020130472 | Endo et al. | Sep 2002 | A1 |
20050173869 | Wagner | Aug 2005 | A1 |
20080012234 | Wagner | Jan 2008 | A1 |
20080019624 | Kubo | Jan 2008 | A1 |
20080036159 | Yanagi | Feb 2008 | A1 |
20080284110 | Dahlheimer | Nov 2008 | A1 |
20110049815 | Wagner | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
1993577 | Jul 2007 | CN |
2008255979 | Oct 2008 | JP |
9408159 | Apr 1994 | WO |
2012049867 | Apr 2012 | WO |
Entry |
---|
Chinese Office Action dated Feb. 19, 2019 with English translation (corresponding to CN 201710885354.2). |
Number | Date | Country | |
---|---|---|---|
20180142789 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13475476 | May 2012 | US |
Child | 15877461 | US |