One embodiment is an electro-optic composite comprising a polymer having the structure
and a nonlinear optical chromophore having the structure D-π-A, wherein: R is an alkyl, aryl, heteroalkyl, or heteroaryl, group; D is a donor; π is a π bridge; A is an acceptor; n=0-4; m=1-4; and o=1-4. In some embodiments, m=4 and n=4. In some embodiments where m=4 and n=4, R=—CH3 (i.e., a methyl group) and n=3. In other embodiments, the π bridge includes a thiophene ring having oxygen atoms bonded directly to the 3 and 4 positions of the thiophene ring. In some of those embodiments, the oxygen atoms are independently substituted with an alkyl, heteroalkyl, aryl, or heteroaryl group. Examples of chromophores where the oxygen atoms bonded directly to the 3 and 4 positions of the thiophene are independently substituted with an alkyl, heteroalkyl, aryl, or heteroaryl group comprise the structures
wherein: D is a donor; π1 is a it bridge; π2 is a it bridge; A is an acceptor,; and n=0-4.
In certain embodiments, the donor (D) of the chromophore is selected from the group consisting of:
and the acceptor (A) is selected from the group consisting of
wherein independently at each occurrence: R1 is hydrogen, a halogen, an alkyl, aryl, heteroalkyl, or heteroaryl group; R2 is hydrogen, an alkyl, aryl, heteroalkyl, or heteroaryl group; Y is O, S or Se; m is 2, 3 or 4; p is 0, 1 or 2; and q is 0 or 1. In many of these embodiments, the donor is selected from the group consisting of
wherein, independently at each occurrence: R1 is hydrogen, a halogen except when bonded to a carbon alpha to or directly to a nitrogen, oxygen, or sulfur atom, or an alkyl, aryl, heteroalkyl, or heteroaryl group; and R2 is hydrogen or an alkyl, aryl, heteroalkyl, or heteroaryl group. In some embodiments, π1 and π2 are both
wherein Rf is selected from the group consisting of
A further embodiment is an electro-optic device comprising the electro-optic composite described above. The electro-optic device may comprise a Mach-Zehnder interferometer, a directional coupler, or a microring resonator.
The following example(s) is illustrative and does not limit the Claims.
The following steps are illustrated in
Compound 3: Referring to
Compound 4: Compound 3 (30.5 g, 0.053 mol) was dissolved in 200 mL THF. At −78° C., BuLi (2.5 M, 42 mL, 0.106 mol) was added dropwise. It was warmed to −20° C. and then cooled down again. At −78° C., DMF (16.4 mL, 0.212 mol) was added. It was stirred overnight. The reaction mixture was extracted with CH2Cl2, washed with water, and dried over MgSO4. After removal of the solvent, it was purified by column chromatography with CH2Cl2. The product, 22.93 g, was obtained in 72% yield.
Chromophore 6: Compound 4 (4.06 g, 6.7 mmol) and compound 5 (1.7 g, 6.7 mmol) were dissolved in 80 mL of EtOH. It was heated at 50° C. for 1 hour. After cooling to rt, the solid was collected by filtration, and further purified by column chromatography with CH2Cl2/ethyl acetate (8:0.2). The product, 3.95 g, was obtained in 70% yield.
Polymer 9: Referring to
Electro-optic composites were prepared by spin coating a solution of approximately 25% by weight of chromophore 6 or chromophore 10 (
Other embodiments are within the following claims.