Polymer optical devices may include passive and active devices including a core and a cladding. A refractive index contrast between core and cladding, wherein the cladding has a refractive index lower than the refractive index of the core, may guide light along the core. At least a portion of the light power may be present as an evanescent wave in the cladding material.
Electro-optic polymers are advantageous materials for optical device design because they have higher electro-optic activity than inorganic materials such as lithium niobate (LiNbO3). Many electro-optic polymers have been developed, and many are “guest-host” systems where a nonlinear optical chromophore guest is present as a host in a polymer matrix (i.e., the chromophore is not covalently attached to the polymer matrix). However, many guest-host composites show relatively high optical loss, which depends on both the structure of the chromophore and the polymer. Poly[bisphenol A carbonate-co-4,4′-(3,3,5-trimethylcyclohexylidene)diphenol carbonate], which is also referred to as “amorphous polycarbonate” or “APC,” has been used previously with certain chromophores to give high electro-optic activity composites with relatively low optical loss (<1.5 dB/cm). However, many chromophores do not give low optical loss composites with APC due to chromophore/polymer phase separation and resulting light scattering. Fluorinating the polymer is a method to reduce optical loss due to absorption in the polymer matrix itself, but this often leads to high optical loss in composite materials due to increased phase separation between the chromophore and the matrix. Consequently, there is still a need for a polymer matrix of an electro-optic polymer composite that is fluorinated to reduce absorptive optical loss, but does not show increased optical loss due to phase separation.
According to an embodiment, an optical polymer material includes a polymer having the structure:
According to an embodiment, an electro-optic composite includes a polymer (i.e., matrix) having the structure
and a nonlinear optical chromophore having the structure D-π-A, wherein: R is an alkyl, aryl, heteroalkyl, or heteroaryl, group; D is a donor; π is a π bridge; A is an acceptor; n=0-4; m=1-4; ando=1-4.
The polymers and electro-optic composites show a relatively low optical loss (<1.5 dB/cm) compared to composites with APC polymer matrices and similar chromophores (>2.3 dB/cm). The low optical loss may be unusual given that matrix is fluorinated and that the fluorinated monomer is rigid. Both fluorination and rigidity in the polymer matrix normally tends to increase phase separation and increase optical loss.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. Other embodiments may be used and/or and other changes may be made without departing from the spirit or scope of the disclosure.
According to an embodiment, an optical polymer material includes a polymer having the structure:
According to an embodiment, an electro-optic composite includes a polymer having the structure
and a second order nonlinear optical chromophore having the structure D-π-A, wherein: R is an alkyl, aryl, heteroalkyl, or heteroaryl, group; D is a donor; π is a π bridge; A is an acceptor; n=0-4; m=1-4; and o=1-4. In some embodiments, m=4 and n=4. In some embodiments where m=4 and n=4, R=—CH3 (i.e., a methyl group) and n=3. In other embodiments, the π bridge includes a thiophene ring having oxygen atoms bonded directly to the 3 and 4 positions of the thiophene ring. In some of those embodiments, the oxygen atoms are independently substituted with an alkyl, heteroalkyl, aryl, or heteroaryl group. Examples of chromophores where the oxygen atoms bonded directly to the 3 and 4 positions of the thiophene are independently substituted with an alkyl, heteroalkyl, aryl, or heteroaryl group comprise the structures
wherein: D is a donor; π1 is a π bridge; π2 is a π bridge; A is an acceptor; and n=0-4.
In certain embodiments, the donor (D) of the chromophore is selected from the group consisting of:
and the acceptor (A) is selected from the group consisting of
wherein independently at each occurrence: R1 is hydrogen, a halogen, an alkyl, aryl, heteroalkyl, or heteroaryl group; R2 is hydrogen, an alkyl, aryl, heteroalkyl, or heteroaryl group; Y is O, S or Se; m is 2, 3 or 4; p is 0, 1 or 2; and q is 0 or 1.
According to an embodiment, the donor is selected from the group consisting of
wherein, independently at each occurrence: R1 is hydrogen, a halogen except when bonded to a carbon alpha to or directly to a nitrogen, oxygen, or sulfur atom, or an alkyl, aryl, heteroalkyl, or heteroaryl group; and R2 is hydrogen or an alkyl, aryl, heteroalkyl, or heteroaryl group. In some embodiments, π1 and π2 are both
In other embodiments, A is
wherein Rf is selected from the group consisting of
R2 is an alkyl group; and X is O or S.
A further embodiment is an electro-optic device comprising the electro-optic composite described above. The electro-optic device may comprise a Mach-Zehnder interferometer, a directional coupler, or a microring resonator.
The following example(s) is illustrative and does not limit the Claims.
The following steps are illustrated in
Compound 3: Referring to
Compound 4: Compound 3 (30.5 g, 0.053 mol) was dissolved in 200 mL THF. At −78° C., BuLi (2.5 M, 42 mL, 0.106 mol) was added dropwise. It was warmed to −20° C. and then cooled down again. At −78° C., DMF (16.4 mL, 0.212 mol) was added. It was stirred overnight. The reaction mixture was extracted with CH2Cl2, washed with water, and dried over MgSO4. After removal of the solvent, it was purified by column chromatography with CH2Cl2. The product, 22.93 g, was obtained in 72% yield.
Chromophore 6: Compound 4 (4.06 g, 6.7 mmol) and compound 5 (1.7 g, 6.7 mmol) were dissolved in 80 mL of EtOH. It was heated at 50° C. for 1 hour. After cooling to rt, the solid was collected by filtration, and further purified by column chromatography with CH2Cl2/ethyl acetate (8:0.2). The product, 3.95 g, was obtained in 70% yield.
Polymer 9: Referring to
Electro-optic composites were prepared by spin coating a solution of approximately 25% by weight of chromophore 6 or chromophore 10 (
and a nonlinear optical chromophore having the structure D-π-A, wherein: R is an alkyl, aryl, heteroalkyl, or heteroaryl, group; D is a donor; π is a π bridge; and A is an acceptor, as described above.
A top cladding 614 overlies the polymer composite 612. A modulation electrode 616 lies on the top cladding 614, aligned with the waveguide 610.
According to alternative embodiments, other waveguide structures 610 may be used in place of or in addition to the trench waveguide 610 illustrated. For example, the active region 601 and/or other portions of the device may include a rib waveguide, a side clad waveguide, a semi-rib waveguide, a semi-trench waveguide, or other structures configured to guide light.
A top cladding 614 overlies the polymer layer 702. The passive structure 701 may be used, for example, to guide light to and from the active structure 601 of
According to an embodiment, a polymer composite may include a first order non-linear optical chromophore or a third order non-linear optical chromophore. According to an embodiment, an optical device may include a composite of a polymer having the structure
and a first order or third order nonlinear optical chromophore.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments are contemplated. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
The present application is a Continuation-in-Part of copending U.S. patent application Ser. No. 11/383,695, filed May 16, 2006; entitled “LOW LOSS ELECTRO-OPTIC POLYMERS COMPOSITES”, invented by Diyun Huang, which application is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11383695 | May 2006 | US |
Child | 12432662 | US |