Low loss, polarization-independent, large bandwidth mode converter for edge coupling

Information

  • Patent Grant
  • 11215755
  • Patent Number
    11,215,755
  • Date Filed
    Thursday, September 19, 2019
    5 years ago
  • Date Issued
    Tuesday, January 4, 2022
    2 years ago
Abstract
A mode converter formed by parallel tapered waveguides on a SiN platform. The waveguides form a trident structure comprising a main waveguide with an inverse taper structure, and a pair of waveguides on each side of the main waveguide. Each adjacent waveguide has a taper structure but one that is opposed to that of the main waveguide, namely, a width that gradually increases along the direction of light propagation to a larger value at an end tip thereof. The end tips of the waveguides terminate along a common input/output facet of the converter. The adjacent waveguides help to shape the mode of the light propagating through the main waveguide, in so doing enabling the converter to exhibit high coupling efficiency and polarization independence in the full optical communication bands (i.e., from O to L-band) by successfully tuning the mode shape at a chip facet. The trident mode converter enables efficient optical fiber-to-chip coupling.
Description
BACKGROUND
Technical Field

This application relates generally to integrated optics and, in particular, to interfaces that facilitate edge coupling, e.g., chip-to-chip coupling, optical fiber-to-photonic chip coupling, and the like.


Brief Description of the Related Art

Many integrated photonic applications, such as radio-frequency signal processing and optical neural networks, require robust and low loss operation over polarization and wavelength. While integrated photonic components can be designed to meet these specifications, coupling light to and from a photonic integrated circuit (PIC) has been a difficult challenge. In particular, the difficulty lies in the large modal mismatch between an integrated waveguide and a standard single-mode (e.g., SMF-28) fiber, and this mismatch inhibits efficient optical input-output (IO) coupling.


Today, two main solutions exist to address this problem, namely, edge (also referred to as in-plane, butt or end-fire) coupling, and vertical (out-of-plane) coupling. A typical edge coupler (EC) has an inverse taper structure wherein the waveguide width gradually reduces along the direction of light propagation to a small value at an end tip. Edge coupling benefits from polarization independence and operation over large bandwidths, but the approach necessitates a large overlap between the fiber and waveguide optical modes. Further, a typical single inverted taper-based mode converter fails to simultaneously provide low coupling loss, polarization independence, and broad bandwidth operation. For instance, an inverted taper coupler for silicon-on-insulator ridge waveguide can achieve ˜0.36 dB and ˜0.66 dB coupling losses for TM and TE waveguide modes, respectively, but only over a working bandwidth of 80 nm. Vertical coupling, on the other hand, redirects the light out of the waveguide plane, typically through the use of diffractive gratings. Diffractive gratings, however, suffer from high polarization and wavelength sensitivity, leading to lower coupling efficiency.


There remains a need to provide for improved optical fiber-to-PIC interfaces.


BRIEF SUMMARY

A mode converter formed by three (3) parallel tapered waveguides on a SiN platform is configured for low loss, polarization-independent and broad bandwidth coupling of light to an optical fiber. The waveguides form a trident structure comprising a main, central waveguide with an inverse taper structure (i.e., wherein the waveguide width gradually reduces along the direction of light propagation to a small value at an end tip), and preferably an adjacent waveguide positioned on each respective side of the main, central waveguide. Each adjacent waveguide has a taper structure but one that is opposed to that of the main waveguide. In particular, each adjacent waveguide has a width that gradually increases along the direction of light propagation to a larger value at an end tip. The end tips of the three parallel waveguides terminate along a common input/output facet of the converter. The adjacent waveguides help to shape the mode of the light propagating through the main waveguide, in so doing enabling the converter to exhibit high coupling efficiency and polarization independence in the full optical communication bands (i.e., from O to L-band) by successfully tuning the mode shape at a chip facet. The trident mode converter enables efficient and robust fiber-to-chip coupling and is useful in many applications, e.g., optical neural networks, RF-photonic filters, and others.


The foregoing has outlined some of the more pertinent features of the subject matter. These features should be construed to be merely illustrative. Many other beneficial results can be attained by applying the disclosed subject matter in a different manner or by modifying the subject matter as will be described.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the subject matter and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1A depicts a top view of the mode converter of this disclosure;



FIG. 1B depicts a side view of the parallel waveguides comprising the mode converter shown in FIG. 1A;



FIG. 1C depicts TE mode intensity profiles at various cross-sections labeled in FIG. 1A along the propagation direction, with the resulting mode size evolution depicted as closely matching with an optical fiber diameter;



FIG. 2A depicts a top view of the mode converter positioned at an interface between a photonic chip and an optical fiber;



FIG. 2B depicts a side view of the mode converter of FIG. 2A;



FIG. 2C depicts a perspective view of the mode converter-to-fiber interface of the mode converter depicted in FIG. 2A and FIG. 2B;



FIG. 3 depicts a comparison of mode intensity profiles for a conventional (single inverted taper-mode) converter versus the trident mode converter of this disclosure;



FIG. 4 depicts a pair of plots that show how the dimensions of the waveguides in the trident mode converter can vary and still provide appropriate coupling efficiencies as compared to the single inverted taper-mode converter;



FIG. 5 depicts a comparison of total coupling efficiency for the trident mode converter of this disclosure versus the single inverted taper-mode converter;



FIG. 6 depicts a comparison of coupling efficiencies of the trident mode converter when there is misalignment tolerance between the chip and fiber;



FIG. 7 depicts a comparison of mode field propagation along the trident mode converter of this disclosure versus the single inverted taper-mode convertor; and



FIG. 8 depicts a table of representative waveguide dimensions and upper cladding thickness and index values for representative embodiments of the trident mode converter.





DETAILED DESCRIPTION

The following description assumes familiarity for silicon (Si) photonics, which is the known study and application of photonic systems using silicon as the optical medium. The silicon typically is patterned into micro-photonic components (typically Si waveguides) that operate in the infrared band, most commonly at the 1.55 micrometer wavelength used in many fiber optic telecommunications system. Photonic integrated circuits are fabricated from a variety of material systems, including electro-optic crystals such as lithium niobate, silica on silicon, Silicon on insulator, silicon nitride (SiN) as well as various polymers and semiconductor materials. While silicon photonics provide many useful properties, the compatibility of this platform with optical fiber components is still limited. This is because of the large size mismatch between the optical fiber and the silicon photonic waveguide modal distribution. The trident mode converter of this disclosure addresses the problem of how to efficiently couple light to and from the silicon photonic components.


To this end, and with reference now to FIGS. 1A and FIG. 1B, a preferred configuration of the mode converter of this disclosure is provided. In a preferred, but non-limiting, configuration, the mode converter 100 is formed by three parallel tapered waveguides on a SiN platform. As will be described, the converter is configured for low loss, polarization-independent, and broad bandwidth coupling of light to an optical fiber. The waveguides form a trident structure and comprise a main, central waveguide 102 with an inverse taper structure (i.e., wherein the waveguide width gradually reduces along the direction of light propagation to a small value at an end tip 103), and a pair of adjacent waveguides 104 and 106 that help shape the mode of the light propagating through the main waveguide 102. As depicted in the top view in FIG. 1A, in this preferred embodiment the adjacent waveguides 104 and 106 are positioned on each respective side of the main, central waveguide 102. As also seen in FIG. 1A, each adjacent waveguide has a taper structure but one that is opposed to that of the main waveguide. In particular, adjacent waveguide 104 has a width that gradually increases along the direction of light propagation to a larger value at an end tip 105. Likewise, adjacent waveguide 106 has a width that gradually increases along the direction of light propagation to a larger value at the end tip 107. An overall length L is labeled in FIG. 1A. The end tips of the three parallel waveguides terminate along a common input/output facet 108 of the converter, which has a total width of Wcenter+2×(Wside+Wspacing).



FIG. 2A depicts a top view of the mode converter 200 positioned at an interface between a photonic chip 202, and an optical fiber 204. As depicted, the mode converter is formed on the Si substrate 206. FIG. 2B depicts a side view of the mode converter of FIG. 2A, and FIG. 2C depicts a perspective view of the mode converter-to-fiber interface.


In this preferred embodiment, a maximal overlapping integral of mode area with the optical fiber is attained, preferably by tuning the geometry of the waveguides, thereby enabling a proper mode shape at the facet 108. The coupling efficiency of a mode converter is calculated (equation (1) below) from the overlap integral between an optical fiber mode and a mode at the converter tip near the chip facet:









η
=



[








E
f



(

x
,
y

)


·


E
w
*



(

x
,
y

)




dxdy



]

2



[








E
f



(

x
,
y

)


·


E
f
*



(

x
,
y

)




dxdy



]



[








E
w



(

x
,
y

)


·


E
w
*



(

x
,
y

)




dxdy



]







(
1
)








where Ef(x,y) and Ew(x,y) are the electric field profiles of the fiber and converter tip waveguide, respectively. Minimizing fiber-to-chip coupling loss involves engineering the waveguide mode shape to match the fiber mode.


For example, and with reference to FIG. 1B, given Wcenter (a width of the center (main) waveguide 102), Wside (a width of each side (adjacent) waveguide and Wspacing (an edge-to-edge spacing between the center and a side waveguide), when Wcenter=0.18 μm, Wside=0.18 μm, and Wspacing=0.25 μm (which are merely exemplary), the mode converter 100 exhibits a coupling efficiency of ≥60% (˜2.2 dB) across the entirety of the O- to L-bands (i.e., 1280˜1635 nm). As noted above, the adjacent waveguides help to shape the mode of the light propagating through the main waveguide, in so doing enabling the converter to exhibit high coupling efficiency and polarization independence in the full optical communication bands (i.e., from O to L-band) by successfully tuning the mode shape at a chip facet. In particular, the adjacent waveguide(s) shape the mode by increasing the rotational symmetry of the single-mode as the light couples to the adjacent waveguide(s). The structure is an adiabatic coupler, as the structure adiabatically converts the mode of the single main waveguide. FIG. 1C depicts this mode shaping. In particular, FIG. 1C shows TE mode intensity profiles at various cross-sections labeled in FIG. 1A along the propagation direction, with the resulting mode size evolution depicted as closely matching with an optical fiber diameter.



FIG. 3 depicts a qualitative visualization of TE and TM mode intensity profiles for a conventional (single inverted taper-mode) converter versus the trident mode converter. In particular, the top two (2) profiles 300 and 302 depicts the respective TE and TM mode intensity profiles for a typical single inverted taper mode converter at 1550 nm wavelength, and with a taper with of 0.18 μm, at the facet, whereas the bottom two profiles 304 and 306 depict the respective TE and TM mode intensity profiles for the trident mode converter, again at 1550 nm and using the geometry and spacing (Wcenter=0.18 μm, Wside=0.18 μm, and Wspacing=0.25 μm) described above. As depicted, the elliptical mode intensity profiles (300 and 302) at the facet of the single inverted taper mode converter for TE and TM modes and illustrate low coupling efficiency to a circular fiber mode. As expected, and comparing profiles 300 and 302, a more confined mode is observed for the TM polarization due to the higher dimensional waveguide geometry in the y direction (e.g., 0.18 μm×0.4 μm), indicating even worse coupling efficiency with fiber. This difference in TE and TM waveguide mode results in large polarization dependent loss (PDL). In contrast, and as represented by profiles 304 and 306, the profile shapes of the TE and TM modes observed for the trident mode converter are more circular and are larger in size. As will be further described, the coupling efficiency is improved up to ˜20% (˜10%) for TE (TM) mode, respectively.



FIG. 4 depicts a contour plot 400 of the coupling efficiency with fiber dependency on various Wcenter, Wside, and Wspacing parameter values. To create this plot, optimization of the three parameters were performed at a middle band wavelength of 1457.5 nm using a Finite Difference Eigenmode (FDE) solver. The black dots represent the equal coupling efficiencies with fiber for TE and TM modes, respectively. As depicted, a maximum coupling efficiency of ˜89% (i.e., ˜0.5 dB, grey color area) is attained for Wcenter (Wside) in the range of 0.1˜0.13 (0.08˜0.11) μm, respectively. In the above-described example, it should be noted that the parameter values Wcenter=0.18 μm, Wside=0.18 μm, and Wspacing=0.25 μm were used merely to account for processing resolution capability. The efficiency of larger Wcenter cases (≥0.15 μm) approaches that of a single taper spot-size converter (SSC), as shown in plot 402. As these plots reflect, and as compared to the SSC, the trident mode converter is less sensitive, and thus more tolerant on variation in the waveguide dimensions.


If not addressed, the difference in refractive index for the two orthogonal polarizations (i.e., birefringence) can induce polarization dependent behavior for an optical waveguide, such as the SSC. To reduce the modal birefringence, Δneff=neff_TM−neff_TE, there are two typical approaches used, namely, by changing either the properties of the material, or the geometry of the waveguides. The design of the trident mode converter leverages the second approach. In particular, and as has been described, in one embodiment the converter comprises a SiN polarization independent waveguide geometry having a cross section of 0.4 μm×0.4 μm, and the two side waveguides are positioned (formed) close to the center waveguide with appropriate Wcenter, Wside, and Wspacing parameters. In this way the minimal modal birefringence of ˜0.001 can be attained. Contour plot 400 depicts the result, namely, equal coupling efficiencies with fiber for the TE and TM modes (i.e., polarization independence).



FIG. 5 depicts a comparison of total coupling efficiency for the trident mode converter of this disclosure versus the single inverted taper-mode converter. Due to the more confined light in a shorter wavelength such as O-band, the overlapping integral of mode area with fiber is lower compared to the longer wavelength case, causing some non-uniform coupling efficiency. Nevertheless, by comparing plots 500 and 502, it can be seen that the overall performance of the trident mode converter outperforms the single inverted taper counterpart across the entire optical communication wavelength bands including O-, E-, S-, C- and L-bands.


As depicted in FIG. 5, at wavelengths at or about 1550 nm, the mode converter provides low loss coupling of less than 1 dB and low polarization dependent loss less than 0.3 dB.


As also depicted in FIG. 5, and with respect to a broader bandwidth (e.g., over a range of approximately 350 nm), the mode converter provides low loss TE coupling of less than 1.2 dB, TM coupling loss of less than 2.6 dB, and low polarization dependent loss less than 1.4 dB.



FIG. 6 depicts a comparison of coupling efficiencies of the trident mode converter when there is misalignment between the chip and fiber. A misalignment between the chip and a fiber can directly produce a reduction in coupling efficiency, especially for passively aligned assembly with pick-and-place tools. The conventional inverse tapers usually exhibit misalignment tolerances of less than ±1 μm. To evaluate this performance for the trident mode converter, in terms of maintaining greater than 80% (1.0 dB) of the peak coupling efficiency, ±2.5 (±2.3) μm with the misalignment in the x direction is obtained for TE (TM) mode (FIG. 6, plot 600), and −2.4˜1.4 (−2.3˜1.5) μm with the misalignment in the y direction is obtained for TE (TM) mode (FIG. 6, plot 602).



FIG. 7 depicts a comparison of mode field propagation along the trident mode converter of this disclosure versus the single inverted taper-mode convertor.



FIG. 8 depicts a table of representative thickness and index values of a top cladding layer for the trident mode converter on a SiN platform, wherein 7.0 μm thickness and 1.445 index values of a bottom cladding layer are assumed. As can be seen (in the third row), in this embodiment performance for the trident mode converter is maximized for a symmetrical configuration of cladding layers (i.e., the top and bottom claddings have the same thickness and index values).


While the trident configuration described is preferred, it is not intending to be limiting. The mode shaping provided by the adjacent waveguides may instead be carried out using just a single adjacent waveguide, and that single adjacent waveguide may also be configured above or below the main waveguide. Further, the converter may be configured to use three or more adjacent waveguides, e.g., waveguides situated to the left, right, above and/or below the main waveguide, or any combination (of the adjacent waveguides). In addition, although the above-described and illustrative embodiment (e.g., converter 100, in FIG. 1) comprises waveguides with linear tapers, this is not a requirement. A particular waveguide may include a non-linear taper, or an adjacent waveguide may be a straight waveguide with no taper. Generalizing, it is not required that the individual adjacent waveguides (e.g., 104 and 106, in FIG. 1) in the converter have the same physical structure (namely, width, length, taper, etc.). Further, although the mode converter in FIG. 1 has been depicted as being two (2)-dimensional, this is not a limitation either, as three (3)-dimensional (3D) structures may also be utilized (as referenced above). Thus, in general there is no requirement that the waveguides comprising the mode converter be fabricated in the same plane of the chip, and the one or more adjacent waveguides in such a 3D structure may have different sizes, shapes, and orientation relative to one another, and to the main waveguide.


As the above-described plots illustrate, the mode converter of this disclosure simultaneously provides low coupling loss, polarization independence, and broad bandwidth operation. The particular application(s) for the mode converter are varied and include, without limitation, optical neural networks, RF-photonic filters, and others.


The particular nature of the edge coupling provided by the mode converter may vary. In the typical use case, as has been described and depicted, the mode converter couples a photonic chip to an optical fiber. Other use cases include, without limitation, passive chip-to-passive chip coupling, passive chip-to-active chip coupling, and the like.

Claims
  • 1. A silicon photonic-to-optical fiber mode converter, comprising: a supporting silicon structure;a trident waveguide structure formed onto the supporting silicon structure and having a length and a width and comprising: a main waveguide having an inverse taper structure wherein a width Wcenter of the waveguide gradually reduces along a direction of light propagation to a small value at an end tip thereof; anda pair of adjacent waveguides positioned on opposed sides of the main waveguide, each adjacent waveguide having a width Wside that gradually increases along the direction of light propagation to a larger value at an end tip thereof; wherein:the main waveguide and the pair of adjacent waveguides terminating along a common facet interfacing, and aligned with, a central region of an end facet of an optical fiber having a diameter greater than the width of the trident waveguide structure; andthe pair of adjacent waveguides configured and positioned to shape a mode of the light propagating through the main waveguide along the direction of the light propagation.
  • 2. The mode converter of claim 1, wherein the main waveguide is a silicon nitride (SiN) polarization independent waveguide.
  • 3. The mode converter of claim 1, providing low loss coupling of less than 1 dB and low polarization dependent loss less than 0.3 dB at wavelengths at or above 1550 nm.
  • 4. The mode converter in of claim 1, providing one of: coupling loss of less than 1.2 dB; andTM coupling loss of less than 2.6 dB; andpolarization-dependent loss less than 1.4 dB over a bandwidth range over approximately 350 nm.
  • 5. The mode converter of claim 1, wherein Wcenter is in the range of 0.1˜0.13 μm and Wside is in the range of 0.08-0.11 μm.
  • 6. The mode converter of claim 1, wherein the inverse taper structure of the main waveguide is linear or non-linear.
  • 7. The mode converter of claim 1, wherein an adjacent waveguide has a taper that is one of: linear; andnon-linear.
  • 8. An optical light mode converter, comprising: a supporting silicon structure; anda waveguide structure formed on the supporting silicon structure and comprising: a main waveguide having an inverse taper structure wherein a width Wcenter of the main waveguide reduces along a direction of light propagation through the main waveguide; andat least one adjacent waveguide separated from the main waveguide by a width Wspacing and having a width Wside that increases along the direction of light propagation through the main waveguide; whereinthe main waveguide and the at least one adjacent waveguide terminate along a common facet of the waveguide structure, the common facet interfacing, and aligned with, with an edge facet of an optical fiber external to the supporting silicon structure and having a diameter greater than a width of the waveguide structure; andthe at least one adjacent waveguide configured to adiabatically shape a mode of the light propagating through the main waveguide along the direction of the light propagation in a low-loss, polarization-independent, and broad band manner irrespective of a given misalignment tolerance between the waveguide and the edge structure external to the supporting silicon structure.
  • 9. The optical light mode converter of claim 8, further including at least other adjacent waveguide, wherein the main waveguide and the adjacent waveguides comprise a trident structure.
  • 10. The optical light mode converter of claim 8, wherein the main waveguide is a silicon nitride (SiN) polarization independent waveguide.
  • 11. The optical light mode converter of claim 8, providing coupling loss of less than 1 dB and polarization dependent loss of less than 0.3 dB at wavelengths at or above 1550 nm.
  • 12. The optical light converter of claim 8, providing one of: TE coupling loss of less than 1.2 dB;TM coupling loss of less than 2.6 dB; andpolarization-dependent loss less than 1.4 dB over a bandwidth range over approximately 350 nm.
  • 13. The optical light mode converter of claim 8, wherein Wcenter is in the range of 0.1 to 0.13 μm and Wside is in the range of 0.08 to 0.11 μm.
  • 14. The optical light mode converter of claim 8, wherein the inverse taper structure of the main waveguide is linear or non-linear.
  • 15. The optical light mode converter of claim 8, wherein the adjacent waveguide has a taper that is one of linear or non-linear.
  • 16. A mode converter, comprising: a supporting silicon structure;a main waveguide formed on the supporting silicon structure having an inverse taper structure wherein a width of the waveguide reduces along a direction of light propagation; andfirst and second adjacent waveguides formed on opposite sides of the main waveguide and each having a width that that increases along the direction of light propagation; wherein: the main waveguide and the first and second adjacent waveguides terminating along a common facet that interfaces an optical fiber having a diameter greater than a combined width of the main waveguide and the first and second adjacent waveguides; andthe adjacent waveguides configured to adiabatically shape a mode of the light propagating through the main waveguide along the direction of the light propagation.
US Referenced Citations (166)
Number Name Date Kind
4608569 Dickey, Jr. et al. Aug 1986 A
5444864 Smith Aug 1995 A
5578845 Yoshiyuki et al. Nov 1996 A
5699176 Cohen Dec 1997 A
RE35736 Powell Feb 1998 E
5757312 Szmurlo May 1998 A
5867293 Kotten Feb 1999 A
5904546 Wood et al. May 1999 A
6359714 Imajo Mar 2002 B1
6373909 Lindquist Apr 2002 B2
6507728 Watanabe Jan 2003 B1
6539204 Marsh Mar 2003 B1
6567648 Ahn May 2003 B1
6567649 Souissi May 2003 B2
6745018 Zehavi Jun 2004 B1
6751447 Jin Jun 2004 B1
6760454 Shreve Jul 2004 B1
6771931 Waltho Aug 2004 B2
6778319 Chavez-Pirson Aug 2004 B2
6907093 Blount Jun 2005 B2
7020396 Izadpanah Mar 2006 B2
7058368 Nicholls Jun 2006 B2
7064697 Taylor et al. Jun 2006 B2
7085497 Tiemann Aug 2006 B2
7123676 Gebara Oct 2006 B2
7130289 Kuan et al. Oct 2006 B2
7355993 Adkins Apr 2008 B2
7366244 Gebara Apr 2008 B2
7446601 LeChevalier Nov 2008 B2
7496257 Levner Feb 2009 B2
7509054 Calabro et al. Mar 2009 B2
7566634 Beyne et al. Jul 2009 B2
7650080 Yap Jan 2010 B2
7660531 Lee Feb 2010 B2
7672643 Loh Mar 2010 B2
7680368 Welch et al. Mar 2010 B2
7711329 Aparin May 2010 B2
7720029 Orava May 2010 B2
7729431 Gebara Jun 2010 B2
7756480 Loh Jul 2010 B2
7809047 Kummetz Oct 2010 B2
7826808 Faulkner Nov 2010 B2
7853195 Higgins Dec 2010 B2
7869527 Vetter Jan 2011 B2
7876867 Filipovic Jan 2011 B2
7907895 Shinagawa Mar 2011 B2
7917177 Bauman Mar 2011 B2
8036606 Kenington Oct 2011 B2
8055235 Gupta et al. Nov 2011 B1
8078130 Fudge Dec 2011 B2
8081946 Fudge Dec 2011 B2
8155605 Hwang Apr 2012 B2
8170487 Sahota et al. May 2012 B2
8233872 Nagai Jul 2012 B2
8249540 Gupta Aug 2012 B1
8270843 Nakamoto Sep 2012 B2
8299555 Su et al. Oct 2012 B2
8320504 Peng Nov 2012 B2
8331509 Wang Dec 2012 B2
8351874 Dent Jan 2013 B2
8477871 Neumann Jul 2013 B2
8521090 Kim Aug 2013 B2
8526903 Gudem Sep 2013 B2
8565681 Kim Oct 2013 B2
8600200 Rakich et al. Dec 2013 B1
8618966 Kanter Dec 2013 B2
8682170 Prucnal Mar 2014 B2
8730786 Wang May 2014 B2
8781030 Peng Jul 2014 B2
8785332 Johnson et al. Jul 2014 B2
8805298 McCallister Aug 2014 B2
8845854 Lei et al. Sep 2014 B2
8867928 Piehler Oct 2014 B2
8872583 Lee Oct 2014 B2
8971712 Fan et al. Mar 2015 B2
8977223 Gupta Mar 2015 B1
9020307 Ishikawa Apr 2015 B2
9100099 Loh Aug 2015 B2
9106453 Wang Aug 2015 B2
9178635 Ben-Shlomo Nov 2015 B2
9184902 Khojastepour Nov 2015 B2
9195052 Long Nov 2015 B2
9214718 Mow Dec 2015 B2
9224650 Lei et al. Dec 2015 B2
9252857 Negus Feb 2016 B2
9253003 Harel Feb 2016 B1
9257811 Gao Feb 2016 B2
9258052 George Feb 2016 B2
9268092 Jarecki, Jr. Feb 2016 B1
9344125 Kpodzo May 2016 B2
9344139 Sjoland May 2016 B2
9385268 Minamiru et al. Jul 2016 B2
9391667 Sundstrom Jul 2016 B2
9438288 Feld Sep 2016 B2
9450623 Weissman Sep 2016 B2
9490963 Choi Nov 2016 B2
9520985 Choi Dec 2016 B2
9571205 Suarez Feb 2017 B1
9589812 Takahashi et al. Mar 2017 B2
9602149 Tanzi Mar 2017 B1
9608718 Monsen Mar 2017 B2
9651652 Kpodzo et al. May 2017 B2
9667404 Sjoland May 2017 B2
9696492 Cox Jul 2017 B1
9698913 Foster Jul 2017 B2
9703056 Neelantan et al. Jul 2017 B2
9712233 Deng Jul 2017 B1
9722713 Tanzi Aug 2017 B2
9723612 Stapleton Aug 2017 B2
9726821 Murray Aug 2017 B2
9748906 Stewart Aug 2017 B2
9768852 Ling Sep 2017 B2
9774364 Shih Sep 2017 B2
9775123 Harel Sep 2017 B2
9793943 Sjoland Oct 2017 B2
9793992 Hino Oct 2017 B2
9807700 Harel Oct 2017 B2
9847258 Rohleder et al. Dec 2017 B2
9871552 Din Jan 2018 B2
9885806 Steinhardt Feb 2018 B2
9885825 Kopp Feb 2018 B2
9900044 Sjoland Feb 2018 B2
9923593 Andersson Mar 2018 B2
9923708 Khandani Mar 2018 B2
9960805 Wyville May 2018 B2
9960850 Daniel May 2018 B2
9973282 Welch May 2018 B2
9997363 Ono et al. Jun 2018 B2
10009120 Ranson Jun 2018 B2
10027465 Sjoland Jul 2018 B2
10031246 Zhou Jul 2018 B2
10038471 Chang Jul 2018 B2
10084506 Sjoland Sep 2018 B2
10110306 Jain et al. Oct 2018 B2
10177836 Hong Jan 2019 B2
10187158 Kikuchi Jan 2019 B2
10191217 Boutami Jan 2019 B2
10257746 Jain et al. Apr 2019 B2
10321357 Jain et al. Jun 2019 B1
10325861 Miccoli Jun 2019 B2
10341028 Kanter Jul 2019 B2
10356782 Negus Jul 2019 B2
10367584 Rakich Jul 2019 B2
10418775 Gao Sep 2019 B2
10491313 Jain Nov 2019 B2
10656350 Chen et al. May 2020 B2
10663663 Painchaud May 2020 B2
10673519 Hong Jun 2020 B2
10727945 Nguyen et al. Jul 2020 B1
10754091 Nagarajan Aug 2020 B1
10873877 Jain et al. Dec 2020 B2
20030161637 Yamamoto Aug 2003 A1
20040151238 Masenten Aug 2004 A1
20040264610 Marro Dec 2004 A1
20110065408 Kenington Mar 2011 A1
20110065409 Kenington Mar 2011 A1
20130295980 Reuven Nov 2013 A1
20140169236 Choi Jun 2014 A1
20160103341 Long Apr 2016 A1
20170176780 Levy et al. Jun 2017 A1
20180006795 Raaf Jan 2018 A1
20180248627 Daniel Aug 2018 A1
20190007140 Vishwanath et al. Jan 2019 A1
20200209476 Mattis et al. Jul 2020 A1
20200229031 Jain et al. Jul 2020 A1
20210036779 Nguyen et al. Feb 2021 A1
Foreign Referenced Citations (12)
Number Date Country
101379718 Mar 2009 CN
104484852 Apr 2015 CN
3561561 Oct 2019 EP
2139374 Nov 1984 GB
2002214461 Jul 2002 JP
2006301415 Nov 2006 JP
2474056 Jan 2013 RU
WO 06072086 Jul 2006 WO
WO 07092767 Aug 2007 WO
WO 08036356 Mar 2008 WO
WO 12112357 Aug 2012 WO
WO 16118079 Jul 2016 WO
Non-Patent Literature Citations (8)
Entry
Chang et al., “Full-duplex spectrum sensing in cognitive radios using optical self-interference cancellation,” 2015 9th International Conference on Sensing Technology (ICST), IEEE, pp. 341-344, Dec. 8, 2015.
IBM, “Silicon Nanophotonic Packaging,” https://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=5522, Jul. 2016.
Li et al., “Multimode silicon photonics,” Nanophotonics, vol. 8, No. 2, pp. 227-247, May 16, 2019.
Mothe et al., “Multichannel Microwave Photonics Signals Summation Device,” IEEE Photonics Technology Letters, vol. 3, No. 3, pp. 140-142, Feb. 1, 2011.
Velha et al., “Simultaneous data transmissions on engineered closely packed silicon-on-insulator waveguide arrays,” 19th International Conference on Transparent Optical Networks (ICTON), IEEE, pp. 1-4, Jul. 2, 2017.
Tang et al., “System limitations due to channel cross-coupling in a highly parallel polymer-based single-mode channel waveguide array,” Advances in Resistive Technology and Processing XVI, vol. 2042, 12 pages, Aug. 16, 1993.
Tartaret-Josniére et al., “Microwave Photonics Summation Device with up to 19 Input Signals in K and Ku Bands,” Journal of Lightwave Technology, vol. 34, No. 20, pp. 4715-4721, Oct. 15, 2016.
Yoo et al., “Heterogeneous 2D/3D photonic integrated microsystems,” Microsystems & Nanoengineering, 2, 16030, Aug. 2016.
Related Publications (1)
Number Date Country
20210088724 A1 Mar 2021 US