Low-maintenance coatings

Information

  • Patent Grant
  • RE43817
  • Patent Number
    RE43,817
  • Date Filed
    Wednesday, October 12, 2011
    12 years ago
  • Date Issued
    Tuesday, November 20, 2012
    11 years ago
Abstract
The invention provides a substrate bearing a low-maintenance coating. The coating includes two films: a first film comprising silica (e.g., silicon dioxide) and a second film comprising titania (e.g., titanium dioxide). Preferably, both films are provided within particular thickness ranges. The invention also provides methods of depositing such coatings.
Description
FIELD OF THE INVENTION

The present invention provides thin film coatings for glass sheets and other substrates. More particularly, the invention provides thin film coatings including a thin photocatalytic film, such as titania, deposited over a thin base layer, such as silica. The invention also provides methods of depositing such coatings onto glass sheets and other substrates.


BACKGROUND OF THE INVENTION

For many years, it has been known that titanium dioxide can be used as a photocatalyst. A great deal of research has been done with a view toward providing photocatalytic coatings that have self-cleaning properties. The pursuit of self-cleaning photocatalytic window coatings, in particular, has been an active field of exploration. Such coatings typically involve a titanium dioxide layer carried by a glass pane. These coatings are commonly provided with a relatively thick layer of titanium dioxide and/or a specific under-layer system designed for achieving high levels of photoactivity. Thick titanium dioxide layers, unfortunately, produce high levels of visible reflectance, thus creating a somewhat mirror-like appearance. This high visible reflection tends to exaggerate the appearance of dirt on a window. Further, known under-layer systems commonly teach that specific materials and crystal structures must be used for the under-layer film(s) to achieve acceptable photoactivity levels. Moreover, many photocatalytic coating systems teach that heating is required during or after film deposition to achieve acceptable levels of photoactivity.


Known photocatalytic coatings also tend to have properties that are less than ideal for applications in which the coatings are used on windows. As noted above, the visible reflectance of many known photocatalytic coatings is unacceptably high. Moreover, the reflected colors of these coatings tend not to be ideal. Further, some of these coatings have particularly high surface roughness, as they are designed to have large surface areas that facilitate high photoactivity levels. These rough coatings, unfortunately, tend to be quite vulnerable to being abraded. They are also particularly susceptible to taking on and stubbornly retaining dirt and other contaminants, due to their high surface roughness. Finally, with many recent photocatalytic coatings (e.g., those in which complex under-layer systems are used to maximize photoactivity), it is unclear whether these coatings will exhibit the longevity (e.g., in-field durability over time) that is required for number-one-surface coatings.


The present invention provides low-maintenance coatings that offer exceptional durability, exceptional optical properties, reliable production processes, and surprising cleanliness/maintenance properties.


SUMMARY OF THE INVENTION

In certain embodiments, the invention provides a low-maintenance coating on a glass sheet. The low-maintenance coating comprises a first film positioned directly over a first major surface of the glass sheet and a second film positioned directly over the first film. In various embodiments of the present invention, the first film includes a thin base film, (e.g. silica) that has a thickness of less than about 300 angstroms, alternatively less than about 150 angstroms, and further alternatively between about 70 angstroms and about 120 angstroms. The second film in various embodiments of the present invention includes a thin photocatalytic film (e.g. titania) that has a thickness of less than about 300 angstroms, alternatively less than about 150 angstroms, and further alternatively between about 30 angstroms and about 120 angstroms.


In other embodiments, the invention provides a method of depositing a low-maintenance coating. The method comprises depositing a low-maintenance coating on a glass sheet by depositing first film directly over a first major surface of the glass sheet and then depositing a second film directly over the first film. In one embodiment of the present invention, the first film comprises silica and is deposited at a thickness of between about 70 angstroms and about 120 angstroms. The second film comprises titania and is deposited at a thickness of between about 30 angstroms and about 120 angstroms. In some of these embodiments, both films are deposited by sputtering, preferably while maintaining the substrate at a low temperature (e.g., less than about 250 degrees Celsius, and preferably less than 200 degrees Celsius).





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a partially broken-away schematic cross-sectional side view of a substrate bearing a low-maintenance coating in accordance with certain embodiments of the invention;



FIG. 2 is a partially broken-away perspective view of a window pane bearing a low-maintenance coating, the pane is mounted in an exterior wall of a building in accordance with certain embodiments of the invention; and



FIG. 3 is a schematic side end view of a sputtering chamber that is adapted for use in certain methods of the invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The following detailed description is to be read with reference to the drawings, in which like elements in different drawings have like reference numerals. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Skilled artisans will recognize that the given examples have many alternatives that fall within the scope of the invention.


In certain embodiments, the invention provides a substrate 10 bearing a low-maintenance coating 40. A variety of substrates are suitable for use in the invention. Preferably, the substrate 10 is a sheet-like substrate having generally or substantially opposed first 12 and second 14 major surfaces. In many embodiments, the substrate is a sheet of transparent material (i.e., a transparent sheet). The substrate, however, is not required to be transparent. For most applications, though, the substrate will comprise a transparent (or at least translucent) material, such as glass or clear plastic. For example, the substrate 10 is a glass sheet (e.g., a window pane) in preferred embodiments. A variety of known glass types can be used, and soda-lime glass is preferred.


Substrates of various sizes can be used in the present invention. Commonly, large-area substrates are used. Certain embodiments involve a substrate 10 having a width of at least about 0.5 meter, preferably at least about 1 meter, perhaps more preferably at least about 1.5 meters (e.g., between about 2 meters and about 4 meters), and in some cases at least about 3 meters.


Substrates of various thicknesses can be used in the present invention. Commonly, substrates (e.g., glass sheets) having a thickness of about 1-5 mm are used. Certain embodiments involve a substrate 10 with a thickness of between about 2.3 mm and about 4.8 mm, and perhaps more preferably between about 2.5 mm and about 4.8 mm. In some cases, a sheet of glass (e.g., soda-lime glass) with a thickness of about 3 mm will be used.


In certain embodiments, the invention provides a substrate 10 bearing a low-maintenance coating 40. The coating 40 is preferably deposited over (e.g., over an entirety of) a major surface 12 of the substrate 10. The low-maintenance coating 40 includes two films: (1) a first film 30 deposited over a major surface 12 of the substrate 10; and (2) a second film 50 deposited over the first film 30.


In various embodiments of the present invention, the first film 30 includes a base film, such as silica (e.g., silicon dioxide), and desirably is deposited directly over the substrate 10 (e.g., directly over a major surface 12 of the substrate). This film preferably consists of, or consists essentially of, silicon dioxide. The silica in the first film 30, however, can include small amounts of an electrically-conductive material, such as aluminum, which may be oxidized in the film 30. For example, this film 30 can be deposited by sputtering a silicon-containing target that includes a small amount of aluminum or another metal that enhances the electrical conductivity of the target. The first film 30 (an entire thickness of which may consist essentially of silica) desirably has (e.g., is deposited at) a physical thickness of less than about 300 angstroms, alternatively less than about 150 angstroms (e.g., between about 40 angstroms and about 150 angstroms), and further alternatively about 70 angstroms and about 120 angstroms. These incredibly small thicknesses facilitate a surprisingly array of exceptional properties in the present coating.


The coating 40 includes a second film 50 that includes a photocatalytic film, such as titania, and desirably is deposited directly over the first film 30. It is noted that one or more photocatalytic materials may be used in embodiments of the present invention including but not limited to oxides of titanium, iron, silver, copper, tungsten, aluminum, zinc, strontium, palladium, gold, platinum, nickel, cobalt and combinations thereof. In preferred embodiments, this film 50 consists of, or consists essentially of, titanium dioxide. In some embodiments though, the second film 50 consists of, or consists essentially of, substoichiometric titanium oxide (TiOx, where x is less than 2). The second film 50 (an entire thickness of which may consist essentially of titania) desirably has (e.g., is deposited at) a physical thickness of less than about 300 angstroms, alternatively less than about 150 angstroms (e.g., between about 30 angstroms and about 150 angstroms), and further alternatively between about 30 angstroms and about 120 angstroms. It has been discovered that the second film 50 when provided at these incredibly small thicknesses, particularly when consisting essentially of titanium oxide and provided in combination with a first film consisting essentially of silicon dioxide at the noted thicknesses, provides unexpected maintenance properties (including exceptional characteristics in terms of taking on limited amounts of dirt and other contaminants and providing easy removal of those contaminants that do accumulate on the coating), while at the same time achieving exceptionally low visible reflection, neutral color, and exceptional durability. Moreover, in preferred embodiments, the second film is a sputtered film deposited at low temperatures (e.g., sputter deposited while maintaining the substrate at less than about 250 degrees Celsius and preferably less than 200 degrees Celsius), and it is especially surprising that a sputtered film of this nature exhibits such exceptional low-maintenance properties.


Certain particular embodiments provide a substrate 10 (e.g., a glass sheet) having a first major surface 12 directly over which is deposited a first film 30 consisting essentially of silica (e.g., SiO2) at a thickness of between about 70 angstroms and about 120 angstroms, wherein a second film 50 consisting essentially of titania (e.g., TiO2) is deposited directly over the first film 30 at a thickness of between about 30 angstroms and about 300 angstroms. In some preferred embodiments of this nature, the first film 30 has a thickness of between about 70 angstroms and about 120 angstroms, perhaps optimally about 100 angstroms, while the second film 50 has a thickness of between about 30 angstroms and about 120 angstroms, perhaps optimally about 100 angstroms.


In a further embodiment, the thickness of the second film 50 is less than 100 angstroms (and optionally less than about 80 angstroms) but greater than about 30 angstroms, while the first film 30 has a thickness of less than about 300 angstroms (and optionally less than about 100 angstroms) but greater than about 30 angstroms. In some cases of this nature, the first film consists essentially of silica while the second film consists essentially of titania.


In the present coating 40, the second film 50 desirably is the outermost film of the coating. Conventional wisdom in the art would suggest that the thin nature of the present coating 40 would not have enough photoactivity to give desirable self-cleaning properties, especially for embodiments where the second film 50 is sputtered, particularly while maintaining the substrate at a low temperature. Surprisingly, though, the present coating is incredibly effective in keeping windows (e.g., monolithic panes or IG units) free of the particular contaminants that build up on windows during the course of routine production. The present coatings also exhibit advantageous water-sheeting properties, while at the same time having exceptional optical properties and durability.


In FIG. 3, the illustrated substrate 10 is provided with two coatings: the low-maintenance coating 40 on the first surface 12 of the substrate and a low-emissivity coating 80 on the second surface 14 of the substrate. It is noted that, alternatively, in an insulating glass unit, the low-emissivity coating 80 may be positioned on the third surface of the insulated glass unit (the third surface is considered the surface of the second, e.g., inboard, pane that is exposed to the between-pane space of the insulated glass unit). The low-emissivity coating 80 is optional. When provided, any desired low-emissivity coating can be used. Suitable examples of a low-emissivity coating are described in U.S. patent application Ser. No. 09/728,435, entitled “Haze-Resistant Transparent Film Stacks”, the entire teachings of which are incorporated herein by reference.


With reference to FIG. 2, the low-maintenance coating 40 is preferably on the “first” surface of a window. This can be appreciated with reference to FIG. 2, which exemplifies embodiments wherein the substrate 10 (which may be a glass pane) is a window pane that is mounted on a window frame 95 (e.g., in an exterior wall 98 of a building 99). In certain applications, the coated first surface (i.e., the surface 12 on which the coating 40 is provided) of such a window will be exposed to an outdoor environment (e.g., such that the coating 40 will be in periodic contact with rain). In another embodiment, the low-maintenance coating is applied to the “fourth” surface of a window (e.g., the #4 surface of a double-pane window unit), optionally in addition to providing the low-maintenance coating 40 on the first surface of the same window. Further, in monolithic windows, the low-maintenance coating 40 can be provided on only the #1 surface, on only the #2 surface, or on both the #1 and #2 surfaces.


The invention also provides methods for producing coated substrates. These methods involve depositing a low-maintenance coating 40 (i.e., by depositing each film 30, 50 of any embodiment described above) upon a substrate 10. As noted above, the low-maintenance coating includes two films. These films 30, 50 can be deposited by a variety of well known coating techniques. In certain particularly preferred embodiments, the coating 40 (or at least the second film 50) is deposited by sputtering, preferably at a low temperature (e.g., while maintaining the substrate at below about 250 degrees Celsius, and more preferably below 200 degrees Celsius). However, other coating techniques, such as chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition, and pyrolytic deposition can be used. Various embodiments of the coating 40 have been described, and the present methods involve depositing any of the described coating embodiments by any thin film deposition method, with sputtering being preferred, though not required, for at least the second film 50 and preferably for the whole coating 40.


Sputtering is well known in the present art. FIG. 3 depicts an exemplary magnetron sputtering chamber 200. Magnetron sputtering chambers and related equipment are commercially available from a variety of sources (e.g., Leybold). Useful magnetron sputtering techniques and equipment are described in U.S. Pat. No. 4,166,018, issued to Chapin, the entire teachings of which are incorporated herein by reference.


In preferred embodiments, the invention provides methods of producing a coated substrate by sputter depositing onto the substrate each film of any above-described coating embodiment. Preferably, the sputtering of the coating 40 (or at least the sputtering of the second film 50) is carried out while maintaining the substrate at a temperature of less than about 250 degrees Celsius, and more preferably less than 200 degrees Celsius (e.g., without heating the substrate).


In favored methods of the invention, the low-maintenance coating 40 is applied to a substrate 10 in a multiple-chamber sputtering line. Sputtering lines are well known in the present art. A typical sputtering line includes a series of sputtering chambers aligned and connected such that a sheet-like substrate can be passed from one chamber to the next by conveying the substrate horizontally over spaced-apart transport rollers 210 in each of the chambers (the rollers form a continuous path of substrate travel P through the sputtering line). The substrate is typically conveyed at speeds of between about 100-500 inches per minute.


In one particular method, the substrate 10 is positioned at the inlet of the sputtering line and conveyed to a desired coat zone. This coat zone is provided with three cathodes that are adapted to deposit the first film 30. In more detail, each of these cathodes comprises a silicon sputtering target. The silicon targets in this coat zone are sputtered in an oxidizing atmosphere to deposit a silicon dioxide film directly upon the first major surface 12 of the substrate. This atmosphere may consist essentially of oxygen (e.g., about 100% O2). Alternatively, this atmosphere may comprise Ar/O2 (e.g., oxygen and up to about 40% argon). A power of about 38 kW is applied to the first cathode, while a power of about 38 kW is applied to the second cathode, and a power of about 38 kW is applied to the third cathode. The substrate 10 is conveyed beneath all three of these targets at a rate of about 200 inches per minute, while sputtering each of these targets at the noted power level, such that a silicon dioxide film is applied at a thickness of about 100 Å. As noted above, each silicon target may include some aluminum or another material to enhance the conductivity of the target.


The thus coated substrate is then conveyed into a subsequent coat zone. In this zone, three cathodes are used to deposit the second film 50. Each of these three cathodes comprises a titanium sputtering target. The titanium targets in this coat zone are sputtered in an oxidizing atmosphere to deposit a titanium dioxide film directly upon the first film 30. This atmosphere may consist essentially of oxygen. Alternatively, this atmosphere may comprise Ar/O2. A power of about 43 kW is applied to the first cathode, a power of about 43 kW is applied to the second cathode, and a power of about 43 kW is applied to the third cathode. The substrate 10 is conveyed beneath all three of these targets at a rate of about 200 inches per minute, while sputtering each of these targets at the noted power level, such that a titanium dioxide film is applied at a thickness of about 100 Å. This titanium dioxide forms the outermost portion (and is exposed) of the coating 40 in the present embodiment.


In the method just described, it is to be appreciated that the second major surface 14 of the substrate 10 may previously have been, or may subsequently be, coated with an optional low-emissivity coating 80. For instance, the coat zones just described for use in depositing the first 30 and second 50 films can be a sputter-up coat zones located toward the end of a sputtering line that includes a relatively large number of preceding sputter-down coat zones in which the optional low-emissivity coating 80 may have been applied. Particularly useful sputter-up/sputter-down methods and equipment are described in U.S. patent application Ser. No. 09/868,542, the entire contents of which are incorporated herein by reference.


While preferred embodiments of the present invention have been described, it should be understood that numerous changes, adaptations, and modifications can be made therein without departing from the spirit of the invention and the scope of the appended claims.

Claims
  • 1. A low-maintenance coating on a glass sheet, the coating comprising a firstbase film positioned directly over a first major surface of the glass sheet and a secondphotocatalytic film positioned directly over the firstbase film, wherein the firstbase film includes a base film and has a thickness of less than about 100 angstroms, and wherein the second film includes a photocatalytic film and has a thickness of less than about 100 angstroms.
  • 2. The low-maintenance coating of claim 1 wherein the base film is silica.
  • 3. The low-maintenance coating of claim 2 wherein the coated first major surface is in periodic contact with rain.
  • 4. The low-maintenance coating of claim 1 wherein the photocatalytic film is titania.
  • 5. The low-maintenance coating of claim 1 wherein the thickness of the firstbase film is between about 70 angstroms and about 100 angstroms.
  • 6. The low-maintenance coating of claim 1 wherein the thickness of the secondphotocatalytic film is between about 30 angstroms and about 120100 angstroms.
  • 7. The low-maintenance coating of claim 1 wherein the glass sheet is a window pane mounted in a window frame, and wherein the coated first major surface is exposed to an outdoor environment.
  • 8. The low-maintenance coating of claim 1 wherein the firstbase film consists essentially of silica and the secondphotocatalytic film consists essentially of titania.
  • 9. The low-maintenance coating of claim 8 wherein the silica is silicon dioxide, and the titania is titanium dioxide or substoichiometric titanium oxide.
  • 10. The low-maintenance coating of claim 1 wherein the firstbase and secondphotocatalytic films are both sputtered films.
  • 11. A low-maintenance coating on a glass sheet, the coating comprising a first film positioned directly over a first major surface of the glass sheet and a second film positioned directly over the first film, wherein the first film consists essentially of silica and has a thickness of between about 30 angstroms and about 100 angstroms, and wherein the second film consists essentially of titania and has a thickness of less than 100 angstroms but greater than about 30 angstroms.
  • 12. The low-maintenance coating of claim 11 wherein the second film has a thickness of less than about 80 angstroms.
  • 13. The low-maintenance coating of claim 11 wherein the silica of the first film contains aluminum oxide.
  • 14. The low-maintenance coating of claim 11 wherein the silica of the first film includes an electrically conductive material present in oxidized form.
  • 15. The low-maintenance coating of claim 14 wherein the second film is an outermost film of the coating.
  • 16. The low-maintenance coating of claim 2 wherein the base film further comprises an oxidized electrically conductive material.
  • 17. The low-maintenance coating of claim 16 wherein the electrically conductive material is aluminum.
  • 18. The low-maintenance coating of claim 8 wherein the base film has a thickness of between about 70 angstroms and about 100 angstroms, and the photocatalytic film has a thickness of between about 30 angstroms and about 100 angstroms.
  • 19. A low-maintenance coating on a substrate, the coating comprising a base film extending directly from a first major surface of the substrate to a thickness of less than about 100 angstroms, and a photocatalytic film extending directly from a surface of the base film to a thickness of less than about 100 angstroms.
  • 20. The low-maintenance coating of claim 19 wherein the base film consists essentially of silica and the photocatalytic film consists essentially of titania.
  • 21. The low-maintenance coating of claim 19 wherein the base and photocatalytic films are both sputtered films.
  • 22. The low-maintenance coating of claim 19 wherein the base film extends directly from the first major surface of the substrate to a thickness of between about 70 angstroms and about 100 angstroms, and the photocatalytic film extends directly from the surface of the base film to a thickness of between about 30 angstroms and about 100 angstroms.
CROSS REFERENCE To RELATED APPLICATIONS

The present application claims priority to provisional U.S. patent application filed Jul. 12, 2004 and assigned Ser. No. 60/587,210, and provisional U.S. patent application filed Mar. 7, 2005 and assigned Ser. No. 60/659,491, the entire disclosures of which are incorporated herein by reference.

US Referenced Citations (617)
Number Name Date Kind
1256818 Nile Feb 1918 A
2808351 Colbert Oct 1952 A
2780553 Pawlyk Feb 1957 A
3505092 Ryan Apr 1970 A
3528906 Cash, Jr. Sep 1970 A
3679291 Apfel Jul 1972 A
3727666 Vander Sluis Apr 1973 A
3829197 Thelen Aug 1974 A
3840451 Golyanov Oct 1974 A
3844924 Cunningham Oct 1974 A
3852098 Bloss Dec 1974 A
3854796 Thelen Dec 1974 A
3911579 Lane Oct 1975 A
3925182 Carmichael Dec 1975 A
3934961 Itoh Jan 1976 A
3968018 Lane Jul 1976 A
3970037 Sopko Jul 1976 A
3990784 Gelber Nov 1976 A
4012119 Adams Mar 1977 A
4029566 Brandmair Jun 1977 A
4045125 Farges Aug 1977 A
4052520 Chang Oct 1977 A
4060660 Carlson Nov 1977 A
4107350 Berg Aug 1978 A
4130672 Onoki Dec 1978 A
4166018 Chapin Aug 1979 A
4194022 Gillery Mar 1980 A
4212663 Aslami Jul 1980 A
4212903 Schnell Jul 1980 A
4214014 Hofer Jul 1980 A
4216259 Groth Aug 1980 A
4238276 Kinugawa Dec 1980 A
4252629 Bewer Feb 1981 A
4261722 Novak Apr 1981 A
4322276 Meckel Mar 1982 A
4331526 Kuehnie May 1982 A
4332922 Kossmehl Jun 1982 A
4336119 Gillery Jun 1982 A
4351861 Henery Sep 1982 A
4356073 McKelvey Oct 1982 A
4377613 Gordon Mar 1983 A
4422916 McKelvey Dec 1983 A
4422917 Hayfield Dec 1983 A
4440822 Gordon Apr 1984 A
4465575 Love Aug 1984 A
4466258 Sando Aug 1984 A
4466877 McKelvey Aug 1984 A
4485146 Mizuhashi Nov 1984 A
4486286 Lewin Dec 1984 A
4503125 Nelson Mar 1985 A
4504519 Zelez Mar 1985 A
4556599 Sato Dec 1985 A
4568622 Minami Feb 1986 A
4569738 Kieser Feb 1986 A
4571350 Parker Feb 1986 A
4576864 Krautter Mar 1986 A
4661409 Kieser Apr 1987 A
4663234 Bouton May 1987 A
4673475 Windischmann Jun 1987 A
4692428 Murrell Sep 1987 A
4704339 Green Nov 1987 A
4713311 Senske Dec 1987 A
4717622 Kurokawa Jan 1988 A
4725345 Sakamoto Feb 1988 A
4728529 Etzkorn Mar 1988 A
4732454 Saito Mar 1988 A
4737252 Hoffman Apr 1988 A
4769291 Belkind Sep 1988 A
4777090 Ovshinsky Oct 1988 A
4780334 Ackerman Oct 1988 A
4798660 Ermer Jan 1989 A
4814056 Welty Mar 1989 A
4816127 Eltouky Mar 1989 A
4834857 Gillery May 1989 A
4838935 Dunlop Jun 1989 A
4849081 Ross Jul 1989 A
4851095 Scobey Jul 1989 A
4854670 Mellor Aug 1989 A
4859493 Lemelson Aug 1989 A
4861680 Meyer Aug 1989 A
4882827 Kusumi Nov 1989 A
4883574 Dos Santos Nov 1989 A
4894133 Hedgcoth Jan 1990 A
4902580 Gillery Feb 1990 A
4915977 Okamoto Apr 1990 A
4919778 Dietrich Apr 1990 A
4931213 Guajardo Jun 1990 A
4931315 Mellor Jun 1990 A
4931778 Guajardo Jun 1990 A
4940636 Brock Jul 1990 A
4952430 Bowser Aug 1990 A
4954465 Kawashima Sep 1990 A
4961958 Desphandey Oct 1990 A
4963240 Fukasawa Oct 1990 A
4981568 Taranko Jan 1991 A
4990234 Szczyrbowski Feb 1991 A
4995893 Jenkins Feb 1991 A
4997576 Heller Mar 1991 A
5006248 Anderson Apr 1991 A
5008002 Uno Apr 1991 A
5020288 Swensen Jun 1991 A
5026415 Yamamoto Jun 1991 A
5032421 Sarma Jul 1991 A
5035784 Anderson Jul 1991 A
5047131 Wolfe Sep 1991 A
5071206 Hood Dec 1991 A
5073241 Watanabe Dec 1991 A
5073450 Nietering Dec 1991 A
5073451 Iida Dec 1991 A
5090985 Soubeyrand Feb 1992 A
5104539 Anderson Apr 1992 A
5105310 Dickey Apr 1992 A
5106671 Amberger Apr 1992 A
5107643 Swensen Apr 1992 A
5108574 Kirs Apr 1992 A
5110637 Ando May 1992 A
5126218 Clarke Jun 1992 A
RE34035 Dimigen Aug 1992 E
5139633 Kashida Aug 1992 A
5160534 Hiraki Nov 1992 A
5165972 Porter Nov 1992 A
5168003 Proscia Dec 1992 A
5171414 Amberger Dec 1992 A
5176897 Lester Jan 1993 A
5179468 Gasloli Jan 1993 A
5190807 Kimock Mar 1993 A
5194990 Boulos Mar 1993 A
5196400 Chen Mar 1993 A
5201926 Szczyrbowski Apr 1993 A
5209996 Kashida May 1993 A
5211759 Zimmermann May 1993 A
5234487 Wickersham Aug 1993 A
5245468 Demiryont Sep 1993 A
5254392 Burns Oct 1993 A
5284539 McKernan Feb 1994 A
5286524 Slutz Feb 1994 A
5298048 Lingle Mar 1994 A
5298338 Hiraki Mar 1994 A
5302449 Eby Apr 1994 A
5306547 Hood Apr 1994 A
5306569 Hiraki Apr 1994 A
5318830 Takamatsu Jun 1994 A
5338422 Belkind Aug 1994 A
5342676 Zagdoun Aug 1994 A
5346600 Nieh Sep 1994 A
5354446 Kida Oct 1994 A
5356718 Athey Oct 1994 A
5366764 Sunthankar Nov 1994 A
5378527 Nakanishi Jan 1995 A
5394269 Takamatsu Feb 1995 A
5397050 Mueller Mar 1995 A
5401543 O'Neill Mar 1995 A
5405517 Lampkin Apr 1995 A
5415756 Wolfe May 1995 A
5417827 Finley May 1995 A
5424130 Nakanishi Jun 1995 A
5453459 Roberts Sep 1995 A
5470527 Yamanobe Nov 1995 A
5470661 Bailey Nov 1995 A
5476713 Abiko Dec 1995 A
5482602 Cooper Jan 1996 A
5496621 Makita Mar 1996 A
5498475 Takigawa Mar 1996 A
5507930 Yamashita Apr 1996 A
5512152 Schicht Apr 1996 A
5513039 Lu Apr 1996 A
5514485 Ando May 1996 A
5520996 Balian May 1996 A
5525406 Goodman Jun 1996 A
5527755 Wenski Jun 1996 A
5529631 Yoshikawa Jun 1996 A
5552180 Finley Sep 1996 A
5558751 Mahler Sep 1996 A
5563734 Wolfe Oct 1996 A
5569362 Lerbet Oct 1996 A
5569501 Bailey Oct 1996 A
5589280 Gibbons Dec 1996 A
5593784 Chinzi Jan 1997 A
5593786 Parker Jan 1997 A
5594585 Komatsu Jan 1997 A
5595813 Ogawa Jan 1997 A
5595825 Guiselin Jan 1997 A
5597622 Zoller Jan 1997 A
5599422 Adams Feb 1997 A
5605609 Ando Feb 1997 A
5607723 Plano et al. Mar 1997 A
5609924 McCurdy Mar 1997 A
5611899 Maass Mar 1997 A
5616225 Sieck Apr 1997 A
5616532 Heller Apr 1997 A
5618388 Seeser Apr 1997 A
5618590 Naruse Apr 1997 A
5620572 Bjornard Apr 1997 A
5624423 Anjur Apr 1997 A
5624760 Collins Apr 1997 A
5633208 Ishikawa May 1997 A
5635287 Balian Jun 1997 A
5643423 Kimock Jul 1997 A
5643432 Qiu Jul 1997 A
5645699 Sieck Jul 1997 A
5645900 Ong Jul 1997 A
5669144 Hahn Sep 1997 A
5674625 Takahashi Oct 1997 A
5674658 Burberry Oct 1997 A
5679431 Chen Oct 1997 A
5679978 Kawahara Oct 1997 A
5683560 Szczyrbowski Nov 1997 A
5683561 Hollars Nov 1997 A
5686372 Langford Nov 1997 A
5698262 Soubeyrand Dec 1997 A
5715103 Amano Feb 1998 A
5719705 Machol Feb 1998 A
5723172 Sherman Mar 1998 A
5724187 Varaprasad Mar 1998 A
5733660 Makita Mar 1998 A
5733669 Veyhl Mar 1998 A
5744215 Neuman Apr 1998 A
5745291 Jenkinson Apr 1998 A
5750265 Goodman May 1998 A
5755867 Chikuni May 1998 A
5762674 Maltby, Jr. Jun 1998 A
5763087 Falabella Jun 1998 A
5780119 Dearnaley Jul 1998 A
5780149 McCurdy Jul 1998 A
5780380 Endoh Jul 1998 A
5789040 Martinu Aug 1998 A
5811191 Neuman Sep 1998 A
5812405 Meredith, Jr. Sep 1998 A
5814195 Lehan Sep 1998 A
5814196 Hollars Sep 1998 A
5820994 Gotoh Oct 1998 A
5827490 Jones Oct 1998 A
5830252 Finley Nov 1998 A
5830327 Kolenkow Nov 1998 A
5830332 Babich Nov 1998 A
5846613 Neuville Dec 1998 A
5849200 Heller Dec 1998 A
5853866 Watanabe Dec 1998 A
5854169 Heller Dec 1998 A
5854708 Komatsu Dec 1998 A
5863398 Kardokus Jan 1999 A
5866199 Swidler Feb 1999 A
5866260 Adams, Jr. Feb 1999 A
5869187 Nakamura Feb 1999 A
5869808 Hyllberg Feb 1999 A
5871843 Yoneda Feb 1999 A
5873203 Thiel Feb 1999 A
5874701 Watanabe Feb 1999 A
5877391 Kanno Mar 1999 A
5888593 Petrmichl Mar 1999 A
5891556 Anderson Apr 1999 A
5896553 Lo Apr 1999 A
5897957 Goodman Apr 1999 A
5935716 McCurdy Aug 1999 A
5939188 Moncur Aug 1999 A
5939194 Hashimoto Aug 1999 A
5939201 Boire Aug 1999 A
5948538 Brochot Sep 1999 A
5961843 Hayakawa Oct 1999 A
5962115 Zmelty Oct 1999 A
5965246 Guiselin Oct 1999 A
5968328 Teschner Oct 1999 A
5972184 Hollars Oct 1999 A
5981426 Langford Nov 1999 A
5993734 Snowman Nov 1999 A
6013372 Hayakawa Jan 2000 A
6027766 Greenberg Feb 2000 A
6037289 Chopin Mar 2000 A
6040939 Demiryont Mar 2000 A
6045903 Seino Apr 2000 A
6046403 Yoshikawa Apr 2000 A
6054024 Toyama Apr 2000 A
6054227 Greenberg Apr 2000 A
6068914 Boire May 2000 A
6071606 Yamazaki Jun 2000 A
6071623 Sugawara Jun 2000 A
6074981 Tada Jun 2000 A
6077482 Kanno Jun 2000 A
6077492 Anpo Jun 2000 A
6090489 Hayakawa Jul 2000 A
6103363 Boire Aug 2000 A
6114043 Joret Sep 2000 A
6120747 Sugishima Sep 2000 A
6124044 Swidler Sep 2000 A
6139803 Watanabe Oct 2000 A
6139968 Knapp Oct 2000 A
6153067 Maishev Nov 2000 A
6154311 Simmons Nov 2000 A
6156171 Hollars Dec 2000 A
6156409 Doushita Dec 2000 A
6165256 Hayakawa Dec 2000 A
6165598 Nelson Dec 2000 A
6165616 Lemelson Dec 2000 A
6171659 Vanden Brande Jan 2001 B1
6179971 Kittrell Jan 2001 B1
6179972 Kittrell Jan 2001 B1
6191062 Hayakawa Feb 2001 B1
6193378 Tonar Feb 2001 B1
6193856 Kida Feb 2001 B1
6194346 Tada Feb 2001 B1
6197101 Matsumura Mar 2001 B1
6210750 Cho Apr 2001 B1
6210779 Watanabe Apr 2001 B1
6228480 Kimura May 2001 B1
6228502 Saitoh May 2001 B1
6238738 McCurdy May 2001 B1
6242752 Soma Jun 2001 B1
6248397 Ye Jun 2001 B1
6261693 Veerasamy Jul 2001 B1
6270633 Onaka Aug 2001 B1
6274244 Finley Aug 2001 B1
6299981 Azzopardi Oct 2001 B1
6319326 Koh Nov 2001 B1
6326079 Philippe Dec 2001 B1
6329060 Barkac Dec 2001 B1
6329925 Skiver Dec 2001 B1
6333084 Woodard Dec 2001 B1
6334938 Kida Jan 2002 B2
6335479 Yamada Jan 2002 B1
6336998 Wang Jan 2002 B1
6337124 Anderson Jan 2002 B1
6346174 Finley Feb 2002 B1
6350397 Heikkila Feb 2002 B1
6352755 Finley Mar 2002 B1
6354109 Boire Mar 2002 B1
6362121 Chopin Mar 2002 B1
6365010 Hollars Apr 2002 B1
6365014 Finley Apr 2002 B2
6368664 Veerasamy Apr 2002 B1
6368668 Kobayashi Apr 2002 B1
6379746 Birch Apr 2002 B1
6379776 Tada Apr 2002 B1
6387844 Fujishima May 2002 B1
6403686 Pickett Jun 2002 B1
6403689 Pickett Jun 2002 B1
6413581 Greenberg Jul 2002 B1
6414213 Ohmori Jul 2002 B2
6419800 Anzaki Jul 2002 B2
6425670 Komatsu Jul 2002 B1
6428172 Hutzel Aug 2002 B1
6436542 Ogino Aug 2002 B1
6440278 Kida Aug 2002 B1
6447123 Tonar Sep 2002 B2
6451178 Szczyrbowski Sep 2002 B2
6461686 Vanderstraeten Oct 2002 B1
6464951 Kittrell Oct 2002 B1
6465088 Talpaert Oct 2002 B1
6468402 Vanderstraeten Oct 2002 B1
6468403 Shimizu Oct 2002 B1
6468428 Nishii Oct 2002 B1
6488824 Hollars Dec 2002 B1
6500690 Yamagishi Dec 2002 B1
6501387 Skiver Dec 2002 B2
6511587 Vanderstraeten Jan 2003 B2
6570709 Katayama May 2003 B2
6576344 Doushita Jun 2003 B1
6582839 Yamamoto Jun 2003 B1
6596664 Kittrell Jul 2003 B2
6635155 Miyamura Oct 2003 B2
6660365 Krisko Dec 2003 B1
6673738 Ueda Jan 2004 B2
6677063 Finley Jan 2004 B2
6679978 Johnson Jan 2004 B2
6680135 Boire Jan 2004 B2
6682773 Medwick Jan 2004 B2
6716323 Siddle Apr 2004 B1
6720066 Talpaert Apr 2004 B2
6722159 Greenberg Apr 2004 B2
6730630 Okusako May 2004 B2
6733889 Varanasi May 2004 B2
6743343 Kida Jun 2004 B2
6743749 Morikawa Jun 2004 B2
6761984 Anzaki Jul 2004 B2
6770321 Hukari Aug 2004 B2
6777030 Veerasamy Aug 2004 B2
6777091 Kijima Aug 2004 B2
6781738 Kikuchi Aug 2004 B2
6787199 Anpo Sep 2004 B2
6789906 Tonar Sep 2004 B2
6794065 Morikawa Sep 2004 B1
6800182 Mitsui Oct 2004 B2
6800183 Takahashi Oct 2004 B2
6800354 Baumann Oct 2004 B2
6804048 MacQuart Oct 2004 B2
6811856 Nun Nov 2004 B2
6818309 Talpaert Nov 2004 B1
6829084 Takaki Dec 2004 B2
6830785 Hayakawa Dec 2004 B1
6833089 Kawahara Dec 2004 B1
6835688 Morikawa Dec 2004 B2
6840061 Hurst Jan 2005 B1
6846556 Boire Jan 2005 B2
6869644 Buhay Mar 2005 B2
6870657 Fitzmaurice Mar 2005 B1
6872441 Baumann Mar 2005 B2
6875319 Nadaud Apr 2005 B2
6878242 Wang Apr 2005 B2
6878450 Anpo Apr 2005 B2
6881701 Jacobs Apr 2005 B2
6890656 Iacovangelo May 2005 B2
6908698 Yoshida Jun 2005 B2
6908881 Sugihara Jun 2005 B1
6916542 Buhay Jul 2005 B2
6921579 O'Ohaughnessy Jul 2005 B2
6929862 Hurst Aug 2005 B2
6939611 Fujishima Sep 2005 B2
6952299 Fukazawa Oct 2005 B1
6954240 Hamamoto Oct 2005 B2
6962759 Buhay Nov 2005 B2
6964731 Krisko Nov 2005 B1
6974629 Krisko Dec 2005 B1
6997570 Nakaho Feb 2006 B2
7005188 Anderson Feb 2006 B2
7005189 Tachibana Feb 2006 B1
7011691 Abe Mar 2006 B2
7022416 Teranishi Apr 2006 B2
7049002 Greenberg May 2006 B2
7052585 Veerasamy May 2006 B2
7060643 Sanbayashi Jun 2006 B2
7096692 Greenberg Aug 2006 B2
7118936 Kobayashi Oct 2006 B2
7138181 McCurdy Nov 2006 B2
7157840 Fujishima Jan 2007 B2
7175911 Zhou Feb 2007 B2
7179527 Sato Feb 2007 B2
7195821 Tixhon Mar 2007 B2
7198699 Thomsen Apr 2007 B2
7211513 Remington, Jr. May 2007 B2
7211543 Nakabayashi May 2007 B2
7223523 Boykin May 2007 B2
7232615 Buhay Jun 2007 B2
7255831 Wei Aug 2007 B2
7261942 Andrews Aug 2007 B2
7264741 Hartig Sep 2007 B2
7294365 Hayakawa Nov 2007 B2
7294404 Krisko Nov 2007 B2
7300634 Yaniv Nov 2007 B2
7309405 Cho Dec 2007 B2
7309664 Marzolin Dec 2007 B1
7311961 Finley Dec 2007 B2
7320827 Fujisawa Jan 2008 B2
7323249 Athey Jan 2008 B2
7348054 Jacquiod Mar 2008 B2
7354624 Millero Apr 2008 B2
7361963 Ikadai Apr 2008 B2
7387839 Gueneau Jun 2008 B2
7534466 Hartig May 2009 B2
7604865 Krisko Oct 2009 B2
7713632 Krisko May 2010 B2
20010007715 Toyoshima Jul 2001 A1
20010016262 Toyoshima Aug 2001 A1
20010030808 Komatsu Oct 2001 A1
20020012779 Miyashita Jan 2002 A1
20020014634 Koyama Feb 2002 A1
20020016250 Hayakawa Feb 2002 A1
20020028361 Boire Mar 2002 A1
20020045073 Finley Apr 2002 A1
20020046945 Hosokawa Apr 2002 A1
20020071956 Boire Jun 2002 A1
20020102352 Hartig Aug 2002 A1
20020110638 Boire Aug 2002 A1
20020119307 Boire Aug 2002 A1
20020155265 Choi Oct 2002 A1
20020155299 Harris Oct 2002 A1
20020172775 Buhay Nov 2002 A1
20020189938 Baldwin Dec 2002 A1
20030038028 Schultheis Feb 2003 A1
20030039843 Johnson Feb 2003 A1
20030043464 Dannenberg Mar 2003 A1
20030048538 Tonar Mar 2003 A1
20030054177 Jin Mar 2003 A1
20030064231 Hurst Apr 2003 A1
20030096701 Fujishima May 2003 A1
20030143437 Ohtsu Jul 2003 A1
20030152780 Baumann Aug 2003 A1
20030180547 Buhay Sep 2003 A1
20030186089 Kikuchi Oct 2003 A1
20030207028 Boire Nov 2003 A1
20030215647 Yoshida Nov 2003 A1
20030224620 Kools Dec 2003 A1
20030235695 Greenberg Dec 2003 A1
20030235720 Athey Dec 2003 A1
20040005466 Arai Jan 2004 A1
20040009356 Medwick Jan 2004 A1
20040020761 Thomsen Feb 2004 A1
20040032655 Kikuchi Feb 2004 A1
20040043260 Nadaud Mar 2004 A1
20040063320 Hollars Apr 2004 A1
20040069623 Vanderstraeten Apr 2004 A1
20040115362 Hartig Jun 2004 A1
20040140198 Cho Jul 2004 A1
20040146721 Hartig Jul 2004 A1
20040149307 Hartig Aug 2004 A1
20040163945 Hartig Aug 2004 A1
20040179978 Kobayashi Sep 2004 A1
20040180216 Veerasamy Sep 2004 A1
20040180220 Gueneau Sep 2004 A1
20040196580 Nakaho Oct 2004 A1
20040202890 Kutilek Oct 2004 A1
20040206024 Graf Oct 2004 A1
20040214010 Murata Oct 2004 A1
20040216487 Boire Nov 2004 A1
20040219348 Jacquiod Nov 2004 A1
20040241040 Wei Dec 2004 A1
20040241490 Finley Dec 2004 A1
20040247901 Suzuki Dec 2004 A1
20040248725 Hiraoka Dec 2004 A1
20040253382 De Bosscher Dec 2004 A1
20040253471 Thiel Dec 2004 A1
20050003672 Kools Jan 2005 A1
20050016835 Krisko Jan 2005 A1
20050019505 Hamamoto Jan 2005 A1
20050019700 Hayakawa Jan 2005 A1
20050020444 Hiraoka Jan 2005 A1
20050025982 Krisko Feb 2005 A1
20050031876 Lu Feb 2005 A1
20050042375 Minami Feb 2005 A1
20050044894 Nelson Mar 2005 A1
20050051422 Rietzel Mar 2005 A1
20050084688 Garrec Apr 2005 A1
20050106397 Krisko May 2005 A1
20050137084 Krisko Jun 2005 A1
20050191505 Akarsu Sep 2005 A1
20050191522 Anzaki Sep 2005 A1
20050221098 Azzopardi Oct 2005 A1
20050227008 Okada Oct 2005 A1
20050233893 Sakatani Oct 2005 A1
20050233899 Anzaki Oct 2005 A1
20050238861 Buhay Oct 2005 A1
20050244678 Arfsten Nov 2005 A1
20050245382 Iwahashi Nov 2005 A1
20050245383 Iwahashi Nov 2005 A1
20050247555 Thiel Nov 2005 A1
20050248824 Fukazawa Nov 2005 A1
20050252108 Sanderson Nov 2005 A1
20050258030 Finley Nov 2005 A1
20050266248 Millero Dec 2005 A1
20050272590 Iwahashi Dec 2005 A1
20060003545 Veerasamy Jan 2006 A1
20060011945 Spitzer-Keller Jan 2006 A1
20060014027 Oudard Jan 2006 A1
20060014050 Gueneau Jan 2006 A1
20060019104 Hurst Jan 2006 A1
20060029813 Kutilek Feb 2006 A1
20060031681 Smith Feb 2006 A1
20060032739 Ikeda Feb 2006 A1
20060051597 Anzaki Mar 2006 A1
20060055513 French Mar 2006 A1
20060057298 Krisko Mar 2006 A1
20060057401 Krisko Mar 2006 A1
20060070869 Krisko Apr 2006 A1
20060090996 Yaniv May 2006 A1
20060102465 Blondeel May 2006 A1
20060105103 Hartig May 2006 A1
20060107599 Luten May 2006 A1
20060110605 Luten May 2006 A1
20060118406 Delahoy Jun 2006 A1
20060121315 Myli Jun 2006 A1
20060127604 Ikadai Jun 2006 A1
20060134322 Harris Jun 2006 A1
20060134436 Maschwitz Jun 2006 A1
20060141290 Sheel Jun 2006 A1
20060152832 Aumercier Jul 2006 A1
20060159906 Messere Jul 2006 A1
20060165996 Veerasamy Jul 2006 A1
20060194066 Ye Aug 2006 A1
20060196765 Cheng Sep 2006 A1
20060201203 Labrousse Sep 2006 A1
20060210783 Seder Sep 2006 A1
20060210810 Harris Sep 2006 A1
20060225999 Fukawa Oct 2006 A1
20060228476 McCurdy Oct 2006 A1
20060234064 Baubet Oct 2006 A1
20060247125 Choi Nov 2006 A1
20060263610 Greenberg Nov 2006 A1
20060275612 Baubet Dec 2006 A1
20070025000 Lin Feb 2007 A1
20070029187 Krasnov Feb 2007 A1
20070029527 Mills Feb 2007 A1
20070030569 Lu Feb 2007 A1
20070031593 Krasnov Feb 2007 A1
20070031681 Anzaki Feb 2007 A1
20070031682 Krasnov Feb 2007 A1
20070042893 Koike Feb 2007 A1
20070065670 Varaprasad Mar 2007 A1
20070077406 Jacobs Apr 2007 A1
20070087187 Lu Apr 2007 A1
20070092734 Durandeau Apr 2007 A1
20070108043 Lu May 2007 A1
20070109543 Hoffman May 2007 A1
20070111012 Rimmer May 2007 A1
20070116966 Mellott May 2007 A1
20070116967 Medwick May 2007 A1
20070129248 Labrousse Jun 2007 A1
20070134501 McMaster Jun 2007 A1
20070137673 Boykin Jun 2007 A1
20070148064 Labrousse Jun 2007 A1
20070184291 Harris Aug 2007 A1
20070196563 Wuwen Aug 2007 A1
20070218264 Gueneau Sep 2007 A1
20070218265 Harris Sep 2007 A1
20070218311 O'Shaughnessy Sep 2007 A1
20070224357 Buhay Sep 2007 A1
20070231501 Finley Oct 2007 A1
20070237968 Kijima Oct 2007 A1
20070254163 Veerasamy Nov 2007 A1
20070254164 Veerasamy Nov 2007 A1
20070264494 Krisko Nov 2007 A1
20070275252 Krasnov Nov 2007 A1
20070275253 Thiel Nov 2007 A1
20080011408 Maschwitz Jan 2008 A1
20080014349 Otani Jan 2008 A1
20080026161 Frings Jan 2008 A1
20080115471 Labrousse May 2008 A1
20080119352 Kitaguchi May 2008 A1
20080124460 Athey May 2008 A1
20080188370 Vormberg Aug 2008 A1
Foreign Referenced Citations (270)
Number Date Country
2290999 May 1998 CA
39 06 453 Sep 1990 DE
43 13 284 Oct 1994 DE
19736925 Mar 1998 DE
19644752 Apr 1998 DE
19831610 Jan 1999 DE
10100221 Jul 2001 DE
10100223 Jul 2001 DE
0 207 646 Jan 1987 EP
0 470 379 Feb 1992 EP
0 470 379 Feb 1992 EP
0 279 550 Apr 1993 EP
0 369 581 Dec 1993 EP
0 574 119 Dec 1993 EP
0 590 477 Apr 1994 EP
0 601 928 Jun 1994 EP
0 611 733 Aug 1994 EP
0 515 847 Feb 1995 EP
0 515 847 Feb 1995 EP
0 636 702 Feb 1995 EP
0 637 572 Feb 1995 EP
0 639 655 Feb 1995 EP
0 657 562 Jun 1995 EP
0 689 096 Dec 1995 EP
0 689 096 Dec 1995 EP
0 689 962 Jan 1996 EP
0 689 962 Jan 1996 EP
0 737 513 Oct 1996 EP
0 328 257 Apr 1997 EP
0 328 257 Apr 1997 EP
0 787 696 Aug 1997 EP
0 820 967 Jan 1998 EP
0 820 967 Jan 1998 EP
0 771 766 Sep 1998 EP
0 870 530 Oct 1998 EP
0 753 882 Nov 1998 EP
0 884 288 Dec 1998 EP
0 799 255 Feb 1999 EP
0 901 991 Mar 1999 EP
0 345 045 Jan 2000 EP
0 838 535 Feb 2000 EP
0 850 203 Jan 2001 EP
1 066 878 Jan 2001 EP
0 850 204 Dec 2001 EP
1 179 515 Feb 2002 EP
0 944 557 Nov 2002 EP
1 254 870 Nov 2002 EP
0 737 513 Sep 2003 EP
0 887 104 Nov 2003 EP
1 046 727 Nov 2003 EP
1 375 444 Jan 2004 EP
1 411 386 Apr 2004 EP
1 074 525 Sep 2004 EP
1 466 665 Oct 2004 EP
1 466 665 Oct 2004 EP
1 500 634 Jan 2005 EP
1 518 836 Mar 2005 EP
1 640 149 Mar 2006 EP
0 816 466 May 2006 EP
1 506 143 May 2006 EP
2699164 Feb 1995 FR
2738812 Mar 1997 FR
2738813 Mar 1997 FR
2738836 Mar 1997 FR
2800731 May 2001 FR
2814094 Mar 2002 FR
2838734 Oct 2003 FR
2838735 Oct 2003 FR
2857885 Jan 2005 FR
2861385 Apr 2005 FR
2861386 Apr 2005 FR
2869897 Nov 2005 FR
2884147 Oct 2006 FR
0232680 Apr 1925 GB
1231280 May 1971 GB
1426906 Mar 1976 GB
1438462 Jun 1976 GB
2028376 Mar 1980 GB
1595061 Aug 1981 GB
2201428 Feb 1988 GB
2302102 Jan 1997 GB
2316687 Aug 1997 GB
2327428 Jul 1998 GB
57-140339 Aug 1982 JP
57-140339 Aug 1982 JP
60-081048 May 1985 JP
60081048 May 1985 JP
61-091042 May 1986 JP
61-091042 May 1986 JP
62-161945 Jul 1987 JP
62-161945 Jul 1987 JP
01-014129 Jan 1989 JP
01-014129 Jan 1989 JP
01-118807 May 1989 JP
01-118807 May 1989 JP
3-122274 May 1991 JP
3-122274 May 1991 JP
3-187039 Aug 1991 JP
3-187039 Aug 1991 JP
3-193872 Aug 1991 JP
3-193872 Aug 1991 JP
4-276066 Oct 1992 JP
5-214525 Aug 1993 JP
6-330297 Nov 1994 JP
7-149545 Jun 1995 JP
7-149545 Jun 1995 JP
7-215074 Aug 1995 JP
7-215074 Aug 1995 JP
7-233469 Sep 1995 JP
7-233469 Sep 1995 JP
7-508491 Sep 1995 JP
7-508491 Sep 1995 JP
7-315874 Dec 1995 JP
7-315874 Dec 1995 JP
7-315889 Dec 1995 JP
7-315889 Dec 1995 JP
8-011631 Jan 1996 JP
8-011631 Jan 1996 JP
8-012378 Jan 1996 JP
8-012378 Jan 1996 JP
8-109043 Apr 1996 JP
8-109043 Apr 1996 JP
8-134638 May 1996 JP
8-134638 May 1996 JP
8-158048 Jun 1996 JP
8-227006 Sep 1996 JP
8-227006 Sep 1996 JP
9-189801 Jul 1997 JP
9-189801 Jul 1997 JP
9-202651 Aug 1997 JP
9-202651 Aug 1997 JP
9-249967 Sep 1997 JP
9-249967 Sep 1997 JP
10-36144 Feb 1998 JP
10-36144 Feb 1998 JP
10-048805 Feb 1998 JP
10-048805 Feb 1998 JP
10-278165 Oct 1998 JP
11-095014 Apr 1999 JP
11-095014 Apr 1999 JP
11-302038 Nov 1999 JP
2000-094569 Apr 2000 JP
2003-311157 Nov 2003 JP
2005-213585 Aug 2005 JP
2006-305527 Nov 2006 JP
WO 8706626 Nov 1987 WO
WO 8910430 Nov 1989 WO
WO 9217621 Oct 1992 WO
WO 9217621 Oct 1992 WO
WO 9625534 Aug 1996 WO
WO 9703763 Feb 1997 WO
WO 9707066 Feb 1997 WO
WO 9707069 Feb 1997 WO
WO 9708359 Mar 1997 WO
WO 9710185 Mar 1997 WO
WO 9710186 Mar 1997 WO
WO 9711916 Apr 1997 WO
WO 9715499 May 1997 WO
WO 9725201 Jul 1997 WO
WO 9737801 Oct 1997 WO
WO 9737946 Oct 1997 WO
WO 9742351 Nov 1997 WO
WO 9742357 Nov 1997 WO
WO 9806675 Feb 1998 WO
WO 9823549 Jun 1998 WO
WO 9825700 Jun 1998 WO
WO 9911896 Mar 1999 WO
WO 9944954 Sep 1999 WO
WO 0013257 Mar 2000 WO
WO 0015571 Mar 2000 WO
WO 0027771 May 2000 WO
WO 0037376 Jun 2000 WO
WO 0037377 Jun 2000 WO
WO 0040402 Jul 2000 WO
WO 0050354 Aug 2000 WO
0075083 Dec 2000 WO
WO 0075083 Dec 2000 WO
WO 0075087 Dec 2000 WO
WO 0102496 Jan 2001 WO
WO 0132578 May 2001 WO
WO 0168786 Sep 2001 WO
WO 0171055 Sep 2001 WO
WO 0312540 Feb 2002 WO
WO 03012540 Feb 2002 WO
WO 0224971 Mar 2002 WO
WO 0240417 May 2002 WO
WO 0249980 Jun 2002 WO
WO 02085809 Oct 2002 WO
WO 03009061 Jan 2003 WO
WO 03006393 Jan 2003 WO
WO 03050056 Jun 2003 WO
WO 03053577 Jul 2003 WO
WO 03062166 Jul 2003 WO
WO 03068500 Aug 2003 WO
WO 03072849 Sep 2003 WO
WO 03080530 Oct 2003 WO
WO 03087002 Oct 2003 WO
WO 03087005 Oct 2003 WO
WO 03091471 Nov 2003 WO
WO 03093188 Nov 2003 WO
WO 03095385 Nov 2003 WO
WO 03095695 Nov 2003 WO
WO 03097549 Nov 2003 WO
WO 03106732 Dec 2003 WO
WO 2004013376 Feb 2004 WO
WO 2004034105 Apr 2004 WO
WO 2004061151 Jul 2004 WO
WO 2004067464 Aug 2004 WO
WO 2004085699 Oct 2004 WO
WO 2004085701 Oct 2004 WO
WO 2004086104 Oct 2004 WO
WO 2004087985 Oct 2004 WO
WO 2004089836 Oct 2004 WO
WO 2004089838 Oct 2004 WO
WO 2004089839 Oct 2004 WO
WO 2004092088 Oct 2004 WO
WO 2004092089 Oct 2004 WO
WO 2004097063 Nov 2004 WO
WO 2004108618 Dec 2004 WO
WO 2004108619 Dec 2004 WO
WO 2004108846 Dec 2004 WO
WO 2004113064 Dec 2004 WO
WO 2005000758 Jan 2005 WO
WO 2005000759 Jan 2005 WO
WO 2005005337 Jan 2005 WO
WO 2005007286 Jan 2005 WO
WO 2005009914 Feb 2005 WO
WO 2005012593 Feb 2005 WO
WO 2005023723 Mar 2005 WO
WO 2005040056 May 2005 WO
WO 2005040058 May 2005 WO
WO 2005063646 Jul 2005 WO
WO 2005102952 Nov 2005 WO
WO 2005102953 Nov 2005 WO
WO 2005110937 Nov 2005 WO
WO 2005111257 Nov 2005 WO
WO 2006004169 Jan 2006 WO
WO 2006007062 Jan 2006 WO
WO 2006017311 Feb 2006 WO
WO 2006017349 Feb 2006 WO
WO 2006019995 Feb 2006 WO
WO 2006020477 Feb 2006 WO
WO 2006028729 Mar 2006 WO
WO 2006036605 Apr 2006 WO
WO 2006054954 May 2006 WO
WO 2006055513 May 2006 WO
WO 2006057830 Jun 2006 WO
WO 2006062902 Jun 2006 WO
WO 2006064059 Jun 2006 WO
WO 2006064060 Jun 2006 WO
WO 2006066101 Jun 2006 WO
WO 2006077839 Jul 2006 WO
WO 2006089964 Aug 2006 WO
WO 2006101994 Sep 2006 WO
WO 2006108985 Oct 2006 WO
WO 2006117345 Nov 2006 WO
WO 2006134335 Dec 2006 WO
WO 2007016127 Feb 2007 WO
WO 2007018974 Feb 2007 WO
WO 2007018975 Feb 2007 WO
WO 2007045805 Apr 2007 WO
WO 2007080428 Jul 2007 WO
WO 2007092511 Aug 2007 WO
WO 2007093823 Aug 2007 WO
WO 2007096461 Aug 2007 WO
WO 2007110482 Oct 2007 WO
WO 2007121211 Oct 2007 WO
WO 2007121215 Oct 2007 WO
WO 2007127060 Nov 2007 WO
WO 2007130140 Nov 2007 WO
Provisional Applications (2)
Number Date Country
60659491 Mar 2005 US
60587210 Jul 2004 US
Reissues (1)
Number Date Country
Parent 11179178 Jul 2005 US
Child 13271794 US