In the low-cost backyard trampoline market, shipping costs are large in proportion to the cost of materials in products sold. The safety net systems that provide jumper enclosing protections included with almost all backyard trampolines sold today account for a large portion of shipping costs. Therefore, anything that greatly reduces the volume or weight of these safety net systems creates a large financial advantage through reduced shipping and storage expenses.
Additionally, a lightweight enclosure system has other advantages including: being easier for consumers to transport from a store, including being more likely to fit in their vehicle; being easier to install and setup as there are no heavy poles and support materials to assemble; being easier to take down, move, and reassemble at another more distant location. Also, at the end of its life, the discarded materials will produce less waist to process; and potentially results in fewer greenhouse gases being emitted from activities related to their manufacture and/or shipment.
Two United States patents, TRAMPOLINE OR THE LIKE WITH ENCLOSURE, U.S. Pat. No. 6,053,845 (referred to below as the “845” patent) and TRAMPOLINE OR THE LIKE WITH ENCLOSURE, U.S. Pat. No. 6,261,207 (referred to below as the “207” patent) represented a revolutionary change for the trampoline industry as a whole. Prior to those inventions, safety enclosures for use with home trampolines were practically non-existent. Many had proposed enclosure designs, but these were impractical or ineffective for a variety of reasons. This was the state of affairs even though millions of trampolines were in use worldwide, and the need to protect jumpers from fall-offs was well-known. For instance, a comprehensive study had found 80% of serious, hospitalized trampoline injuries resulted from falling off a non-enclosed trampoline. During this period, medical doctors, researchers, and the American Academy of Pediatrics were calling for a ban on their sale and use in schools and recreational and home settings. The problem was of such a concern that public schools banned trampolines, despite their popularity and health benefits and once iconic “trampoline parks” (commercial pay-to-bounce venues open to the public) went out of business. Trampolines were limited to home use and to specialty athletic training under supervision, in sports like gymnastics and diving, where use of spotting harnesses is common.
Despite the call for bans and removal of trampolines from virtually all public facilities, home use of trampolines continued to grow. However, injuries increased significantly, as well. The costs and risks remained. There was ample motivation to create an effective, affordable enclosure for home users, yet nobody had done it. If a way could be found to minimize fall-off injuries, it would've been utilized well before 1997. Efforts to develop fall protection devices were made, but resulted mostly in large, heavy, metal cages that surrounded the trampoline. For instance, one design described how to hand build a cage using plumbing pipes of metal or plastic, tied off with rope strapping, with the cage being strapped to the trampoline frame and/or ground.
These early structures were very heavy, cumbersome to construct, and excessively expensive to ship and store in warehouses and on store shelves. The higher mass of these enclosures was intentional in order to offset the force of an adult moving at speed and impacting them. A 200 lb. individual moving laterally against a wall produces very high linear momentum (mass×velocity). It was believed that Newton's Third law (typically recited as, “For every action, there is an equal and opposite reaction.”) required a high mass, high strength enclosure to repel a high momentum impact without failure or damaging the enclosure. However, high mass structures were so impracticable from a commercial standpoint that only a very limited number of enclosures were ever constructed or used with a trampoline, especially in the home market. Retailers were unwilling to stock and sell a product that took so much shelf and warehouse space and that was so heavy, bulky, expensive, and difficult to assemble. Prior to Publicover's inventions disclosed in the 845 and 207 patents, manufacturers and others in the industry could not find a way to design or produce an enclosure device that met these needs.
The Publicover patents 845 and 207 changed the calculation for the entire industry, radically altering the cost-benefit dynamics of enclosure production and sale. While the industry was seeking ways to lower costs (cheaper labor, etc.), the 845 and 207 innovation of attaching the net to shorter independent support poles and to the rebounding mat, directly or indirectly utilizing the rebounding surface to absorb impact forces, resulted in enclosures dramatically reduced in mass compared with the few enclosures that did exist at the time. The innovations were so profound that they were able to reduce average total mass of enclosures by approximately 50% over existing designs at that time, while still providing impact protection that exceeded all industry safety and reasonable performance standards. The commercial success of the 845 and 207 inventions is evident from the fact that sales went from virtually no enclosures being sold in 1997 to over a million sold and in use in the United States in just five or six years. Since then, the market has shifted further—today, effectively every trampoline sold worldwide has an enclosure, with the vast majority based on the 845 and 207 inventions.
Currently, mass-produced enclosures only marginally improve upon enclosure weight and package size by merely attempting to use thinner, weaker materials. This results in a significant degradation in performance and safety, producing far weaker enclosures that fail to or barely meet current ASTM standards (the voluntary US safety specifications), and results in enclosure pole and net components that fail within months or a few years. However, even these weaker devices still rely on the same design principles and inventions shown in 845 and 207. Over the past 20 years, no one has been able to improve upon those design principles in any significant way, especially in products for low-cost, mass-market sales.
Due to the rapid growth of online sales of trampolines, the need has grown to reduce the mass and packaging volume of the safety enclosure, while still retaining strength and performance. This need is even greater in the case of high-volume, low-margin consumer products, which make up an estimated 80% to 90% or more of all 14- to 15-foot circular enclosed trampolines (the most popular shape and sizes) produced and sold worldwide. These all-in-one (trampoline plus enclosure) systems are low-margin, low-cost products, generally selling for under $300 U.S. (in 2018 prices). By comparison, the average trampoline plus enclosure combo in 1998 sold for approximately $425 to $500. This simultaneous drop in retail price and increase in online sales has put tremendous pressure on the trampoline industry.
Over last 15 years, the number of trampolines sold in stores vs. online has shifted significantly. Today most low-cost, high volume trampolines are sold online with “free shipping” directly to the consumer. This shifts the freight cost burden to the retailers and manufacturers, putting further stress on margins. Shipping container or truckload quantities to a physical retail location are far more efficient and less costly than shipping individual products directly to an individual consumer. For example, based on standard freight and parcel rates, the cost to move a single enclosed trampoline system from the factory to a store shelf in the US is currently an estimated $35 to $65. From there, the consumer would buy and pick up the product, bearing the cost of getting it to his or her home. In contrast, moving a single enclosed trampoline system from the factory to an intermediary warehouse and then directly by delivery vehicle to a customer currently costs an estimated $125 to $225.
Most major parcel delivery services in the US now charge on the basis of the greater of the actual mass (weight), or the “DIM weight” (short for “dimensional weight,” and sometimes referred to as “volumetric weight”). The DIM weight is an estimated or theoretical weight of what an optimized package should weigh at an expected density. Products shipped in larger dimension packages and lower density cost more per pound, on average, than products shipped in smaller, more densely-packed cartons. Rising costs of shipping (including fuel) and storage have become an enormous expense for manufacturers and retailers. These factors have had a devastating effect on trampoline producers. Since 2005, many trampoline companies, both domestically and abroad, have either stopped producing trampolines or gone out of business due to these market pressures.
Despite the critical, long-felt need for lower weight, lower volume packaging, and consistent safety performance, no one has effectively reduced the weight or average packaging dimensions of enclosure products beyond the designs enabled by the 845 and 207 patents until the designs disclosed in this current application. The enclosure designs disclosed in this patent are approximately 40% to 60% lower in weight than other enclosure designs on the market for comparable size and performance. Generally, when similar construction materials are involved, the cost is directly proportional to the weight. So, for example, a 10% reduction in weight would be expected to reduce the overall cost to get the product to a consumer by approximately 10% (manufacturing cost, ocean freight, warehousing, and delivery charges). Thus, the new designs in this patent are expected to achieve as much as a 40% to 60% reduction in total cost of the enclosure as compared with nearly all current low-cost enclosures on the market.
To accomplish this result while also still being able to pass international product safety/performance standards (e.g., ASTM F381 and F2225 (United States), EN-71 (Europe), AS 4989 (Australia), etc.); and, still have a product that lasts many years was unexpected to the inventors on this patent. Until the inventions disclosed in this application, it was counter-intuitive to those skilled in the art to think an enclosure of such low mass would be able to pass all the standard tests and to perform over an acceptable number of years. Arched and others enclosure designs existed in the market for many years, but nobody expected they could successfully lower the mass and volume (and the expense) significantly and still meet safety standards, or it would've been accomplished prior to the disclosed devices.
In an advantageous example, the volume of the enclosure pole packaging disclosed in this application is reduced by 80 to 90% compared with typical mass-market enclosures.
The above discussion points to why the art disclosed in these drawings and specifications is so significant for the industry and for enclosed trampoline design, fabrication, shipment, storage and sales. The inventors in this patent did not believe it was possible to significantly the weight of enclosures based on the 845 and 207 patents while also significantly reducing the volume of packaging. The goal was simply to improve, to any small degree, the weight of the components (relative to system size) that had remained substantially constant for the past 20 years, and that no one had yet improved upon. Scores of new enclosure designs have been brought to market without achieving any real improvement in terms of reduced weight and packaging size, but also with acceptable performance. The disclosed devices will achieve significant cost-savings advantages over those products based on the 845 and 207 patents. The described device and its versions successfully reduces, on average, an approximate 50% of the required enclosure mass beyond what any earlier device has been able to achieve; and all with sufficient strength to exceed all current international safety and performance requirements.
Disclosed is a low mass trampoline system with an enclosure subsystem utilizing netting supported by arched, lightweight poles (or rods) that exhibit a low flexural rigidity as compared to masts in existing trampoline solutions in the marketplace or in use today that include jumper enclosing protections. The netting bottom edge and opposite pole ends are each integrated into the perimeter area of the rebounding surface. An impact against this enclosure subsystem distributes the impact energy through the poles and netting material and into the bed subsystem (i.e., rebounding surface and its coupling mechanism (e.g., including springs 705 and v-rings 709) with the frame) and then into the frame supported by the frame's leg poles. This transfers the energy away from the impact location to more distant locations across and around the other poles, to more distant netting material, across the rebounding surface, and into the springs, upper frame, and frame legs. The poles are placed in the enclosure subsystem at a specified orientation to reduce the energy absorbed through out of plane bending (where their strength is much more limited) and increase the energy absorbed through in plane bending (where the pole's strength is much greater). This energy absorption system permits a dramatically lighter pole to be utilized for a given level of energy dissipation than that required for a more traditional trampoline solution that includes jumper enclosing protections and elements corresponding to an enclosure subsystem where most of the energy is absorbed by bending cantilever masts (corresponding to the disclosed rods) and little to none of the energy is absorbed through axial loading on the masts. Additionally, because the impact energy is transferred throughout the entire trampoline system (effectively making the trampoline bed, springs (or other coupling mechanism), and frame key components of the total trampoline system) much lighter poles may be utilized. These poles are far lighter than masts used in existing trampoline solutions that include jumper enclosing protections. The light weight of the enclosure subsystem (as compared to the weight of a user) permits the enclosure subsystem to be coupled to the bed subsystem without the detrimental effect of a significant dampening load being added to the rebounding of the bed subsystem. Additionally, more flexible and lighter poles require less pole padding to no pole padding at all due to a direct jumper impact into a pole providing an elastic cushioning surface that easily bends (in comparison to a rigid pole) and does not create an impact hazard. Finally, the reduced mass of the enclosure subsystem and reduced need for more expensive and/or heavier duty components, results in a lighter total trampoline system of less volume that takes up much less storage space, and reduces materials costs and shipping expenses, and therefore provides a lower cost product for the end consumer, without sacrificing quality, safety, or sufficient functional strength.
It is to be understood that both the foregoing and the following descriptions are exemplary and explanatory only and are not intended to limit the claimed invention or application thereof in any manner whatsoever.
In the drawings:
Described herein are trampoline systems that include a frame, a rebounding bed supported by the frame, and a safety enclosure subsystem that provides a chamber above the rebounding bed to help keep jumpers over the rebounding bed. The frame includes an upper frame member, sometimes referred to as a “perimeter frame member,” and typically includes frame legs that support the upper frame member above the ground. The rebounding bed typically is connected to the upper frame member by a coupling mechanism such as by one or more bungee cords or by coil or leaf springs or by compression springs or by rod springs. The enclosure subsystem includes a net that extends above the level of the rebounding bed and that defines a chamber above the rebounding bed and a plurality of rods that support the net. Protective padding may be positioned to cover the coupling mechanism and/or on the poles, although pole padding is advantageously not employed to minimize enclosure subsystem volume.
Having tested numerous products on the market today that are representative of the kinds of trampoline solutions that include jumper enclosing protections available and evaluated currently existing designs, none have been found that satisfy the optimal metrics for performance of the disclosed devices detailed herein.
Certain metrics and terms within the descriptions of the disclosed devices have specific meanings and definitions. These metrics and terms shall have the meanings as defined below, whether used in capitalized or lower-case forms.
Rod: A rod is an elongated member that connects to the bed or frame subsystems or both subsystems in each of the two end areas and which has a portion situated between the at least two connection locations and a middle area of the rod extends above the plane of the rebounding surface. For example, any one of the following four named embodiments:
Is some embodiments, a rod is constructed from a single unitary piece of material, such as arched rods of the type shown in
Any of the following (but not limited to them) are considered examples of an arch: trapezoidal rods 1002 in
Vertical Support Mast: is a special kind of rod-like member that is configured within the enclosure subsystem in a primarily vertical orientation and which provides reinforcing support by attaching or coupling of one end area of the vertical support mast to another supported rod. The orientation of a vertical support mast is not necessarily exactly vertical (i.e., masts may have a glancing angle less than 90°) but vertical support masts are typically oriented more vertically than rods and connect to the bed or frame subsystems or both subsystems in only one end area of a vertical support mast.
Horizontal Support Mast: is a special kind of rod-like member that is configured within the enclosure subsystem in a primarily horizontal orientation and which provides reinforcing support by attaching or coupling at least two distinct areas of the horizontal support mast to two distinct areas of another supported rod or of two separate rods. A horizontal support mast may optionally be looped. The orientation of a horizontal support mast is not necessarily exactly horizontal (i.e., masts may have a glancing angle greater than) 0° but horizontal support masts are typically oriented more horizontally than rods and do not connect to the bed or frame subsystems in any end area of a horizontal support mast.
Isolated at Rest: A rod is in its isolated at rest state when the rod is observed in isolation from the trampoline system by placing it by itself on a flat horizontal surface and letting the rod take its shape when no external forces (other than gravity) are acting upon it.
Assembled at Rest: A rod is in its assembled at rest state when the rod is observed in the context of an assembled trampoline system (without any users present) and letting the rod take its shape that results from the force of gravity on the rod and its coupling to the netting curtain and to other parts of the enclosure, frame, or bed subsystems. The assembled at rest state may alternatively be referred to as the relaxed state.
Functional End: The two extreme points along the longitudinal axis of a flexible rod or a semi-rigid rod at opposite ends of the rod that are the furthest apart along the rod's longitudinal axis. For rods that are not flexible rods and not semi-rigid rods, the functional ends of a rod are the two locations farthest apart from the rod apex along the rod where the rod is coupled to the frame or bed subsystem. For a vertical support mast, the functional ends are the two extreme points along the longitudinal axis of a vertical support mast at opposite ends of the vertical support mast that are the furthest apart along the vertical support mast's longitudinal axis. For a non-looped horizontal support mast, the functional ends are the two extreme points along the longitudinal axis of a horizontal support mast at opposite ends of the horizontal support mast that are the furthest apart along the horizontal support mast's longitudinal axis.
End Area: The portion of a rod, near each of the rod's functional ends, that is within a distance along the rod's curve length that is not greater than 33% of the total rod curve length (the rectification of the rod's curve) from either of the rod's two functional ends. However, for a looped rod, an end area is any portion of a rod in the direction of the apex from a functional end that is not greater than 33% of the rod's functional curve length (the rectification of the rod's curve through the rod apex between the rod's two functional ends) from the functional end. For a vertical support mast, the end area is the portion of a mast, near each of the vertical support mast's functional ends, that is within a distance along the vertical support mast's curve that is not greater than 33% of the total vertical support mast curve length (the rectification of the vertical support mast's curve) from either of the vertical support mast's two functional ends. For a non-looped horizontal support mast, the end area is the portion of a mast, near each of the horizontal support mast's functional ends, that is within a distance along the horizontal support mast's curve that is not greater than 33% of the total horizontal support mast curve length (the rectification of the horizontal support mast's curve) from either of the horizontal support mast's two functional ends.
Middle Area: The middle portion of a rod between its end areas, away from each of the rod's functional ends, that is within a distance along the rod's curve that is greater than or equal to 33% of the total rod curve length (the rectification of the rod's curve) from both of the rod's two functional ends. However, for a looped rod, the middle area is the portion of the rod between the end areas that is above the rebounding surface. For a vertical support mast, the middle area is the middle portion of a vertical support mast between its end areas, away from each of the vertical support mast's functional ends, that is within a distance along the vertical support mast's curve that is greater than or equal to 33% of the total vertical support mast curve length (the rectification of the vertical support mast's curve) from both of the vertical support mast's two functional ends. For a non-looped horizontal support mast, the middle area is the middle portion of a horizontal support mast between its end areas, away from each of the horizontal support mast's functional ends, that is within a distance along the horizontal support mast's curve that is greater than or equal to 33% of the total horizontal support mast curve length (the rectification of the horizontal support mast's curve) from both of the horizontal support mast's two functional ends.
Glancing Angle: The acute angle of a rod (or vertical support mast) where it meets (or its projection continuing along the path of the rod/mast meets) the plane of the rebounding surface. The glancing angle is measured as the acute angle between the plane of the rebounding surface and an imaginary plane. For a rod (or vertical support mast), the imaginary plane is defined by a best fit plane defined by the points along the portion of the rod (or vertical support mast) that is above the rebounding surface. The glancing angle is measured while the trampoline is unloaded (i.e., assembled at rest, without any jumpers or users). The glancing angle is often referred to as θ.
Axial Force: (includes both tensile and compressive force) a normal force parallel to the length of the rod (or vertical support mast). The ability of a rod (or vertical support mast) to accept a pulling apart (tensile) or together (compressive) force that would tend to stretch or compress the rod (or vertical support mast) along its length and permit the force applied to be transmitted along the length of the rod (or vertical support mast).
Bed Subsystem: A trampoline bed and any coupling mechanism (e.g., bungee cords, coil springs, leaf springs, compression springs, or rod springs) that connects the bed to a trampoline frame and any pads positioned to cover a coupling mechanism. The bed subsystem does not include any portion of the frame subsystem or the enclosure subsystem as defined herein. A bed subsystem's mass refers only to the portion of the bed subsystem actually shipped to customers and/or dealers in practice and does not include any portions that the end customer and/or dealer is instructed to add (e.g., customer is instructed to add sand or water to weigh down the bed subsystem).
Standardized Mass of Bed Subsystem: A bed subsystem's standardized mass refers to the mass of a prototypical bed and spring system for a given frame's geometry and is given for many geometries shown in table 8-2. It is derived from the following formula: Mat Area×(mass of Mat material per unit area)+Bed Perimeter×(mass of edging per unit length)+Bed Perimeter×(spring mass+v-ring mass+webbing mass)×(# of springs per unit length). Where, the mass of matt material per unit area is 257.64 gm−2; the mass of edging per unit length is 44.64 gm−1; the spring mass is 136 g; the v-ring mass is 13 g; the v-ring webbing mass is 7.44 g; and the number of springs per unit length is 8 springs per meter. The mat perimeter diameter is taken to be 0.5 m less than the frame diameter.
Frame Subsystem: A trampoline frame including one or more perimeter frame members, any frame legs that support the perimeter frame members, and any connectors that join the frame legs to the perimeter frame members. The frame subsystem does not include any portion of the bed subsystem or the enclosure subsystem as defined herein. A frame subsystem's mass refers only to the portion of the frame subsystem actually shipped to customers and/or dealers in practice and does not include any portions that the end customer and/or dealer is instructed to add (e.g., customer is instructed to add sand or water to weigh down the frame subsystem). A frame subsystem may alternatively be referred to as a frame.
Enclosure Subsystem: A net, rods that support the net, any vertical support masts, any rod padding, and any connectors (including any sleeves or straps) that join, couple, or attach the net, vertical support masts, and/or rods to each other and/or to the bed subsystem or frame subsystem. The enclosure subsystem does not include any portion of the frame subsystem or the bed subsystem as defined herein. An enclosure subsystem's mass refers only to the portion of the enclosure subsystem actually shipped to customers and/or dealers in practice and does not include any portions that the end customer and/or dealer is instructed to add (e.g., customer is instructed to add sand or water to weigh down the enclosure subsystem). An enclosure subsystem may alternatively be referred to as an enclosure, safety enclosure, safety enclosure subsystem, net enclosure, or safety net enclosure. The corresponding elements for an enclosure subsystem in a trampoline solution that includes jumper enclosing protections are referred to as a safety net system herein and correspondingly the safety net system's mass which correspondingly only includes portions shipped to the customer and/or dealer.
Cross: Two rods, a rod and a vertical support mast, or two segments cross each other if when assembled within the enclosure subsystem in an assembled at rest state and viewed from a point three feet above the centroid of the jumping surface, the paths of the two appear to intersect in an x-shape at a relative angle of greater than 10°, such as when one passes behind the other. For example, the x-shaped crossing point 708 of
Crossing Point: When two rods, a rod and a vertical support mast, or two segments cross each other, the point half way between the two, in the center of the area where the paths of the two appear to intersect as viewed from the point three feet above the centroid of the jumping surface. For example, the crossing point 708 of
Center Area: In an assembled enclosure subsystem, the center area is any mid-point along the span of a rod, vertical support mast, or horizontal support mast between two adjacent points. The adjacent points are selected from the points where the rod, vertical support mast, or horizontal support mast crosses another rod in an enclosure subsystem, the end points on the rod's, vertical support mast's, or horizontal support mast's functional ends, or any other fixed point of a rod, vertical support mast, or horizontal support mast in the enclosure subsystem such as where it passes through, couples to, attaches to, connects to, or is connected to a point on the bed subsystem, perimeter area, or frame.
Bed Perimeter: In an assembled trampoline system, within the bed subsystem, the bed perimeter is the edge of the rebounding surface which is delineated by the outer edge of the area upon which a user is intended to jump (e.g., the outer edge of the bed where the bed is coupled to springs).
Perimeter Area: In an assembled trampoline system, including a rebounding surface, the perimeter area is a volume that extends alongside and inwardly/outwardly of the bed perimeter on the jumping surface, for example as shown schematically in
Loaded Weight: The loaded weight refers to the total weight borne by the rods and vertical support masts of an enclosure subsystem and is comprised of the mass of all portions of the enclosure subsystem that are suspended by the rods and vertical support masts, including the mass of the rods themselves, the mass of the netting curtain supported by the rods, and the mass of any other parts of the enclosure subsystem such as connectors, straps, sleeves and cross-patches.
Assembled Bending Rigidity: An assembled enclosure subsystem's rod's (or vertical support mast's) ability to resist bending deflection. This is determined by the pulling force required, applied by an approximately half-inch wide strap, wrapped around a Center Area of a rod (or vertical support mast), to deflect a rod (or vertical support mast) by pulling on it, divided by the amount of bending deflection at its central area while the rod (or vertical support mast) is in its assembled enclosure subsystem location (kb=F/δ).
Isolated Bending Rigidity: This measure is generally easier to perform than the Assembled Bending Rigidity that this measure is representative of. It may be measured in isolation of an assembled enclosure subsystem by using an unassembled rod (or vertical support mast) (i.e., the rod (or vertical support mast) by itself without the netting curtain) by cutting a two foot section and lying the section of the rod (or vertical support mast) horizontally across two support points (one fixed and one roller support point) near the rod (or vertical support mast) section's center, placed one foot apart and measuring the force required, applied by a weighted half-inch wide strap on the top of the rod (or vertical support mast) to create a load at its mid-point between the two support points, to deflect the rod (or vertical support mast) divided by the amount of bending deflection at its mid-point (kb=F/δ). See Section 4.1—Rigidity and Self-Supporting for complete details.
Bending Moment: The internal reaction forces inside a beam member which balance applied bending loads. A bending moment results in tension on one side of the beam and compression on the opposite side of the beam.
In Plane Bending: Bending caused by a load applied to an arched rod member that lies on the best-fit plane formed by the rod's curvature. The geometry of an arched rod member results in a high stiffness in response to in plane bending loads. For a vertical rod, none of the bending is in plane bending.
Out of Plane Bending: Bending caused by a load applied to an arched rod member normal to the best-fit plane formed by the rod's curvature. The geometry of an arched rod member results in a low stiffness in response to out of plane bending loads. For a vertical rod, all bending is out of plane bending.
Flexural Rigidity: The isolated bending rigidity times the cube of the length of the span of the rod (or vertical support mast) when determining the bending rigidity, divided by a constant of 48. The flexural rigidity is an approximation for the elastic modulus times the moment of inertia. The flexural rigidity formula is derived from the max bending deflection equation for a simply supported beam (i.e., has a pinned/fixed support at one end and a roller support at the other end) with a constant cross-section and a point load at the center. The relationship for flexural rigidity in symbolic form is Flexural Rigidity=El=kb*l3/48.
Net: An expanse of flexible material which forms an enclosing curtain around a trampoline that protects a user from falling off a trampoline. A net is a barrier made of connected strands of metal, fiber, or other flexible or ductile materials, including a mesh, web, or netting in that they have many attached or woven strands. In some embodiments, it is advantageous that a net has a concave-upwards stress-strain curve (the amount of force required to stretch the net by a given amount increases the further the net is stretched). In some embodiments, it is advantageous that a net be composed of hexagonal or triangular apertures rather than square or rectangular apertures. In advantageous embodiments, the net material is resistant to breaking down in ultraviolet light. It is advantageous that the net extends at least 4.5 feet above the rebounding surface for use with smaller users or on beds with a surface area of less than 3,300 in2 (e.g., a circular bed with less than approximately a 65-inch diameter). With circular beds with a diameter less than 10 feet, it is advantageous that the net extends at least 5 feet above the rebounding surface. It is more advantageous that the net extends at least six feet above the rebounding surface for use with most users and with circular beds with a diameter of 10 feet or more. For rectangular beds, it is advantageous that the net extends to a height of at least the greater of 5 feet or one half of the rectangular bed's longest side (e.g., for a 14×8 rectangular bed, the net advantageously extends at least 7 feet above the bed and for a 9×6 bed, at least 5 feet). The net may alternatively be referred to as a curtain, netting curtain, or netting surface.
User: A user is defined as any sized person able to jump on any of the disclosed trampoline systems. The disclosed devices are usable by any person of any size. The adult and adult sized users of the disclosed devices are usually individuals between a height of 4 feet 7 inches and 6 feet 10 inches, with a weight range between 70 lb to 500 Ib, though generally, the common user falls within the range of normal weights of the general population. Children between the ages of 4 to 8 may also use one of these devices, but their bodyweight is generally lighter, between 30 to 80 lb. Young people between the ages of 8 and 16 can vary greatly in weight and size, from 50 lb to more than 400 lb. The disclosed devices are configurable, and in many embodiments adjustable, to enable optimization for individuals in these various weight ranges and age groups.
Enclosure Specified User Weight: A specified weight for which an Enclosure Impact Weight Rating test passes.
Maximum Enclosure Specified User Weight: The greatest Enclosure Specified User Weight for which an Enclosure Impact Weight Rating test still passes.
Enclosure Impact Weight Rating: The weight rating under the ASTM F 2225-15 Performance Requirement Test #1 (see section 6.1—Barrier Impact and Enclosure Support Pole (Frame) Impact Tests) DOI: 10.1520/F2225-15 and available at http://www.astm.org/cgi-bin/resolver.cgi?F2225-15 except that, the ASTM test is modified such that the maximum specified user weight in section 3.1.7 is replaced by a different mass, specified herein, named the Enclosure Specified User Weight, such as a mass that is 11 times the mass of the enclosure subsystem. The Enclosure Specified User Weight value that is used to replace the maximum specified user weight may understate or overstate the highest maximum specified user weight that could be achieved when applying the test described in § 6.8 of ASTM F381-16. Under ASTM F381-16, manufacturers are expected to ensure that the maximum specified user weight meets the test requirements of § 6.8. The maximum specified user weight of § 6.8 is the same weight at which all ASTM trampoline and enclosure tests are conducted. For purposes of our claims and specifications in this patent, the maximum specified user weight is presumed to be the Enclosure Specified User Weight, regardless of whether the Enclosure Specified User Weight exceeds the Maximum User Weight achieved where the Maximum User Weight divided by 21% will displace the bed of the trampoline by 80% (+/−0.5 in. (12 mm)) of the distance to the ground when the bed is loaded using the disk specified in
Standard Rod Impact: An impact, corresponding to one of the two support pole impacts of § 6.1 of the ASTM F 2225-15, using a given Enclosure Specified User Weight applied against an enclosure support pole at a height mid-distance between the top and bottom of the enclosure barrier (e.g., at impact center location 2107 in
Standard Medium Rod Impact: A standard rod impact using an Enclosure Specified User Weight that is 7 times the mass of the enclosure subsystem.
Standard Large Rod Impact: A standard rod impact using an Enclosure Specified User Weight that is 11 times the mass of the enclosure subsystem.
Standard Extra Large Rod Impact: A standard rod impact using an Enclosure Specified User Weight that is 12 times the mass of the enclosure subsystem.
Standard Huge Rod Impact: A standard rod impact using an Enclosure Specified User Weight that is 13 times the mass of the enclosure subsystem.
Standard Extra Huge Rod Impact: A standard rod impact using an Enclosure Specified User Weight that is 14 times the mass of the enclosure subsystem.
Standard Giant Rod Impact: A standard rod impact using an Enclosure Specified User Weight that is 15 times the mass of the enclosure subsystem.
Standard Extra Giant Rod Impact: A standard rod impact using an Enclosure Specified User Weight that is 16 times the mass of the enclosure subsystem.
Standard Humongous Rod Impact: A standard rod impact using an Enclosure Specified User Weight that is 17 times the mass of the enclosure subsystem.
Standard Extra Humongous Rod Impact: A standard rod impact using an Enclosure Specified User Weight that is 18 times the mass of the enclosure subsystem.
Standard Gigantic Rod Impact: A standard rod impact using an Enclosure Specified User Weight that is 19 times the mass of the enclosure subsystem.
Standard Extra Gigantic Rod Impact: A standard rod impact using an Enclosure Specified User Weight that is 20 times the mass of the enclosure subsystem.
Standard Net Impact: An impact, corresponding to one of the barrier impacts of § 6.1 of the ASTM F 2225-15, using a given Enclosure Specified User Weight directed at a point on the barrier (net) midway between the support poles (rods) at a height mid-distance between the top and bottom of the enclosure barrier (e.g., at impact center location 2108 on net 2105 in
Standard Stress Net Impact: An impact, corresponding to one of the barrier impacts of § 6.1 of the ASTM F 2225-15, using a given Enclosure Specified User Weight directed at a point on the barrier (net) midway between crossing support poles (rods) at a height mid-distance between the top and bottom of the enclosure barrier (e.g., at impact center location 2211 on net 2205 in
Standard Medium Net Impact: A standard net impact using an Enclosure Specified User Weight that is 7 times the mass of the enclosure subsystem.
Standard Large Net Impact: A standard net impact using an Enclosure Specified User Weight that is 11 times the mass of the enclosure subsystem.
Standard Stress Large Net Impact: A standard stress net impact using an Enclosure Specified User Weight that is 11 times the mass of the enclosure subsystem.
Standard Extra Large Net Impact: A standard Net impact using an Enclosure Specified User Weight that is 12 times the mass of the enclosure subsystem.
Standard Huge Net Impact: A standard Net impact using an Enclosure Specified User Weight that is 13 times the mass of the enclosure subsystem.
Standard Extra Huge Net Impact: A standard Net impact using an Enclosure Specified User Weight that is 14 times the mass of the enclosure subsystem.
Standard Giant Net Impact: A standard Net impact using an Enclosure Specified User Weight that is 15 times the mass of the enclosure subsystem.
Standard Extra Giant Net Impact: A standard Net impact using an Enclosure Specified User Weight that is 16 times the mass of the enclosure subsystem.
Standard Humongous Net Impact: A standard Net impact using an Enclosure Specified User Weight that is 17 times the mass of the enclosure subsystem.
Standard Extra Humongous Net Impact: A standard Net impact using an Enclosure Specified User Weight that is 18 times the mass of the enclosure subsystem.
Standard Gigantic Net Impact: A standard Net impact using an Enclosure Specified User Weight that is 19 times the mass of the enclosure subsystem.
Standard Extra Gigantic Net Impact: A standard Net impact using an Enclosure Specified User Weight that is 20 times the mass of the enclosure subsystem.
Standard Opening Impact: An impact, corresponding to one of the barrier impacts against the enclosure opening of § 6.1 of the ASTM F 2225-15, using a given Enclosure Specified User Weight directed as close as possible to the mid-distance between the top and bottom of the opening in the barrier used for entrance to the chamber defined by the netting curtain.
Standard Medium Opening Impact: A standard opening impact using an Enclosure Specified User Weight that is 7 times the mass of the enclosure subsystem.
Standard Large Opening Impact: A standard opening impact using an Enclosure Specified User Weight that is 11 times the mass of the enclosure subsystem.
Standard Extra Large Opening Impact: A standard Opening impact using an Enclosure Specified User Weight that is 12 times the mass of the enclosure subsystem.
Standard Huge Opening Impact: A standard Opening impact using an Enclosure Specified User Weight that is 13 times the mass of the enclosure subsystem.
Standard Extra Huge Opening Impact: A standard Opening impact using an Enclosure Specified User Weight that is 14 times the mass of the enclosure subsystem.
Standard Giant Opening Impact: A standard Opening impact using an Enclosure Specified User Weight that is 15 times the mass of the enclosure subsystem.
Standard Extra Giant Opening Impact: A standard Opening impact using an Enclosure Specified User Weight that is 16 times the mass of the enclosure subsystem.
Standard Humongous Opening Impact: A standard Opening impact using an Enclosure Specified User Weight that is 17 times the mass of the enclosure subsystem.
Standard Extra Humongous Opening Impact: A standard Opening impact using an Enclosure Specified User Weight that is 18 times the mass of the enclosure subsystem.
Standard Gigantic Opening Impact: A standard Opening impact using an Enclosure Specified User Weight that is 19 times the mass of the enclosure subsystem.
Standard Extra Gigantic Opening Impact: A standard Opening impact using an Enclosure Specified User Weight that is 20 times the mass of the enclosure subsystem.
Center of Impact: The center of impact is the location (e.g., impact center location 2107 in
Rebounding Effect: An elastic effect in opposition to the impact force of a body.
The jumping surface of the trampoline may interchangeably be referred to as the bed, jump bed, jumping bed, rebound bed, rebounding bed, trampoline bed, jump surface, jumping surface, rebound surface, rebounding surface, trampoline surface, trampoline mat, mat, and the like.
The trampoline system comprises a frame subsystem, a bed subsystem, and an enclosure subsystem. The trampoline system may interchangeably be referred to as a trampoline safety enclosure system, trampoline enclosure system, and the like.
Each of the following ranges and limits has been shown to be optimal by modeling, experimentation and testing. However, the ranges may vary with slightly less optimal characteristics, or may vary for highly specific uses. For each of these ranges and limits, a user and/or manufacturer may adjust the key metrics of the disclosed embodiments to configure and adjust for advantageous operation, such as by an adjustment mechanism.
When a rod's (or vertical support mast's) isolated bending rigidity is referenced it pertains to the rod's (or vertical support mast's) ability to resist bending deflection such as by the following disclosed test that is based upon standard test method ASTM D 4476-03. Each rod (or vertical support mast) being tested is cut down to a 24 in rod (or vertical support mast) sample section and is simply supported (i.e., has a pinned/fixed support at one end and a roller support at the other end) one foot apart from each other and evenly spaced around the rod (or vertical support mast) sample's center (e.g., fixed support 1805 and roller support 1806 in
In the above test, 2% fiber strain is as measured in the outer fibers of the rod (or vertical support mast) sample under test. Given a strain, ε, a flexural modulus of elasticity, E, a length, L, and a rod (or vertical support mast) sample radius, r, the equation for the center load, P, is P=πεEr3/2L. Making some simplifying assumptions and calculating this for 3 typical sizes of cylindrical fiberglass plastic rods (or vertical support masts) (i.e., 0.25, 0.375, and 0.50 in diameter), the force to get to 2% fiber strain is 30 lb for 0.25, 100 lb for 0.375 in, and 250 lb for 0.50 in. Therefore, in practice, for the above test, the 2% fiber strain is not reached with a 20 lb load with most of the rods disclosed.
An example of two load weights (inclusive of the weight of the roller and strap) spread evenly across the weight range of 0 lb to 20 lb is weights at 20 and 10 lb. Such load weights are selected to be within a reasonable error tolerance such as plus or minus 4%, e.g., for a target of 20 lb any weight between 20.8 lb and 19.2 lb is acceptable.
A dial indicator or other measuring device that is accurate to 0.001 inches is recommended to use. The ten data points, evenly spread across the weight range, are recorded to analyze the data. For the analysis, the bending deflection is the x-axis (horizontal) and the applied force (weight) is the y-axis (vertical). The data gathered from this testing and experimentation is assumed linear and has a y-intercept equal to zero so that the linear curve fit is of the form y=mx. Any rod (or vertical support mast) sample that deforms under its own weight, before any load weights are added, so much as to make it collapse and thus practically impossible for the tester to support the rod (or vertical support mast) sample at its ends without clamping it to the test support points, does not fall within the disclosed ranges for isolated bending rigidity. The slope (m) of the disclosed best fit straight line corresponds to the isolated bending rigidity of the rod (or vertical support mast) sample.
Disclosed are rods embodying a curved, elliptical, rounded, convex, arched, segmented, or polygonal (e.g., see
Because the netting curtain advantageously extends directly upward from the jump surface perimeter area and the apex of each rod is situated near the supported top edge of the netting curtain, when viewed from above, the path of each rod advantageously follows or approximates the perimeter shape of the jump surface and thus advantageously does not pass over the interior of the jump surface, or if it does pass over the interior of the jump surface, the spans passing over the interior are advantageously minimized.
For jump surfaces that are continuously curved in a convex manner, the rod path as viewed from above is more readily controlled to trace the perimeter of the jump surface and not pass over the interior of the jump surface nor pass outside the perimeter of the jump surface. Whereas, for jump surfaces with corners, such as rectangular and octagonal trampoline beds, the rods in some embodiments do diverge from the jump surface perimeter and pass over the interior or exterior of the jump surface perimeter, but such transversals advantageously do not encroach more than 30% of the radius inward from the perimeter toward the centroid of the jump surface or more than 15% of the radius outward from the perimeter away from the centroid of the jump surface and the spans wherein the deviation from the perimeter radius exceeds 10% do not account for more than 20% of the total rod length. Such limited encroachments ensure the unusable jump surface that is eclipsed by the netting is limited to the regions of the jump surface with reduced jumping performance that are generally found near the jump surface perimeter and especially found near the corners for jump surfaces with corners (e.g., rectangular trampoline beds).
Disclosed are enclosure subsystems utilizing fiberglass plastic rods (or vertical support masts) that can sustain bending stress (rigidity) and tensile stress of at least 5,000 lb×in−2 without damage or permanent deformation. If the measured angle of an enclosure rod in its assembled at rest shape is greater than 10° from its original measured angle after the sustained bending stress and/or tensile stress, it shall be interpreted as a permanent deformation. The following table 4-1 lists the bending and tensile stress a rod (or vertical support mast) composed of the various listed materials is capable of sustaining without rod (or vertical support mast) damage or permanent deformation for different types of rod (or vertical support mast) materials:
In some embodiments, the enclosure subsystem is adjustable to account for the weight or capabilities of jumpers. In some such embodiments (e.g., see
Adjustability is also afforded by selecting a different netting. The height of the netting above the jump surface may be shorter (e.g., 4.5 feet) for jumpers that do not jump as high or taller (e.g., six feet) for jumpers that jump higher. A rod's angle is adjusted, and different holes are selected, to account for the height of a given net. Netting with different mesh hole apertures, mesh hole shapes, and stretchiness may be selected for differing target weight and capabilities of jumpers.
Further examples of an adjustment mechanism include the following: tensioners whereby the portion of a rod 902 that protrudes below the bed 904 into support sleeve 906 of the trampoline is more or less tensioned with additional supports 907 and leg straps 908 relative to the frame 901; assembling the support rods 502 into different mounting holes 506 and 507 to produce different glancing angles or different rod apex height and optionally crossing the rods near the trampoline bed (see also support rods 602 and mounting holes 606 and 607, and support rods 702 which cross at crossing point 708 and mounting holes 706 and 707); adjustable strap mechanism; and ratcheting mechanisms. In some embodiments, the foregoing adjustment mechanisms are also be applied to vertical support masts.
For circular trampoline beds in embodiments where the rod apex defines the netting curtain height and a rod path is closely approximated by an ideal elliptical path along a cylinder of the netting curtain, for which the trampoline bed provides a base, the rod apex height above the trampoline bed v is a function of the radius of the cylinder r, the angle between the points where the rod intersects the surface of the trampoline bed and the center of the trampoline bed a, and the glancing angle of the ellipse formed by the rod path θ by the following equation:
The radius of curvature of the ideal ellipse at its major axis R is a function of the radius of the cylinder r, and the glancing angle of the ellipse formed by the rod path θ by the following equation: R =cos(θ) r. The following table 5-1 provides α for various glancing angles (θ) and various diameters (2r) of trampolines in order to achieve a six-foot height (v) of the rod apex above the trampoline bed and the resulting ratio of curvature:
By utilizing rods (or vertical support masts) with a median or mean effective diameter advantageously no greater than 1.5 in or between 0.125 and 1.5 in and more advantageously no greater than 1.00 in or between 0.25 and 1.00 in and even more advantageously no greater than 0.75 in or between 0.25 and 0.75 in and even more advantageously no greater than 0.50 in or between 0.25 and 0.50 in and, in each of these cases, with a flexural rigidity advantageously between 1,000 and 18,500 lb×in2 and more advantageously between 1,500 and 18,000 lb×in2 and even more advantageously between 1,500 and 12,000 lb×in2, a smaller rod (or vertical support mast) effective diameter and a much lower flexural rigidity (i.e., smaller effective diameter and much lower flexural rigidity than the masts typically found in existing trampoline solutions that include jumper enclosing protections available today) may be successfully employed in the disclosed enclosure subsystems with their unique geometries to permit a higher Enclosure Impact Weight Rating to be achieved (i.e., a higher Enclosure Specified User Weight) with less material weight and less material volume than found in masts in existing trampoline solutions that include jumper enclosing protections available today.
The effective diameter, D, of a rod (or vertical support mast) at a given point along its longitudinal axis is the diameter for the circle whose area matches the rod's (or vertical support mast's) cross-sectional area, A, at the given point (the cross-section being perpendicular to the longitudinal axis at the given point) by the following formula: D=2√A/π. The mean effective diameter of a rod (or vertical support mast) is the integral between the functional ends of the rod, along the arc of the rod (or vertical support mast), of the rod's (or vertical support mast's) effective diameter divided by the arc length of the rod (or vertical support mast) between the functional ends of the rod. The median effective diameter of a rod (or vertical support mast) has the property such that the portion (e.g., half) of the effective diameters along the arc of the rod (or vertical support mast) between the functional ends that are greater than the median is equal to the portion (e.g., half) that are lesser than the median effective diameter.
Such a rod (or vertical support mast) is advantageously chosen to be made of unidirectional fiberglass composite with a median or mean effective diameter close to 0.375 in and a flexural rigidity close to 6,000 lb×in2 (e.g., between 3,000 lb×in2 and 12,000 lb×in2). Such rods are advantageously assembled in an elliptical configuration such as those shown in
The rods (or vertical support masts) of the disclosed enclosure subsystems can be made of unidirectional fiberglass composite, carbon fiber, aluminum, PVC, or other plastic materials. Depending upon the modulus of elasticity of a rod's (or vertical support mast's) materials and the number of rods (or vertical support mast's) employed (a greater number of rods (or vertical support masts) and/or interconnecting/coupling between rods (or vertical support masts or both) permit using smaller diameter rods (or vertical support masts)), a rod's (or vertical support mast's) effective diameter is advantageously sized up to 1.0 in, and in some embodiments, more advantageously sized up to 0.75 in, and in some embodiments, even more advantageously sized up to 0.5 in, and in some embodiments (including embodiments with unidirectional fiberglass composite rods (or vertical support masts)), advantageously sized to be close to 0.375 in, and in most embodiments, advantageously sized at or above 0.25 in. The rods (or vertical support masts) with diameters between 0.25 in and 0.50 in have an isolated bending rigidity between 1.2 lb×in−1 to 19 lb×in−1 and a flexural rigidity between 1,150 lb×in2 and 18,500 lb×in2. It is more advantageous for fiberglass plastic rods (or vertical support masts) to have a rod (or vertical support mast) effective diameter closer to 0.375 in than either 0.25 in or 0.50 in. Rods (or vertical support masts) with greater flexural and bending rigidity for a given diameter (such as those composed of steel or carbon fiber) are more advantageously sized with smaller diameters, even below 0.25 inches. It is more advantageous for rods (or vertical support masts) of most materials to have a flexural rigidity closer to 5,820 lb×in2 than either 1,150 lb×in2 or 18,500 lb×in2. Rods (or vertical support masts) with greater flexural rigidity (i.e., closer to 18,500 lb×in2) are stronger and stiffer and are one means of permitting a higher Enclosure Impact Weight Rating to be achieved (i.e., a higher Enclosure Specified User Weight), however, if a rod (or vertical support mast) is too stiff it does not bend enough on impact and absorbs the energy of an impact more slowly and with such absorption being slower, comes a greater risk of injury upon impact by an errant jumper. Additionally, rods with too great a flexural rigidity cannot be bent to conform to the arch shape provided by the rod's path along the surface of a netting curtain.
The following table 6-1 shows the different diameter rods (or vertical support masts) needed to exhibit the advantageous flexural rigidity of 6,000 lb×in2 using different materials with varying moduli of elasticity:
Beam internal forces: When external loads are placed on a beam member, internal forces develop in the beam member to balance the loads and achieve static equilibrium. The three internal forces are axial force (A in
The disclosed embodiments exhibit advantageous energy dissipation characteristics. For example, when a jumper flies away from the centroid of the jump surface and impacts a rod at or near its apex, the rod tends to maintain its shape such that the netting curtain is pulled outward away from the centroid of the jump surface and this pulls on the ends of the rod that are attached to the bed subsystem, causing the rods to bend and transfer some load to the bed through a tensile force. This pulling begins the smooth and safe transfer of energy from the impact location and into the trampoline bed where the two end areas of the rod are affixed. The trampoline bed flexes against the nearby springs at the two remote locations gradually decelerating and then recoiling to pull the rods which pulls the netting and the jumper back toward the centroid of the bed. Other nearby poles undergo a similar but lesser tensile load transfer that is asymmetrical as the attached netting is pulled by the impacting jumper resulting in a smaller portion of energy being transferred to the bed at the ends of the other poles. In aggregate, the various poles work together to efficiently absorb the impact energy over a wide range of the bed perimeter area. Because each of the rod's load is partially transmitted through tensile force of the rods, wherein the rods exhibit greater relative strength in comparison to their bending stress strength, and into the bed subsystem which is inherently designed for impacts and energy absorption, the poles may be constructed with much lighter gauge materials than is required when the poles primarily absorb energy on their own through their out of plane bending stress and their flexing, wherein the poles exhibit little bending stress strength compared to the same pole's strength of in plane bending stress.
A similar energy dissipation advantage is seen when a user's impact with the enclosure is more perpendicular with than parallel to the bed subsystem surface, for instance when the user impacts the enclosure in a mostly downward direction (i.e., mostly vertical). When this occurs the disclosed enclosure systems slow (i.e., deaccelerate) the fall gradually and guide the user back toward the centroid of the rebounding surface with consequently greatly reduced risk of injury. The guiding back toward the centroid of the rebounding surface is due to the rebound of the horizontal component of their impact. This shows a significant improvement over previous enclosure designs; a downward impact with a prior design would lead to the net almost immediately becoming taut, causing a jarring sensation to the user who would then end up colliding directly onto the padded springs, another jarring experience as the spring give very little when landed directly onto, perpendicularly to their direction of elasticity. These jarring sensations are accompanied by an increased risk of injury.
Testing and experimentation performed by the inventors has shown that the ratio of in plane to out of plane bending stress for the disclosed embodiments is independent of the impact weight, depending only on the impact location and the construction of the enclosure.
During an impact with this system by an outside colliding body, the amount of load transferred by a rod via tensile force is significant. It is advantageous for greater than 30% of the load transferred by a pole to be via tensile force and less than 60% of the load transferred by the pole to be via shear force. It is more advantageous for greater than 70% of the energy to be absorbed via tensile force and less than 30% by shear force. It is even more advantageous for greater than 75% of the energy to be absorbed via tensile force and less than 25% by shear force. It is even more advantageous for greater than 80% of the energy to be absorbed via tensile force and less than 20% by shear force. It is even more advantageous for greater than 85% of the energy to be absorbed via tensile force and less than 15% by shear force. It is even more advantageous for greater than 90% of the energy to be absorbed via tensile force and less than 10% by shear force. It is even more advantageous for greater than 95% of the energy to be absorbed via tensile force and less than 5% by shear force.
Disclosed is a trampoline system including an enclosure subsystem with rods (structural components) (and, in some embodiments, vertical support masts) for suspending the net above a surface of the trampoline where the rods (and, in some embodiments, vertical support masts) are substantially supported (i.e., at least 30% of all of the rod's (and, in some embodiments, vertical support mast's) loaded weight is supported) by the bed subsystem. The system is configured so that the rods (and, in some embodiments, vertical support masts) transfer a portion of the load of a horizontal impact to the net and the rods (and, in some embodiments, vertical support masts) to the bed subsystem via tensile force through the rods (and, in some embodiments, vertical support masts) and through the net to a plurality of remote locations in the perimeter area, such remote locations being distant from the area of impact.
The system is advantageously configured such that more than 35% of a standard large rod impact is transferred to remote locations. The system is more advantageously configured such that more than 50% of a standard large rod impact is transferred to remote locations. The system is even more advantageously configured such that more than 70% of a standard large rod impact is transferred to remote locations. The system is advantageously configured such that more than 25% of a standard large net impact is transferred to remote locations. The system is more advantageously configured such that more than 35% of a standard large net impact is transferred to remote locations. The system is even more advantageously configured such that more than 50% of a standard large net impact is transferred to remote locations. A first location along the perimeter area is remote or distant from a second location along the perimeter area at the same height above the plane of the jump surface, for example as shown in
In a standard large rod impact against many of the disclosed enclosure subsystems, more than 50% of the energy delivered by the impact against the enclosure subsystem is advantageously transferred to the bed subsystem. It is more advantageous in a standard large rod impact, that more than 65% of the energy delivered by the impact against the enclosure subsystem is transferred to the bed subsystem.
The portion of the standard large net impact load absorbed via tensile force of the poles and via the net pulling on the bed subsystem is advantageously at least 5% of the load of an impact and, in advantageous embodiments, the average portion of the load absorbed via tensile force and via the net pulling on the bed subsystem is at least 10% of the load of an impact and, in even more advantageous embodiments, the average portion of the energy absorbed via tensile force and by the net pulling on the bed subsystem is at least 25% of the load of an impact.
In many of the disclosed embodiments, in a standard large net impact, when measured at a height between 41% and 49% of the height of the rod apex (i.e., the mid-stress location; e.g., gauges 2217 and 2218 of
In many of the disclosed embodiments, in a standard large rod impact, when measured at a height between 41% and 49% of the height of the rod apex (i.e., the mid-stress location; e.g., gauges 2217 and 2218 of
In many of the disclosed embodiments, in a standard stress large net impact, when measured at a height between 41% and 49% of the height of the rod apex (i.e., the mid-stress location; e.g., gauges 2217 and 2218 of
For a circular trampoline bed, the effective radius of the trampoline bed is the same as the radius of the circular trampoline bed. For an elliptical trampoline bed, the effective radius is the radius of curvature at the semi-minor axis of the elliptical trampoline bed. For a regular polygonal trampoline bed, the effective radius is the radius (also called circumradius) of the regular polygon shaped trampoline bed. For concyclic polygon trampoline beds, the effective radius is the radius of the minimal circumscribed circle (also called circumcircle) around a given concyclic polygonal shaped trampoline bed. For all other polygonal trampoline beds, the effective radius is the radius of the smallest circle (also a minimum bounding circle) that contains all the vertices of the polygon.
A rod (or vertical support mast) could potentially break if the bending stress is too great, therefore, it is advantageous that the assembled at rest shape of a rod (or vertical support mast) in the enclosure subsystem does not result in bending a rod (or vertical support mast) too severely and thus creating a lot of pre-loading bending stress even before a jumper impacts a rod (or vertical support mast) and thus provides even more bending stress. Because of this, it is advantageous that the rods (or vertical support masts), when installed in an enclosure subsystem and assembled at rest (i.e., not being impacted by a jumper), have a radius of curvature at all points along the path of the rod (or vertical support mast) which is greater than or equal to 0.20 the effective radius (defined above) of the trampoline bed. It is even more advantageous if the radius of curvature along the path of the rod (or vertical support mast) is always greater than 0.30 of the effective radius of a trampoline bed. It is even more advantageous if the radius of curvature along the path of the rod (or vertical support mast) is always greater than 0.37 of the effective radius of a trampoline bed. It is even more advantageous if the radius of curvature along the path of the rod (or vertical support mast) is always greater than 0.43 of the effective radius of a trampoline bed.
In general, in circular trampoline embodiments with elliptically arched rods, the foregoing requires that the glancing angle of the rods advantageously be less than 78.5°=cos−1(0.2) and even more advantageously less than 72.5°=cos−1(0.3) and even more advantageously less than 68.3°=cos−1(0.37) and even more advantageously less than 64.5°=cos−1(0.43). This is because, for an elliptical curve formed by a plane (defined by a rod's path) intersecting a cylinder (defined by a netting curtain), the ratio
of the radius of curvature at the ends of the semi-major axis of the ellipse to the radius of the cylinder can be computed as a function of the angle (θ) of the secant plane that is perpendicular to the cylinder's axis (i.e., the glancing angle of the ellipse formed by the rod path), in the following way:
The above table 5-1 shows the ratio
for various glancing angles (θ).
The disclosed device embodiments may be adapted to various trampoline bed shapes and sizes beyond the standard circular shape depicted in most drawings. These include elliptical, rectangular, square, pentagonal, hexagonal, heptagonal, octagonal, and more generally any curved or polygonal shape or number of angles and sides. In such applications, the enclosure subsystem shape rounds out the corners of the bed as the netting curtain extends upward from the bed so that the enclosure subsystem travels inside of corners and outside of edges as viewed from above (e.g., see
The disclosed devices have a trampoline bed that is advantageously held taut by connected springs which pull outward, radially from the perimeter of the bed, to an enclosing upper frame. The upper frame together with the frame legs form the trampoline frame subsystem. The upper frame is supported above the ground by the frame legs. At least three legs are present, but more commonly four or six legs are employed. Often each leg is itself composed of two vertical shafts to each support the upper frame where the two shafts are connected by a ground footing to form a single leg. The frame legs are often composed of poles, such as metal tubing. The frame is a key energy dissipating component to the trampoline system upon impact by a jumper into the netting curtain.
The rebounding bed is coupled to the frame by various means, including coil springs, bungee springs, compression springs, rod springs, and leaf springs. In embodiments where the bed itself has sufficient elasticity (springiness) so as to not require additional spring members, the bed may be coupled directly to the frame without any intervening spring members.
The rods (or vertical support masts) may be hollow (e.g., see
While the rods (or vertical support masts) may have a straight shape when isolated at rest, in some embodiments it is advantageous for a rod's (or vertical support mast's) isolated at rest shape to more closely approximate their assembled at rest shape (e.g., an elliptical-like shape). This is because it permits the rods (or vertical support masts) to be constructed of even less material since none of the required flexing is consumed by conforming to the shape of the installed net since their isolated at rest shape is constructed to more closely approximate (as compared to a straight isolated at rest rod (or vertical support mast)) each rod's (or vertical support mast's) assembled at rest shape in their assembled path along the installed netting curtain. To minimize volume of the poles during shipping and transit, the poles may be shipped in a flexed position that more closely approximates their being straight rods (or vertical support masts).
In some embodiments, the rods' (or vertical support masts') isolated at rest shape exaggerates the assembled at rest shape by having a smaller radius of curvature for at least some points along its path as compared to the radius of curvature of the assembled at rest shape. This is advantageous for a horizontal impact as the rod (or vertical support mast) would pass through its isolated at rest shape and have to bend much further before a catastrophic failure due to bending stress. Additionally, a smaller radius of curvature when in its isolated at rest shape permits packing the rod (or vertical support mast) in an even tighter radius of curvature for the same amount of bending stress and thus permitting an advantageously smaller box for shipping.
For circular trampoline system embodiments, depending upon the glancing angle of the rods relative to the trampoline bed, for a rod with a given isolated at rest shape (such as straight or elliptical), the rods will be closer to or farther from their isolated at rest shape. The bending of a rod can be expressed as the average radius of curvature. At one extreme, where the rods are perpendicular to the bed at a 90° glancing angle, the assembled at rest average radius of curvature would be infinite. As the glancing angle decreases toward parallel to the bed at 0°, the assembled at rest average radius of curvature drops toward the limit of the radius of the perimeter area to which the enclosure subsystem is attached and the rod assembled at-rest shape approaches that of a circle. Neither extreme glancing angle (i.e., 0° and 90°) provides a functioning version of the disclosed invention, but are included here to illustrate a trend for the middle portion of glancing angles between the extremes that do function. Angles approaching 90° are not practical because they require an extremely tall enclosure subsystem in order for the rods to arch back down such that opposite ends of the rods are attached to the trampoline bed. Generally, the tallest enclosure subsystem needed is governed by the tallest users and the highest they can jump. For a 14-foot diameter trampoline bed and an adult user, the netting curtain advantageously extends upward six feet above the bed surface, however, the use of a hot-bed or other trampoline configuration to permit above typical jumping heights requires a taller netting curtain height. The rod members are bent into arch shapes which are enclosed or otherwise connected with a net. The arches are bent to curve within a plane whose glancing angle matches the glancing angle of the rods relative to the bed surface. The arches may be approximated by an ellipse on the plane.
Pre-shaped rods (or vertical support masts) whose isolated at rest shape more closely approximates their assembled at rest shape permit the use of lighter rods (or vertical support masts) without collapse as long as the rods (or vertical support masts) can flex without breaking. This pre-shaping gives more rigidity for lighter weight.
To minimize a maximum length dimension, a single rod (or vertical support mast) may be assembled from multiple sections or segments. The sections may be combined, coupled, connected and/or assembled by several means such as telescoping wherein each section end fits into the opposite end of the next section. Alternatively, the sections may be woven into the netting and overlap for several inches without actually being attached directly to each other and instead depending upon frictional forces for their coupling. Such overlapping segments are advantageously encased within a sleeve to provide additional friction such that axial stress on one segment is at least partial transferred to the adjoining segment by means of friction forces. Additionally, the netting transfers some energy of a segment near a point of impact into axial stress of segments more distant from the point of impact.
There are many other means of assembling segments into a single rod (or vertical support mast) (e.g., see
In some embodiments, an elliptical curvature (or other type of arching curve) is loosely approximated by a plurality of individual discrete segments which connect to each other at an angle to form a single rod member (e.g., see
Alternatively, a rod may be composed of discrete segments that are connected at or near 180° interior angles or other interior angles greater than 120° to form a single rod member (e.g., see
The rods (or vertical support masts) also couple to the net in various locations which are advantageously spaced out along even repeating intervals of the rod. One way to attach the net to the rods (or vertical support masts) is to insert them into sleeves (e.g., the sewn fabric support patches 911 and 912 of
Utilizing a lower rod glancing angle or fewer rods (or vertical support masts) results in a lesser ability for the disclosed enclosure subsystems to provide a cushioning effect to an errant jumper's downward fall (vertical motion). Utilizing a greater glancing angle or fewer rods (or vertical support masts) results in a lesser ability to absorb an errant jumper's horizontal motion. A greater glancing angle of a rod results in a lesser ability to transfer a horizontal force through the rod by means of tensile force and requires more of the energy is consequently absorbed by out of plane bending stress. Utilizing a greater number of rods (or vertical support masts) or rods (or vertical support masts) with greater stiffness tends to add to the mass and/or volume of the enclosure subsystem. A rod's stiffness when absorbing energy through out of plane bending stress is far less than its stiffness when absorbing energy through in plane bending stress, hence, shifting energy absorption into in plane bending stress and away from out of plane bending stress is advantageous as it permits a lighter weight rod and a less stiff rod to be used when the amount of bending stress it needs to bear without failure (e.g., breaking) is reduced.
Using a glancing angle of 68° in a 6-arched rod system provides an advantageous trade off as compared to a 45° glancing angle wherein the 68° system sacrifices some strength versus outwardly directed impacts (horizontal loading) in return for greater strength versus downwardly directed impacts (vertical loading). This is advantageous for an impacting jumper since once airborne, the only forces acting on the jumper are gravity and the enclosure subsystem and the gravitational force only affects the vertical loading hence making it advantageous to provide a better cushioning effect as the jumper falls under gravitational influence compared to the cushioning effect for the horizontal loading. As the number of rods is decreased below six rods, a lower glancing angle is advantageous to maintain a balanced trade-off between horizontal and vertical cushioning. Similarly, As the number of rods is increased above six rods, a greater glancing angle is advantageous to maintain a balanced trade-off between horizontal and vertical cushioning. However, as the angle approaches 0° or 90° many of the beneficial effects of the disclosed device tend to disappear.
Rods may be combined in an enclosure subsystem that have differing glancing angles (e.g., some rods at 57° and others at 68°). Generally, a glancing angle of 68° is found to be advantageous for a 6-arched rod system to maximize the energy transferring aspects using a minimum of mass and volume, but in practice other numbers of rods such as 3, 4, 5, 7, 8, 9, 10, 11 or 12 and other angles greater than or equal to 30° or less than or equal to 80° may be utilized such as 30°, 35°, 40°, 45°, 50°, 55°, 57°, 60°, 64°, 68 °, 72°, 76°, or 80°. For a 5-arched rod system, a glancing angle of 64° is found to be advantageous. For a 4-arched rod system, a glancing angle of 57° is found to be advantageous. For a 3-arched rod system, a glancing angle of 55° is found to advantageous. In many embodiments, it is advantageous to utilize glancing angles between 40° and 76° and in some embodiments, it is even more advantageous to utilize glancing angles between 45° and 72°. Fewer arches require lesser glancing angles and thus larger spans. A greater number of arches permit greater glancing angles and thus shorter spans. A greater glancing angle is more effective at slowing a vertical fall than a lesser glancing angle whereas a lesser glancing angle is more effective at containing a horizontal impact than a greater glancing angle. It is advantageous to select a glancing angle that balances the beneficial effect of slowing a vertical fall and containing a horizontal impact.
In alternative embodiments, vertical support masts (e.g., vertical support masts 406 in
Both end areas of each rod (or one end area of each vertical support mast) are attached to a flexible connection near the perimeter of the trampoline bed (in the perimeter area). This is a unique configuration that builds flexibility and compliance into the enclosure subsystem. This is beneficial because when the net is impacted, the entire system of the rods, any vertical support masts, net, mat, frame and any springs move together and absorb the impact energy slowly, and the impact energy is distributed across these mediums to more distant locations across the trampoline system. Because both ends of each rod are advantageously connected to the perimeter area of the trampoline bed subsystem and these connections are distant from each other, the energy absorption of each impacted rod is split to permit it to be distributed across these two remote bed locations. This splitting of energy absorption, together with the great flexibility afforded by the lightweight and low gauge poles permitted by the disclosed embodiments, results in a safe and smooth deceleration and removes the need for pole padding (as required when stiffer poles are used), further reducing the enclosure subsystem's volume and mass. The flexible rods themselves also bend and absorb energy, but an angled arch shape efficiently transfers energy to the bed subsystem via axial force and provides a sufficiently rigid enclosure subsystem to support the netting. The arch structure is more efficient compared to typical safety net systems that use independent cantilever masts, so lightweight flexible rods can be used instead of stiff and heavy large diameter steel tubing.
The tops of the arches (e.g., rods 402 of
The rods (and, in some embodiments, vertical support masts) are advantageously coupled with the rebounding effect of the bed subsystem. In such systems the rods of the enclosure subsystem function as a kind of rod spring. Because the enclosure subsystem has a very low mass (e.g., 15 lb) as compared to safety net systems in existing trampoline solutions that include jumper enclosing protections on the market today, the coupling of the rods (and, in some embodiments, vertical support masts) (which bear the loaded weight of the bed subsystem) does not substantially dampen the rebounding effect of the bed subsystem. This is because the mass of the enclosure subsystem is so slight in comparison to the mass of an adult user, thus permitting the enclosure subsystem to move up and down with the bed subsystem supporting it as a user jumps up and down on it. In embodiments where the enclosure subsystem has at least some of the rods (or vertical support masts) having at least one end area or the net coupled with the bed subsystem the enclosure subsystem has an added function in that it provides additional spring capacity to the bed subsystem as when a user lands on the bed subsystem and pulls the bed downward the perimeter of the bed subsystem contracts (or shrinks) and flexes the rods (which act as rod springs) (or vertical support masts) inward by means of bending stress that stores some of the energy of the jumper which is partially restituted back to the jumper as the bending stress is released and the poles (or vertical support masts) return toward their relaxed state. The foregoing gives the enclosure subsystem a rebounding effect.
Generally, the netting curtain is shaped to extend straight upward, perpendicularly to the trampoline bed. In some embodiments, it is advantageous to depart from a netting curtain shape that extends straight upward and instead create a netting curtain that generally inclines inwardly toward the centroid of the trampoline bed. Such a curtain construction may have an average grazing angle to the bed of less than 90°. This is advantageous in that it provides greater safety to the user by restraining them at a lesser radius from the centroid at the top of the netting curtain than at the bottom. This is advantageous in that a jumper engaging the netting curtain at the top of the curtain is at greater risk than a jumper engaging the curtain nearer to the bottom of the curtain and by engaging a high above the surface jumper, closer to the center of the trampoline bed, their risk of landing outside the bed is reduced.
One way to implement a netting curtain that tapers inward is to have a netting curtain that when not yet installed and laid out on a flat surface makes an isosceles trapezoidal shape where the longer base forms the bottom of the netting curtain that is installed on the trampoline bed and the shorter base forms the top of the netting curtain. By having a shorter top, a truncated cone like curtain shape is produced when the legs of the trapezoid are wrapped around the rods (and any vertical support masts) to meet each other instead of a cylindrical curtain shape that is achieved when the netting is rectangular instead of an isosceles trapezoidal shape. The restriction of the shorter distance along the top of the curtain works together with the outward pressing force of the rods to create an inwardly tapered, truncated conal type of curtain shape.
The enclosure subsystem provides entry through a section of the netting curtain that contains two pieces of overlapping netting. This provides a passageway to permit access to the inside of the enclosure subsystem's chamber by allowing a user to separate the two overlapping pieces and pass between them. When jumping the overlapping section is long enough to secure the jumper from accidentally passing through the passageway during impact with the enclosure subsystem.
The overlap can be attained by having crossing rods pass through the ends of the overlapping netting. For example, in
The enclosure subsystem's netting (e.g., the enclosure subsystem netting 105 of
In alternative embodiments, in order to provide a more rigid enclosure subsystem, the enclosure subsystem's netting (e.g., the enclosure subsystem netting 105 of
In embodiments where the netting is attached to the frame, it is advantageous to add an angled flap or sheet of additional netting material (e.g., netting flap 1309 of
In embodiments where rods (or vertical support masts) are attached to the frame, the coupling mechanism between a rod (or vertical support mast) and the frame is advantageously configured to have limited elasticity or significant elasticity in the coupling mechanism. (For example, a coupling mechanism made of rubber, spring steel, fiberglass, silicone, springs, etc.) Such an elastic coupling mechanism on the frame allows the portion of rods (or vertical support masts) at, below, or above and nearby the coupling to the frame to move relative to the frame which is much more rigid.
In embodiments where the bed subsystem includes rod springs (or leaf springs) situated below the rebounding surface, the arched rods (or vertical support masts) may be coupled to the perimeter of the frame subsystem near the upper portion of the frame where the spring rods are coupled to the frame. It is advantageous for the coupling mechanism to secure the arched rods (or vertical support masts) at a slightly greater diameter than the perimeter of the rebounding surface so that the path of the arched rods (or vertical support masts) does not rub against the perimeter of the rebounding surface as it falls and rises when a user jumps upon it. It is also advantageous that the netting curtain is attached to the perimeter of the rebounding surface to prevent a jumper from falling below the rebounding surface and being exposed to the rod springs (or leaf springs). Sufficient slack must be created in the enclosure subsystem to account for the rotation of the perimeter of the rebounding surface relative to the frame below as the rod springs (or leaf springs) are compressed so that the net is not needlessly strained against the arched rods (or vertical support masts) with each bounce of a user.
During an impact with this trampoline system by an outside colliding body with the enclosure subsystem, the amount of energy initially absorbed by the trampoline bed and spring subsystem is greater than the amount of energy initially absorbed by the trampoline frame. It is advantageous for greater than 60% of the energy initially be absorbed by the bed and spring subsystem and less than 40% of the energy initially be absorbed by the frame. It is more advantageous for greater than 70% of the energy to be initially absorbed via the bed and spring subsystem and less than 30% by the frame. It is even more advantageous for greater than 75% of the energy to be initially absorbed via the bed and spring subsystem and less than 25% by the frame. It is even more advantageous for greater than 80% of the energy to be initially absorbed via the bed and spring subsystem and less than 20% by the frame. It is even more advantageous for greater than 85% of the energy to be initially absorbed via the bed and spring subsystem and less than 15% by the frame. It is even more advantageous for greater than 90% of the energy to be initially absorbed via the bed and spring subsystem and less than 10% by the frame. It is even more advantageous for greater than 95% of the energy to be initially absorbed via the bed and spring subsystem and less than 5% by the frame.
An alternative means of connecting the rods (or vertical support masts) to the bed subsystem is to affix a series of sleeves to the perimeter area of the bed (e.g., the support patches 911 and 912 of
Sleeves may also be affixed to the netting (e.g., the cross patch 915 of
The disclosed enclosure subsystem's netting and rod embodiments are advantageous in that their mass and volume compared to the mass and volume of the trampoline bed, springs, and frame is greatly reduced compared to previous products with similar Enclosure Impact Weight Ratings. One of the ways that mass of the trampoline system disclosed is reduced as compared to traditional trampoline systems on the market today is that in the disclosed embodiments, the poles or the poles' coupling devices are not welded to the frame, as such welding and/or coupling devices add to the mass. Such welding of poles or poles' coupling devices to the frame is found in many of the existing trampoline solutions employed in the market or in use today previous to this disclosure.
The following table 8-1 shows the safety net system mass and frame mass for many representative products in the market or in use today along with one of the newly disclosed trampoline systems in row 2. The trampoline weight rating shown in the table is the value reported by the manufacturer unless more accurate data is available by testing performed by the inventors. Under ASTM F381-16, manufacturers are expected to ensure that the maximum specified user weight meets the test requirements of § 6.8. This is the same weight/value upon which many of the ASTM trampoline and enclosure tests are based.
However, values reported by the manufacturer and testing performed by the inventors may fall below or above the highest weight that a manufacturer could have specified while still complying with the test under exhibited an Enclosure Specified User Weight which was less than the Maximum User Weight of § 6.8 of ASTM F381-16. And, values reported by the manufacturer may understate or overstate the actual Enclosure Impact Weight Rating that could be determined by testing. Finally, values reported by testing products in the market or in use today performed by the inventors may overstate the actual Enclosure Impact Weight Rating that could be determined by testing. All products in the market or in use today for which the inventors performed testing exhibited an Enclosure Specified User Weight substantially less than the estimated Maximum User Weight of § 6.8 deduced from prior testing of other trampoline systems, whereas, for at least some of the disclosed embodiments, testing exhibited an Enclosure Specified User Weight which can be greater than the estimated Maximum User Weight of § 6.8 deduced from prior testing of other trampoline systems.
For purposes of our claims and specifications in this patent, the listed “Trampoline Weight Rating” for existing designs is believed, when based upon manufacturer's reporting, and known, when based upon inventor's testing, to be greater than the Enclosure Specified User Weight (i.e., the enclosure would fail the test at that trampoline weight rating) and for the disclosed design in row 2 the listed “Trampoline Weight Rating” is known, based upon inventor's testing, to be less than the Enclosure Specified User Weight (i.e., the enclosure would pass the test at that trampoline weight rating).
The newly disclosed enclosure system in row 2 has an enclosure subsystem mass of 15.4 lb and is able to provide an Enclosure Specified User Weight rating of at least 169 lb but we believe that many embodiments of the system would easily sustain a higher Enclosure Specified User Weight rating of 275 lb or much higher for some embodiments (e.g., 300, 305, 310, 315, 320 or 325 lb or even more). The foregoing yields a ratio of mass of enclosure subsystem to maximum user weight of 1:11 (9.1%) or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 171 lb is applicable and this rating gives a ratio of 9.0% or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 185 lb is applicable and this rating gives a ratio of 1:12 (8.3%) or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 193 lb is applicable and this rating gives a ratio of 8.0% or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 200 lb is applicable and this rating gives a ratio of 1:13 (7.7%) or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 205 lb is applicable and this rating gives a ratio of 7.5% or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 216 lb is applicable and this rating gives a ratio of 1:14 (7.1%) or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 220 lb is applicable and this rating gives a ratio of 7.0% or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 231 lb is applicable and this rating gives a ratio of 1:15 (6.7%) or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 237 lb is applicable and this rating gives a ratio of 6.5% or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 246 lb is applicable and this rating gives a ratio of 1:16 (6.3%) or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 257 lb is applicable and this rating gives a ratio of 6.0% or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 262 lb is applicable and this rating gives a ratio of 1:17 (5.9%) or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 277 lb is applicable and this rating gives a ratio of 1:18 (5.6%) or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 280 lb is applicable and this rating gives a ratio of 5.5% or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 293 lb is applicable and this rating gives a ratio of 1:19 (5.3%) or less. In some advantageous embodiments, an Enclosure Specified User Weight rating of at least 308 lb is applicable and this rating gives a ratio of 1:20 (5.0%) or less.
None of the existing systems on the market or in use today can achieve such an unexpectedly low ratio. A 9.1% ratio means that one may take the mass of the enclosure subsystem (or the mass of the safety net System) and divide it by the ratio, 9.1%, to compute a weight which may be successfully applied as the Enclosure Specified user weight rating and potentially meet the test requirements of § 6.8 of ASTM F381-16 and if it does meet them then necessarily it would also meet the requirements of the § 6.1 of the ASTM F 222515, and thus permitting the computed weight to be listed as the maximum specified user weight under ASTM F381-16 and ASTM F 2225-15.
The following table 8-2 lists the standardized mass of a bed subsystem for various geometries of trampoline systems. The standardized mass of the bed subsystem reflects the mass of bed and springs for a typical 14′ frame diameter model typically found on the market or in use and scaled proportionally up or down to the diameter or shape of the frame for each model. The standardized mass is the sum the following masses: bed fabric, bed edging, spring connectors
The following table 8-3 shows the ratio of the safety net system mass to a standardized mass of a bed subsystem for many representative products in the market or in use today along with one of the newly disclosed trampoline systems in row 2. Most of the disclosed enclosures advantageously have a safety net system mass that is less than 55% of the standardized mass of a bed subsystem and more advantageously less than 50% and even more advantageously less than 45% and even more advantageously less than 40%. For the representative trampoline systems surveyed all have a safety net system mass to a standardized mass of a bed subsystem ratio of at least 60%.
The following table 8-4 shows the ratio of the mass of the safety net system to the gross shipping weight and to the gross shipping weight for a standardized gross weight for many representative products in the market or in use today along with one of the new disclosed trampoline systems in row 2. The standardized gross weight is the gross shipping weight of the trampoline system with the actual weight of the bed subsystem subtracted out and replaced with the standardized mass of the bed subsystem from table 8-2 and an adjusted estimated box and packing material weight. In the disclosed embodiments, it is advantageous that the ratio of the mass of the enclosure subsystem to the gross shipping weight is less than or equal to 11% and even more advantageous to be less than or equal to 10% and even more advantageous to be less than or equal to 9%. It is also advantageous that the ratio of the mass of the enclosure subsystem to the standardized gross shipping weight be less than or equal to 10% and more advantageous to be less than or equal to 9% and even more advantageous to be less than or equal to 8%.
The following table 8-5 shows the safety net system's mast and any required foam for many representative products in the market or in use today along with one of the new disclosed trampoline systems in row 2.
For a 150 lb jumper impacting the disclosed enclosure subsystem, the weight of poles, netting, and other enclosure subsystem parts which are necessary to safely protect the jumper is less than 65% of the weight of safety net systems (necessary to safely protect the jumper) in existing trampoline solutions that include jumper enclosing protections on the market or in use today.
As shown by the above, the disclosed embodiments provide trampoline systems that are substantially lighter (many of the disclosed embodiments weighing less than 20 lb and having less than 10% of the mass of the gross shipping weight of the whole trampoline system) and have much less volume (volume of box for poles and any needed foam padding less than 250 in3 for many disclosed embodiments) than any solutions on the market or in use today while still maintaining similar quality, safety, and functional strength. Because reduced mass and volume both directly reduce the cost of shipping a trampoline to a customer, the disclosed invention provides a major advantage in the economy trampoline marketplace where the end-customer shipping represents a large percentage of the final cost to consumers.
Many of the disclosed embodiments include enclosure subsystems, whose netting, poles, and any required foam padding altogether combined weigh less than 25 lb, and are capable of passing the Enclosure Impact Weight Rating for a weight rating of at least 50 lb. The following table 8-6 discloses the representative mass for various disclosed embodiments and an Enclosure Impact Weight Rating they would be capable of meeting:
The ratio improves in the above table due to most of the available netting curtain materials being able to withstand the highest ASTM enclosure impact weight ratings shown in this table and thus only the rods (or vertical support mast) and/or couplings need to be sized up, coupled together more through additional interconnect coupling between rods (or rods and vertical support masts), or increased rod (or vertical support mast) count to provide a greater ASTM enclosure impact weight rating.
The disclosed embodiments include enclosure subsystems whose poles and any required foam padding altogether combined are capable of fitting into a box with volume less than 325 in3, and are capable of passing the Enclosure Impact Weight Rating for a weight rating of at least 169 lb. The following table 8-7 discloses the maximum volume for one of the various disclosed embodiments and the resulting Enclosure Impact Weight Rating as compared to the same system without the new enclosure subsystem design (using an old enclosure subsystem):
The ratio of the new enclosure subsystem is better than traditional safety net systems in the market or in use as shown in the above table.
The above and other objects, effects, features, and advantages of the present devices will become more apparent from the following description of the embodiments thereof taken in conjunction with the accompanying drawings.
The disclosed trampoline system provides a huge cost benefit because it reduces material costs by greatly reducing the amount of material that goes into the enclosure subsystem. In addition to material costs by reducing the diameter and density of the enclosure subsystem pole material, and also eliminating the space required by the pole padding, the product can fit into a much smaller box. The much smaller and lighter box can be shipped for a small fraction of the cost of a traditional enclosure subsystem.
Although not shown in these specific drawings of
Embodiments of some of the disclosed trampoline systems advantageously have an enclosure subsystem to frame and bed subsystem mass ratio of less than 0.25 and in some embodiments more advantageously have an enclosure subsystem to frame and bed subsystem mass ratio of less than 0.125. Such a mass ratio is the total mass of the enclosure subsystem divided by the total mass of the frame subsystem and the bed subsystem. The mass ratio refers only to the portion of the enclosure, frame, and bed subsystems actually shipped to customers and/or dealers in practice and does not include any portions that the end customer and/or dealer is instructed to add (e.g., customer is instructed to add sand or water to weigh down a subsystem).
Many of the disclosed trampoline systems advantageously have an enclosure subsystem mass no greater than 9.1% of an Enclosure Impact Weight Rating of which the enclosure subsystem is capable of meeting and more advantageously no greater than 8.3% and even more advantageously no greater than 7.7%.
Some of the disclosed embodiments of a trampoline system comprising a frame and bed subsystem and an enclosure subsystem, including poles and any required foam padding, where the poles and the any foam padding are capable of fitting into a first set of one or more boxes with a total combined volume whose ratio to a second set of one or more boxes with a total combined volume, capable of containing the frame and bed subsystem, where the ratio of the two total combined volumes is advantageously less than 0.333. That is, the volume of the one or more boxes to contain the enclosure subsystem is less than one-third of the volume of the one or more boxes to contain both the frame subsystem and the bed subsystem.
A trampoline system having an enclosure subsystem, including poles and any required foam padding, where the poles and the any foam padding are capable of fitting into one or more boxes with a total combined volume in cubic inches, where the magnitude of the volume is no greater than the magnitude of an Enclosure Impact Weight Rating in pounds of which the enclosure subsystem is capable of meeting.
Not independent poles: When you impact the enclosure subsystem at a given point at least one point where you impact it causes at least one of the poles to transfer energy through that pole to two remote locations (opposite ends of pole) on the bed subsystem. The portion of impact energy transmitted into pole is distributed to two remote locations through one pole, directly into the bed. Disclosed are the ideal angles of the poles for various embodiments. With many of the disclosed configurations, a jumper impacting the enclosure subsystem just below the apex of an arched pole is limited from moving too far outside the assembled at rest shape of the enclosure subsystem. You limit the arches from collapsing by enclosing them in an arch seam with a horizontal strapping material going from one side of arch connecting one x-point to the next. By preventing arch from collapsing you can use lighter weight poles to transfer energy directly to the bed subsystem and less energy to flexing of poles to keep a user from moving farther outside of bed and increasing likelihood of the user being pulled back into bed because more energy is transferring into the spring system of the bed subsystem which subsequently recoils to pull them back onto bed more effectively. The bending of masts to absorb energy in traditional safety net systems are weak springs compared to the typical count of 96 springs of the bed subsystem used to absorb energy in the disclosed trampoline systems. The patches prevent x-shape from easily collapsing during impact with the square patch around the x-shape of sleeve.
Flaps transfer energy from the bottom of a pole to remote locations on either side of the bottom of the pole. Double flaps that fold up and down pulling up on one side and down on other engaging a larger portion of the bed subsystem to help prevent collapse of enclosure subsystem and to help keep the poles upright. This results in a greater portion of bed subsystem receiving energy and thus a greater amount of energy to be transferred into the bed subsystem. Poles may optionally be screwed into a base.
In view of the many possible embodiments to which the principles of the disclosed trampoline systems may be applied, it should be recognized that the illustrated embodiments are only examples of the trampoline systems disclosed herein and should not be taken as defining the scope of the invention.
This is a continuation of International Application No. PCT/US2018/045283, filed Aug. 3, 2018, which is a continuation-in-part of International Application No. PCT/US2018/039619, filed Jun. 26, 2018, which claims the benefit of U.S. Provisional Application No. 62/590,528, filed Nov. 24, 2017, U.S. Provisional Application No. 62/541,653, filed Aug. 4, 2017, and U.S. Provisional Application No. 62/525,141, filed Jun. 26, 2017. This is a continuation-in-part of International Application No. PCT/US2018/039619, filed Jun. 26, 2018, which claims the benefit of U.S. Provisional Application No. 62/590,528, filed Nov. 24, 2017, U.S. Provisional Application No. 62/541,653, filed Aug. 4, 2017, and U.S. Provisional Application No. 62/525,141, filed Jun. 26, 2017. This claims the benefit of U.S. Provisional Application No. 62/590,528, filed Nov. 24, 2017. All the above-named applications are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62590528 | Nov 2017 | US | |
62590528 | Nov 2017 | US | |
62541653 | Aug 2017 | US | |
62525141 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/045283 | Aug 2018 | US |
Child | PCT/US2018/039619 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/039619 | Jun 2018 | US |
Child | 16114080 | US | |
Parent | PCT/US2018/039619 | Jun 2018 | US |
Child | PCT/US2018/045283 | US |