The present invention relates to alloys for joining materials by brazing; more particularly, to silver-containing braze alloys for joining ceramics to metals; and most particularly, to silver braze alloys containing silicon to lower the liquidus temperature.
Fuel cells which generate electric current by controllably combining elemental hydrogen and oxygen are well known. In one form of such a fuel cell, an anodic layer and a cathodic layer are separated by a permeable electrolyte formed of a ceramic solid oxide, such as yttrium-stabilized zirconium (YSZ). Such a fuel cell is known in the art as a “solid oxide fuel cell” (SOFC). A single cell is capable of generating a relatively small voltage and wattage, typically between about 0.5 volt and about 1.0 volt, depending upon load, and less than about 2 watts per cm2 of cell surface. Therefore, in practice it is known to stack together, in electrical series, a plurality of cells.
In a currently-preferred arrangement, each ceramic-based fuel cell is bonded to a surrounding metal “cassette” frame to form a fuel cell sub-assembly, using a silver/copper-based braze. As the solid braze alloy is liquefied, the copper is rapidly oxidized to form copper oxide which separates from the alloy, leaving essentially pure silver as the brazing material. The copper oxide migrates to the boundaries of the liquid and adheres to the ceramic and the metal, providing an attachment layer for the silver. Exemplary silver/copper and silver/vanadium braze alloys are disclosed in International Publication No. WO 03/059843, published 24 Jul. 2003, which is incorporated herein by reference.
A problem in the use of such alloys is that the liquidus temperature is substantially the melting point of pure silver, 962° C. This temperature is high enough to preclude use of some fuel cell materials which can be damaged by such high temperatures. In addition, in some manufacturing schemes it is desirable to perform two separate brazing steps, and it is further desirable that the first brazed seal not be reliquefied when performing the second seal. Thus, a higher temperature braze could be used for the first seal, and a lower temperature braze for the second seal.
What is needed in the art is a means for lowering the liquidus temperature of a silver brazing alloy.
It is a principal object of the present invention to provide an improved silver brazing alloy having a liquidus temperature significantly lower than the melting temperature of silver.
Briefly described, a brazing alloy in accordance with the invention comprises elemental silver alloyed with another element that serves to reduce the liquidus temperature of the alloy to a temperature below the melting point of silver. In a preferred embodiment, a brazing alloy comprises elemental silver alloyed with elemental silicon in a silver/silicon ratio between about 95/5 and 99/1, preferably about 97/3. Silver melts at 962° C., but small amounts of silicon alloyed with silver depress the alloy liquidus point significantly, the liquidus temperature of a silver and silicon eutectic alloy being about 837° C. Brazing alloys in accordance with the invention are useful in bonding ceramics to ceramics, ceramics to metals, and metals to metals. Such metals are preferably alumina-forming. Copper, vanadium, or other oxygen-reactive surface bonding elements may also be included, and use of such brazing alloys is preferably carried out in an oxidizing atmosphere.
The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Referring to
Referring to
Referring to
Referring to
While the invention as described above concerns a reactive air brazing alloy, it is understood that he braze alloy can be made from a mix of the elemental powders which would then be allowed to alloy during the brazing process.
While the invention has been described by reference to various specific embodiments, it should be understood that numerous changes may be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the described embodiments, but will have full scope defined by the language of the following claims.
This invention was made with United States Government support under Government Contract/Purchase Order No. DE-FC26-02NT41246. The Government has certain rights in this invention