The present disclosure relates generally to electronics, and more specifically to low noise amplifiers (LNAs).
A wireless device (e.g., a cellular phone or a smart phone) in a wireless communication system may transmit and receive data for two-way communication. The wireless device may include a transmitter for data transmission and a receiver for data reception. For data transmission, the transmitter may modulate a radio frequency (RF) carrier signal with data to obtain a modulated RF signal, amplify the modulated RF signal to obtain an output RF signal having the proper output power level, and transmit the output RF signal via an antenna to a base station. For data reception, the receiver may obtain a received RF signal via the antenna and may amplify and process the received RF signal to recover data sent by the base station.
A wireless device may include multiple receivers to support different frequency bands, different radio technologies, receive diversity, etc. It is desirable to implement the receivers to achieve good performance while reducing circuitry and cost.
The detailed description set forth below is intended as a description of exemplary designs of the present disclosure and is not intended to represent the only designs in which the present disclosure can be practiced. The term “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other designs. The detailed description includes specific details for the purpose of providing a thorough understanding of the exemplary designs of the present disclosure. It will be apparent to those skilled in the art that the exemplary designs described herein may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the novelty of the exemplary designs presented herein.
A wireless device comprising multiple LNAs with combined outputs is described herein. Combining the LNA outputs may reduce interconnections, input/output (I/O) ports, circuitry, circuit area, cost, etc., as described below.
Wireless device 110 may also be referred to as a user equipment (UE), a mobile station, a terminal, an access terminal, a subscriber unit, a station, etc. Wireless device 110 may be a cellular phone, a smart phone, a tablet, a wireless modem, a personal digital assistant (PDA), a handheld device, a laptop computer, a smartbook, a netbook, a cordless phone, a wireless local loop (WLL) station, a Bluetooth device, etc. Wireless device 110 may be capable of communicating with wireless system 120 and/or 122. Wireless device 110 may also be capable of receiving signals from broadcast stations (e.g., a broadcast station 134). Wireless device 110 may also be capable of receiving signals from satellites (e.g., a satellite 150) in one or more global navigation satellite systems (GNSS). Wireless device 110 may support one or more radio technologies for wireless communication such as LTE, cdma2000, WCDMA, GSM, 802.11, etc.
In the exemplary design shown in
In the exemplary design shown in
Data processor/controller 280 may perform various functions for wireless device 110. For example, data processor 280 may perform processing for data being received via receivers 250 and transmitted via transmitters 270. Controller 280 may control the operation of switchplexer 240 and/or 242, input circuits 252, LNAs 260, receive circuits 262, transmit circuits 272, PAs 274, output circuits 276, or a combination thereof. A memory 282 may store program codes and data for data processor/controller 280. Data processor/controller 280 may be implemented on one or more application specific integrated circuits (ASICs) and/or other ICs.
It may be desirable to implement the circuits for receivers on a wireless device in multiple modules. A module is a unit that can include any circuits and further includes I/O ports via which signals can be transmitted and received by the circuits in the module. For example, a module may be an IC die/chip (e.g., an RFIC), an IC package, a hybrid module, a circuit card, etc. A module may comprise a single component such as an IC die/chip. A module may also comprise an assembly of components. For example, a hybrid module may include a circuit board, a housing or an enclosure, and one or more I/O ports (e.g., RF connectors). The circuit board may comprise an alumina substrate or some other substrate and may include passive and/or active devices such as inductors, resistors, discrete transistors, IC dies, etc. As another example, a module may include one or more IC dies mounted on a passive substrate, which may be composed of organic or non-organic material. The passive substrate may include interconnect traces, printed passive circuit components/elements (e.g., inductors), and discrete circuit components (e.g., capacitors, inductors, resistors, etc). A hybrid module may include circuits of one or more technologies, such as discrete field effect transistors (FETs) and/or IC dies attached to a circuit board containing interconnection traces. A front-end module is a module that includes circuits (e.g., switchplexer, filter, duplexer, amplifiers, impedance matching circuits, etc.) located close to an antenna for transmitters and/or receivers. A module may comprise different circuit components but may be treated as a single component. A module may be implemented on a closed or an opened package. Some examples of modules include a front-end module, a power amplifier module (PAM), and a system-in-a-package (SiP) module. A front-end module may be a hybrid module, an IC die, an IC package, etc. Different modules may be implemented in different manners and may be more suitable and economical for different circuits. For example, a hybrid module may be more suitable for filters, impedance matching circuits, micro-electro-mechanical systems (MEMS) switches, etc. An IC die may be more suitable for semiconductor circuits such as amplifiers, semiconductor switches, etc.
A module may be associated with various characteristics. For example, a module may be associated with its own power supply and circuit ground connections. A module may also be treated as a single unit during circuit design and manufacturing.
In the exemplary design shown in
As shown in
The N LNAs 360a to 360n in RFIC 330 may be connected to the N impedance matching circuits 354a to 354n in front-end module 320 via N interconnections 370a to 370n, one interconnection 370 for each LNA 360. Each interconnection 370 is between one I/O port 372 on front-end module 320 and one I/O port 374 in RFIC 330. N I/O ports 372a to 372n on front-end module 320 and N I/O ports 374a to 374n on RFIC 330 may be used for the N interconnections 370a to 370n between front-end module 320 and RFIC 330. There may be many interconnections 370 between front-end module 320 and RFIC 330 if a wireless device supports a number of frequency bands and/or a number of radio technologies. There may also be many I/O ports 372 on front-end module 320 and also many I/O ports 374 on RFIC 330 to support the many interconnections between these two modules.
In an aspect, LNAs with combined outputs may be used in order to reduce the number of interconnections between modules implementing receivers in a wireless device. The LNAs may be implemented on a front-end module and may be coupled directly to receive filters. Receive circuits may be implemented on an RFIC. The outputs of the LNAs may be combined. A single interconnection between the front-end module and the RFIC may then be used for all LNAs whose outputs are combined. Combining the LNA outputs may greatly reduce the number of interconnections between the modules as well as the number of I/O ports on each module. Combining the LNA outputs may also reduce circuitry, circuit area, and cost and may also provide other benefits such as improved performance.
In the exemplary design shown in
In an exemplary design, receive circuits 462 include common circuits that can be shared by all N receivers 450a to 450n. In this exemplary design, the common circuits may have the same biasing for all frequency bands or different biasing for different frequency bands supported by receivers 450a to 450n. In another exemplary design, receive circuits 462 include separate circuits for each receiver 450 or each subset of receivers 450 of interest. In this exemplary design, the separate circuits for each receiver 450 or each subset of receivers 450 may be designed to provide good performance for one or more frequency bands supported by that receiver or that subset of receivers.
As shown in
As shown in
In an exemplary design, the N LNAs 460a to 460n may be individually enabled or disabled via N enable control signals Enb1 to EnbN, respectively. One LNA 460 for a selected frequency band may be enabled at any given moment, and remaining LNAs 460 may be disabled. In another exemplary design, multiple LNAs may be simultaneously enabled to amplify a received RF signal and provide an amplified RF signal.
In an exemplary design, N LNAs 460a to 460n may be coupled to a common summing node via N switches, which are not shown in
LNAs with combined outputs may be implemented in various manners. Several exemplary designs of LNAs with combined outputs are described below.
Within LNA 560a, an alternating current (AC) coupling capacitor 574a has one end receiving an input RF signal (Vin1) for LNA 560a and the other end coupled to a gate of an N-channel metal oxide semiconductor (NMOS) transistor 570a. A resistor 576a has one end receiving a first bias voltage (Vbias1a) for LNA 560a and the other end coupled to the gate of NMOS transistor 570a. NMOS transistor 570a has its drain coupled to the source of an NMOS transistor 580a and its source coupled to one end of an inductor 572a. The other end of inductor 572a is coupled to circuit ground. NMOS transistor 580a has its gate receiving a second bias voltage (Vbias1b) for LNA 560a and its drain coupled to a summing node A. NMOS transistor 580a provides an amplified RF signal (Vamp) when LNA 560a is enabled.
Each of the remaining LNAs 560b to 560n may be implemented in similar manner as LNA 560a. Each LNA 560x, where index xϵ{a, . . . , n}, includes NMOS transistors 570x and 580x, an inductor 572x, an AC coupling capacitor 574x, and a resistor 576x. For each LNA 560x, NMOS transistor 570x receives an input RF signal for that LNA via capacitor 574x and also receive a first bias voltage for that LNA via resistor 576x. For each LNA 560x, NMOS transistor 580x receives a second bias voltage for that LNA. An inductor 590 is coupled between a power supply voltage (Vdd) and node A. Inductor 590 is a load that is shared by the N LNAs 560a to 560n.
Within each LNA 560x, NMOS transistor 570x and inductor 572x form an input gain stage for an input RF signal. NMOS transistor 570x provide signal amplification for the input RF signal. Inductor 572x provides source degeneration for NMOS transistor 570x to improve the linearity of LNAs 560x. Inductor 572x may further provide input impedance matching looking into the gate of NMOS transistor 570x. NMOS transistor 580x is a cascode transistor that provides load isolation for NMOS transistor 570x and also provides signal drive for an amplified RF signal from LNA 560x. LNA 560x may be enabled or disabled based on the first bias voltage for NMOS transistor 570x and/or the second bias voltage for NMOS transistor 580x. The bias voltages for each LNA 560x may be generated based on an enable control signal for that LNA.
N different input RF signals Vin1 to VinN are provided to N LNAs 560a to 560n, respectively. The input RF signals for LNA 560a to 560n may be provided by N receive filters, e.g., receive filters 452a to 452n in
Each LNA 660x, where index xϵ{a, . . . , n}, includes an NMOS transistors 670x, a source degeneration inductor 672x, an AC coupling capacitor 674x, and a resistor 676x, which are coupled in the same manner as NMOS transistor 570a, inductor 572a, capacitor 574a, and resistor 576x in LNA 560a in
For each LNA 660x, NMOS transistor 670x receives an input RF signal (Vin) for that LNA via capacitor 674x and also receive a bias voltage (Vbias) for that LNA via resistor 676x. N different input RF signals Vin1 to VinN are provided to N LNAs 660a to 660n, respectively. N bias voltages Vbias1 to VbiasN are also provided to N LNAs 660a to 660n, respectively.
Within each LNA 660x, NMOS transistor 670x and inductor 672x form an input gain stage. Each LNA 660x may be enabled or disabled based on the bias voltage for that LNA, which may be generated based on an enable control signal for that LNA. NMOS transistor 680 is a common cascode transistor for all N LNAs 660a to 660n. Inductor 690 is a common load inductor for all N LNAs 660a to 660n.
Each LNA 760x, where index xϵ{a, . . . , n}, includes an NMOS transistors 770x and a source degeneration inductor 772x, which are coupled in the same manner as NMOS transistor 570a and inductor 572a in LNA 560a in
For each LNA 760x, NMOS transistor 770x receives an input RF signal (Vin) for that LNA. N different input RF signals Vin1 to VinN are provided to N LNAs 760a to 760n, respectively. Each LNA 760x may be enabled or disabled based on the bias voltage for that LNA (not shown in
Receive circuits 762 include a common gate stage 780, a bypassable amplifier 790, an AC coupling capacitor 748, and a mixer 750. Amplifier 790 includes NMOS transistors 792 and 794, a source degeneration inductor 796, and a load inductor 798, which are coupled in similar manner as NMOS transistors 570a and 580a and inductor 572a and 590 in
Common gate stage 780 on RFIC 730 supplies bias current to LNAs 760a to 760n on front-end module 720. Amplifier 790 may be bypassed by turning off NMOS transistor 792 via NMOS transistor 782. In particular, NMOS transistor 792 may be turned off by pulling its gate to a low voltage (e.g., to 0 Volts), which may be achieved by applying a high bias voltage at the gate of NMOS transistor 782. NMOS transistor 784 may be turned on and may operate as switch. As a result, the bias current of NMOS transistor 794 may be routed to NMOS transistor 770 in a selected/enabled LNA 760. An output signal from NMOS transistor 770 in the selected LNA 760 may be routed via NMOS transistor 784 to NMOS transistor 794. A cascode amplifier may be formed by NMOS transistors 770 and 794 (instead of NMOS transistors 792 and 794). Impedance matching to transmission line 776 may be achieved via the input impedance of common gate stage 780 and the ON resistance of NMOS transistor 784, which operates as a switch.
The exemplary design in
LNA 860a includes NMOS transistors 870a and 880a, an inductor 872a, a capacitor 874a, and a resistor 876a that are coupled in the same manner as NMOS transistors 570a and 580a, inductor 572a, capacitor 574a, and resistor 576a in
Each of the remaining LNAs 860b to 860n may be implemented in similar manner as LNA 860a. N differential input RF signals are provided to N LNAs 860a to 860n. Each differential input RF signal includes (i) a non-inverting input RF signal (e.g., Vin1p) provided to a first NMOS transistor in an associated LNA 860 and (ii) an inverting input RF signal (e.g., Vin1n) provided to a second NMOS transistor in the associated LNA 860. A differential amplified RF signal composed of a Vampp signal and a Vampn signal is provided via nodes E and F.
Differential LNAs 860a to 860n in
LNAs 560a to 560n in
Although not shown in
A wireless device may require a complex RF front-end due to proliferation of frequency bands and operating modes. Conventionally, PAs, duplexers, filters, and switches are implemented with discrete components. LNAs are typically located in a transceiver (e.g., an RFIC), and PAs are typically stand-alone. LNAs and PAs are typically separated from their associated filters and duplexers. Hence, many RF routing traces and impedance matching components are typically required between the filters and/or duplexers and their associated LNAs and PAs. Large board area is typically consumed by discrete PAs, discrete filters and/or duplexers, and interconnections between the filters and/or duplexers and their associated LNAs and PAs.
In another aspect, a more compact wireless device may be achieved by combining LNAs, PAs, duplexers, filters, and switches in one or more modules. LNAs and PAs may be monolithically integrated on the same IC die or may be implemented on different IC dies in the same package. Switches may be monolithically integrated with the LNAs and/or PAs or may be implemented on different IC dies in the same package. Combining LNAs, PAs, duplexers, filters, and switches may reduce interconnections, avoid impedance matching components, reduce board area, and possibly provide other benefits.
In the exemplary design shown in
In the exemplary design shown in
As shown in
The exemplary design in
In an exemplary design, an apparatus (e.g., a wireless device, an IC, a circuit module, etc.) may comprise a front-end module and an IC. The front-end module (e.g., front-end module 420 in
In an exemplary design, each of the plurality of LNAs may be enabled for disabled via a respective control signal for that LNA, e.g., as shown in
In an exemplary design, the front-end module may comprise at least one receive filter (e.g., filters 452a to 452n in
In an exemplary design, each of the plurality of LNAs may comprise a first transistor and a second transistor, e.g., as shown in
In another exemplary design, each of the plurality of LNAs may comprise a first transistor (e.g., NMOS transistor 670a in
In one exemplary design, each LNA may be a single-ended LNA receiving a single-ended input RF signal and providing a single-ended amplified RF signal, e.g., as shown in
In an exemplary design, the plurality of LNAs may comprise a load inductor (e.g., inductor 590 in
In an exemplary design, the plurality of LNAs (e.g., LNAs 960aa to 960al in
In an exemplary design, the front-end module may further comprise at least one power amplifier (e.g., PA 974a and/or 974b in
An analog output signal may be conditioned (e.g., amplified, filtered, upconverted, etc.) by transmit circuits residing on the IC to obtain an output RF signal (block 1018). The output RF signal may be amplified with a selected power amplifier among at least one power amplifier residing on the front-end module (block 1020).
Multiple LNAs with combined outputs, as described herein, may be implemented on an IC, an analog IC, an RFIC, a mixed-signal IC, an ASIC, a printed circuit board (PCB), an electronic device, etc. Multiple LNAs with combined outputs may be fabricated with various IC process technologies such as complementary metal oxide semiconductor (CMOS), NMOS, PMOS, bipolar junction transistor (BJT), bipolar-CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), heterojunction bipolar transistors (HBTs), high electron mobility transistors (HEMTs), silicon-on-insulator (SOI), etc.
An apparatus implementing multiple LNAs with combined outputs, as described herein, may be a stand-alone device or may be part of a larger device. A device may be (i) a stand-alone IC, (ii) a set of one or more ICs that may include memory ICs for storing data and/or instructions, (iii) an RFIC such as an RF receiver (RFR) or an RF transmitter/receiver (RTR), (iv) an ASIC such as a mobile station modem (MSM), (v) a module that may be embedded within other devices, (vi) a receiver, cellular phone, wireless device, handset, or mobile unit, (vii) etc.
In one or more exemplary designs, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
The previous description of the disclosure is provided to enable any person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
The present Application for Patent claims priority to Provisional Application No. 61/524,250, entitled “Method and apparatus for RF front end area and component reduction” filed Aug. 16, 2011, and assigned to the assignee hereof and hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3911364 | Langseth et al. | Oct 1975 | A |
4035728 | Ishikawa et al. | Jul 1977 | A |
4035729 | Perry | Jul 1977 | A |
4246655 | Parker | Jan 1981 | A |
4326294 | Okamoto et al. | Apr 1982 | A |
4715048 | Masamura | Dec 1987 | A |
4742563 | Fukumura | May 1988 | A |
4756023 | Kojima | Jul 1988 | A |
4969207 | Sakamoto et al. | Nov 1990 | A |
5056411 | Baker | Oct 1991 | A |
5128630 | Mijuskovic | Jul 1992 | A |
5291519 | Tsurumaru | Mar 1994 | A |
5321850 | Backstrom et al. | Jun 1994 | A |
5345601 | Takagi et al. | Sep 1994 | A |
5390342 | Takayama et al. | Feb 1995 | A |
5559838 | Nakagoshi | Sep 1996 | A |
5566364 | Mizoguchi et al. | Oct 1996 | A |
5694396 | Firouzbakht et al. | Dec 1997 | A |
5697083 | Sano | Dec 1997 | A |
5761613 | Saunders et al. | Jun 1998 | A |
5794159 | Portin | Aug 1998 | A |
5805643 | Seki et al. | Sep 1998 | A |
5805989 | Ushida | Sep 1998 | A |
5835853 | Enoki et al. | Nov 1998 | A |
5940452 | Rich | Aug 1999 | A |
5999815 | Tenbrook et al. | Dec 1999 | A |
5999990 | Sharrit et al. | Dec 1999 | A |
6026288 | Bronner | Feb 2000 | A |
6029052 | Isberg | Feb 2000 | A |
6040732 | Brokaw | Mar 2000 | A |
6044254 | Ohta et al. | Mar 2000 | A |
6063961 | Kroner | May 2000 | A |
6069923 | Ostman et al. | May 2000 | A |
6088348 | Bell, III | Jul 2000 | A |
6127886 | Khabbaz et al. | Oct 2000 | A |
6208844 | Abdelgany | Mar 2001 | B1 |
6249687 | Thomsen et al. | Jun 2001 | B1 |
6407689 | Bazarjani et al. | Jun 2002 | B1 |
6424683 | Schoellhorn | Jul 2002 | B1 |
6430237 | Anvari | Aug 2002 | B1 |
6472947 | Zeitz | Oct 2002 | B1 |
6473601 | Oda | Oct 2002 | B1 |
6522895 | Montalvo | Feb 2003 | B1 |
6535725 | Hatcher et al. | Mar 2003 | B2 |
6600759 | Wood | Jul 2003 | B1 |
6600907 | Taguchi | Jul 2003 | B1 |
6600931 | Sutton et al. | Jul 2003 | B2 |
6657498 | Park et al. | Dec 2003 | B2 |
6806777 | Franca-Neto | Oct 2004 | B2 |
6819941 | Dening et al. | Nov 2004 | B2 |
6888888 | Tu et al. | May 2005 | B1 |
6952594 | Hendin | Oct 2005 | B2 |
6954446 | Kuffner | Oct 2005 | B2 |
6983132 | Woo et al. | Jan 2006 | B2 |
6985712 | Yamakawa et al. | Jan 2006 | B2 |
6987950 | Coan | Jan 2006 | B2 |
7013166 | Clifford | Mar 2006 | B2 |
7024172 | Murphy et al. | Apr 2006 | B1 |
7039377 | Yates | May 2006 | B2 |
7123891 | Loke | Oct 2006 | B2 |
7142042 | Henry | Nov 2006 | B1 |
7161423 | Paul et al. | Jan 2007 | B2 |
7167044 | Li et al. | Jan 2007 | B2 |
7187239 | Yeh | Mar 2007 | B2 |
7187735 | Kent, III | Mar 2007 | B2 |
7187904 | Gainey et al. | Mar 2007 | B2 |
7212788 | Weber et al. | May 2007 | B2 |
7224231 | Wu | May 2007 | B2 |
7260377 | Burns et al. | Aug 2007 | B2 |
7283851 | Persico et al. | Oct 2007 | B2 |
7299021 | Parssinen et al. | Nov 2007 | B2 |
7313368 | Wu et al. | Dec 2007 | B2 |
7317894 | Hirose | Jan 2008 | B2 |
7333831 | Srinivasan et al. | Feb 2008 | B2 |
7356325 | Behzad et al. | Apr 2008 | B2 |
7403508 | Miao | Jul 2008 | B1 |
7444166 | Sahota et al. | Oct 2008 | B2 |
7454181 | Banister et al. | Nov 2008 | B2 |
7477106 | Van Bezooijen et al. | Jan 2009 | B2 |
7570111 | Vagher et al. | Aug 2009 | B1 |
7599675 | Mu et al. | Oct 2009 | B2 |
7643847 | Daanen et al. | Jan 2010 | B2 |
7643848 | Robinett et al. | Jan 2010 | B2 |
7697905 | Lee et al. | Apr 2010 | B2 |
7728664 | Chang et al. | Jun 2010 | B2 |
7751513 | Eisenhut et al. | Jul 2010 | B2 |
7764726 | Simic et al. | Jul 2010 | B2 |
7848724 | Bult et al. | Dec 2010 | B2 |
7869528 | Robinson | Jan 2011 | B2 |
7877075 | Jin et al. | Jan 2011 | B1 |
7911269 | Yang et al. | Mar 2011 | B2 |
7944298 | Cabanillas et al. | May 2011 | B2 |
7949309 | Rofougaran et al. | May 2011 | B2 |
7952398 | Salcido et al. | May 2011 | B2 |
8022772 | Cassia et al. | Sep 2011 | B2 |
8055229 | Huang | Nov 2011 | B2 |
8063706 | Li et al. | Nov 2011 | B2 |
8081672 | Kent et al. | Dec 2011 | B2 |
8090332 | Sahota et al. | Jan 2012 | B2 |
8090369 | Kitazoe | Jan 2012 | B2 |
8139670 | Son et al. | Mar 2012 | B1 |
8149955 | Tired | Apr 2012 | B2 |
8195117 | Bult et al. | Jun 2012 | B2 |
8208887 | Lee et al. | Jun 2012 | B2 |
8217723 | Rajendran et al. | Jul 2012 | B2 |
8242841 | Zhang | Aug 2012 | B2 |
8270927 | Wallace et al. | Sep 2012 | B2 |
8290449 | Keehr et al. | Oct 2012 | B2 |
8295778 | Kotecha et al. | Oct 2012 | B2 |
8306494 | Ojo | Nov 2012 | B2 |
8442473 | Kaukovuori et al. | May 2013 | B1 |
8514015 | Chen | Aug 2013 | B2 |
8600315 | Roufoogaran et al. | Dec 2013 | B2 |
8600335 | Manetakis | Dec 2013 | B2 |
8626084 | Chan et al. | Jan 2014 | B2 |
8676148 | Ogasawara | Mar 2014 | B2 |
8706069 | Khoini-Poorfard et al. | Apr 2014 | B2 |
9705537 | Bauder | Jul 2017 | B1 |
20020008575 | Oskowsky et al. | Jan 2002 | A1 |
20020061773 | Adachi et al. | May 2002 | A1 |
20020111163 | Hamabe | Aug 2002 | A1 |
20020132597 | Peterzell et al. | Sep 2002 | A1 |
20020173337 | Hajimiri et al. | Nov 2002 | A1 |
20020193108 | Robinett | Dec 2002 | A1 |
20030076797 | Lozano | Apr 2003 | A1 |
20030081694 | Wieck | May 2003 | A1 |
20030125040 | Walton et al. | Jul 2003 | A1 |
20030148750 | Yan et al. | Aug 2003 | A1 |
20030157915 | Atkinson et al. | Aug 2003 | A1 |
20030176176 | Leinonen et al. | Sep 2003 | A1 |
20030203743 | Sugar et al. | Oct 2003 | A1 |
20030206076 | Hashemi et al. | Nov 2003 | A1 |
20030228851 | Taniguchi | Dec 2003 | A1 |
20040087290 | Schmidt et al. | May 2004 | A1 |
20040092243 | Hey-Shipton | May 2004 | A1 |
20040113746 | Brindle | Jun 2004 | A1 |
20040116086 | Huttunen | Jun 2004 | A1 |
20040121753 | Sugar et al. | Jun 2004 | A1 |
20040204104 | Horng et al. | Oct 2004 | A1 |
20040219959 | Khayrallah et al. | Nov 2004 | A1 |
20040224643 | Nakai | Nov 2004 | A1 |
20040253955 | Love et al. | Dec 2004 | A1 |
20040266356 | Javor et al. | Dec 2004 | A1 |
20050039060 | Okayasu | Feb 2005 | A1 |
20050075077 | Mach et al. | Apr 2005 | A1 |
20050079847 | Arafa | Apr 2005 | A1 |
20050117663 | Drogi et al. | Jun 2005 | A1 |
20050118977 | Drogi et al. | Jun 2005 | A1 |
20050197090 | Stockstad et al. | Sep 2005 | A1 |
20050215264 | Subramaniam et al. | Sep 2005 | A1 |
20050231290 | Hung et al. | Oct 2005 | A1 |
20050265084 | Choi | Dec 2005 | A1 |
20050277387 | Kojima et al. | Dec 2005 | A1 |
20060009177 | Persico et al. | Jan 2006 | A1 |
20060023745 | Koo et al. | Feb 2006 | A1 |
20060061773 | Lee et al. | Mar 2006 | A1 |
20060084469 | Malone | Apr 2006 | A1 |
20060121937 | Son | Jun 2006 | A1 |
20060128322 | Igarashi | Jun 2006 | A1 |
20060128330 | Rooyen | Jun 2006 | A1 |
20060128338 | Kerth et al. | Jun 2006 | A1 |
20060146693 | Mori et al. | Jul 2006 | A1 |
20060170503 | Lee et al. | Aug 2006 | A1 |
20060189286 | Kyu et al. | Aug 2006 | A1 |
20060222100 | Behzad | Oct 2006 | A1 |
20060234662 | Diloisy | Oct 2006 | A1 |
20060291428 | Filipovic | Dec 2006 | A1 |
20070042802 | Park et al. | Feb 2007 | A1 |
20070049332 | Higuchi | Mar 2007 | A1 |
20070060080 | Nishimura et al. | Mar 2007 | A1 |
20070072577 | Rozenblit et al. | Mar 2007 | A1 |
20070105517 | Chang et al. | May 2007 | A1 |
20070142013 | Bucknor et al. | Jun 2007 | A1 |
20070177656 | Maruta et al. | Aug 2007 | A1 |
20070177693 | Kluge | Aug 2007 | A1 |
20070184801 | Kogawa et al. | Aug 2007 | A1 |
20070197170 | Boos | Aug 2007 | A1 |
20070197178 | Gu | Aug 2007 | A1 |
20070197204 | Herczog et al. | Aug 2007 | A1 |
20070202890 | Feher | Aug 2007 | A1 |
20070242784 | Sampson et al. | Oct 2007 | A1 |
20070243832 | Park et al. | Oct 2007 | A1 |
20070262817 | Ciccarelli et al. | Nov 2007 | A1 |
20070262871 | Yamagajo et al. | Nov 2007 | A1 |
20080003967 | Kuroda | Jan 2008 | A1 |
20080004078 | Barratt et al. | Jan 2008 | A1 |
20080013654 | Rick et al. | Jan 2008 | A1 |
20080117999 | Kadous et al. | May 2008 | A1 |
20080139151 | Ojo et al. | Jun 2008 | A1 |
20080204148 | Kim | Aug 2008 | A1 |
20080224770 | Kim et al. | Sep 2008 | A1 |
20080224791 | Cheng | Sep 2008 | A1 |
20080225971 | Behzad | Sep 2008 | A1 |
20080261650 | Piriyapoksombut et al. | Oct 2008 | A1 |
20080297259 | Mu | Dec 2008 | A1 |
20090124223 | Kyranas et al. | May 2009 | A1 |
20090124227 | Ishiguro | May 2009 | A1 |
20090227214 | Georgantas et al. | Sep 2009 | A1 |
20090237161 | Fagg | Sep 2009 | A1 |
20090243869 | Sanderford, Jr. | Oct 2009 | A1 |
20090253456 | Toh et al. | Oct 2009 | A1 |
20090290659 | Petrovic et al. | Nov 2009 | A1 |
20090323779 | Lennen | Dec 2009 | A1 |
20100019970 | Farrokhi et al. | Jan 2010 | A1 |
20100034094 | Tenny | Feb 2010 | A1 |
20100040178 | Sutton et al. | Feb 2010 | A1 |
20100041359 | Liu et al. | Feb 2010 | A1 |
20100105425 | Asokan | Apr 2010 | A1 |
20100142440 | Inoue | Jun 2010 | A1 |
20100195754 | Li et al. | Aug 2010 | A1 |
20100197263 | Dwyer et al. | Aug 2010 | A1 |
20100210226 | Matsuyama | Aug 2010 | A1 |
20100210272 | Sundstrom et al. | Aug 2010 | A1 |
20100210299 | Gorbachov | Aug 2010 | A1 |
20100214184 | Tran et al. | Aug 2010 | A1 |
20100225414 | Gorbachov | Sep 2010 | A1 |
20100226327 | Zhang et al. | Sep 2010 | A1 |
20100232493 | Thirumoorthy | Sep 2010 | A1 |
20100237947 | Xiong et al. | Sep 2010 | A1 |
20100253435 | Ichitsubo | Oct 2010 | A1 |
20100265875 | Zhao et al. | Oct 2010 | A1 |
20100271986 | Chen | Oct 2010 | A1 |
20100272051 | Fu et al. | Oct 2010 | A1 |
20100291888 | Hadjichristos | Nov 2010 | A1 |
20100301946 | Borremans | Dec 2010 | A1 |
20100311378 | Tasic et al. | Dec 2010 | A1 |
20100328155 | Simic et al. | Dec 2010 | A1 |
20100330977 | Kadous et al. | Dec 2010 | A1 |
20110018635 | Tasic et al. | Jan 2011 | A1 |
20110044380 | Marra et al. | Feb 2011 | A1 |
20110050319 | Wong | Mar 2011 | A1 |
20110084791 | Mun et al. | Apr 2011 | A1 |
20110086603 | Toosi et al. | Apr 2011 | A1 |
20110110463 | Chang et al. | May 2011 | A1 |
20110122972 | Lie et al. | May 2011 | A1 |
20110150140 | Alexopoulos | Jun 2011 | A1 |
20110165848 | Gorbachov et al. | Jul 2011 | A1 |
20110193625 | Gatta et al. | Aug 2011 | A1 |
20110194504 | Gorokhov et al. | Aug 2011 | A1 |
20110204973 | Hu et al. | Aug 2011 | A1 |
20110211533 | Casaccia et al. | Sep 2011 | A1 |
20110217945 | Uehara et al. | Sep 2011 | A1 |
20110222443 | Khlat | Sep 2011 | A1 |
20110222444 | Khlat et al. | Sep 2011 | A1 |
20110242999 | Palanki et al. | Oct 2011 | A1 |
20110250926 | Wietfeldt et al. | Oct 2011 | A1 |
20110268048 | Toskala et al. | Nov 2011 | A1 |
20110268232 | Park et al. | Nov 2011 | A1 |
20110292844 | Kwun et al. | Dec 2011 | A1 |
20110299434 | Gudem et al. | Dec 2011 | A1 |
20110300810 | Mikhemar et al. | Dec 2011 | A1 |
20110304388 | Yamawaki | Dec 2011 | A1 |
20120009886 | Poulin | Jan 2012 | A1 |
20120013387 | Sankaranarayanan et al. | Jan 2012 | A1 |
20120026862 | Sadri et al. | Feb 2012 | A1 |
20120044927 | Pan et al. | Feb 2012 | A1 |
20120056681 | Lee | Mar 2012 | A1 |
20120057621 | Hong et al. | Mar 2012 | A1 |
20120195237 | Chan et al. | Aug 2012 | A1 |
20120236829 | Takano et al. | Sep 2012 | A1 |
20120293265 | Heikkinen et al. | Nov 2012 | A1 |
20120294299 | Fernando | Nov 2012 | A1 |
20120327825 | Gudem et al. | Dec 2012 | A1 |
20120329395 | Husted et al. | Dec 2012 | A1 |
20130003617 | Gudem et al. | Jan 2013 | A1 |
20130003783 | Gudem et al. | Jan 2013 | A1 |
20130051284 | Khlat | Feb 2013 | A1 |
20130114769 | Fernando | May 2013 | A1 |
20130163492 | Wong | Jun 2013 | A1 |
20130217398 | Winiecki et al. | Aug 2013 | A1 |
20130230080 | Gudem et al. | Sep 2013 | A1 |
20130231064 | Gudem et al. | Sep 2013 | A1 |
20130265892 | Fernando | Oct 2013 | A1 |
20130315348 | Tasic et al. | Nov 2013 | A1 |
20130316668 | Davierwalla et al. | Nov 2013 | A1 |
20130316669 | Davierwalla et al. | Nov 2013 | A1 |
20130316670 | Tasic et al. | Nov 2013 | A1 |
20130329665 | Kadous et al. | Dec 2013 | A1 |
20140072001 | Chang et al. | Mar 2014 | A1 |
20140113578 | Xu | Apr 2014 | A1 |
20140269853 | Gudem et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1523912 | Aug 2004 | CN |
1922795 | Feb 2007 | CN |
101228702 | Jul 2008 | CN |
101242158 | Aug 2008 | CN |
101523967 | Sep 2009 | CN |
101789805 | Jul 2010 | CN |
1164719 | Dec 2001 | EP |
1370012 | Dec 2003 | EP |
1398887 | Mar 2004 | EP |
1708372 | Oct 2006 | EP |
1726098 | Nov 2006 | EP |
1748567 | Jan 2007 | EP |
1755230 | Feb 2007 | EP |
1761076 | Mar 2007 | EP |
2068583 | Jun 2009 | EP |
2141818 | Jan 2010 | EP |
1916767 | Dec 2010 | EP |
2393205 | Dec 2011 | EP |
2398285 | Dec 2011 | EP |
2472978 | Mar 2011 | GB |
05227234 | Sep 1993 | JP |
H0730452 | Jan 1995 | JP |
07221684 | Aug 1995 | JP |
9027778 | Jan 1997 | JP |
09116458 | May 1997 | JP |
H11127300 | May 1999 | JP |
2000013278 | Jan 2000 | JP |
2000216696 | Aug 2000 | JP |
2001285114 | Oct 2001 | JP |
2002261880 | Sep 2002 | JP |
2004015162 | Jan 2004 | JP |
2006520143 | Aug 2006 | JP |
2007324711 | Dec 2007 | JP |
2008085793 | Apr 2008 | JP |
2008519535 | Jun 2008 | JP |
2009010826 | Jan 2009 | JP |
2009502065 | Jan 2009 | JP |
2009130867 | Jun 2009 | JP |
2009523338 | Jun 2009 | JP |
2009219023 | Sep 2009 | JP |
2010016501 | Jan 2010 | JP |
2010528545 | Aug 2010 | JP |
2011015112 | Jan 2011 | JP |
2011082669 | Apr 2011 | JP |
2011091747 | May 2011 | JP |
2011119807 | Jun 2011 | JP |
01050636 | Jul 2001 | WO |
2002037686 | May 2002 | WO |
05039060 | Apr 2005 | WO |
2005062477 | Jul 2005 | WO |
2005088847 | Sep 2005 | WO |
2006050515 | May 2006 | WO |
2006118538 | Nov 2006 | WO |
2007012465 | Feb 2007 | WO |
2007079987 | Jul 2007 | WO |
2008059257 | May 2008 | WO |
2008084539 | Jul 2008 | WO |
08103757 | Aug 2008 | WO |
2008092745 | Aug 2008 | WO |
2008145604 | Dec 2008 | WO |
2010059257 | May 2010 | WO |
2011019850 | Feb 2011 | WO |
2011050729 | May 2011 | WO |
2011092005 | Aug 2011 | WO |
2011138697 | Nov 2011 | WO |
2012008705 | Jan 2012 | WO |
2012049529 | Apr 2012 | WO |
2013036794 | Mar 2013 | WO |
2013131047 | Sep 2013 | WO |
Entry |
---|
Henrik Morkner et al., “A Full Duplex Front End Module for WiFi 802.11.n Applications”, European Microwave Association, vol. 12, No. 4, pp. 162-165, Oct. 2008. |
Jussi Ryynanen et al., “A Dual-Band RF Front-End for WCDMA and GSM Applications”, IEEE, Journal Solid-State Circuits, 2001, vol. 36, No. 8, pp. 1198-1204. |
Kevin Walsh et al., “3G/4G Multimode Cellular Front End Challenges”, Part 2: Architecture Discussion, RFMD® White Paper, 9 pages. |
Lee et al., “Development of Miniature Quad SAW filter bank based on PCB substrate”, IEEE Intl Frequency Control Symp, pp. 146-149, 200715. |
Pitschi M. et al., “High Performance Microwave Acoustic Components for Mobile Radios”, Ultrasonics Symposium (IUS), 2009 IEEE International, EPCOS AG, Munich, Germany, vol. 1, Sep. 20-23, 2009. |
Tasic A. et al., “Design of Adaptive Multimode RF Front-End Circuits”, IEEE Journal of Solid-State Circuits, vol. 42, Issue 2, Feb. 2007 pp. 313-322. |
“UMTS Picocell Front End Module”, CTS Corp. 8 pages. |
Philips: “Capabilities of multi-transceiver UES”, 3GPP Draft; R1-103913, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Dresden, Germany; Jun. 28, 2010, Jun. 22, 2010 (Jun. 22, 2010), XP050449298, [retrieved on Jun. 22, 2010] the whole document. |
3GPP TS 36.101 V11.0.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 11), Mar. 2012. |
Aparin et al., “A Highly-integrated tri-band/quad-mode SiGe BiCMOS RF-to-baseband and receiver for wireless CDMA/WCDMA/AMPS applications with GPS capability”, Solid-State Circuits Conference, 2002. Digest of Technical Papers. 2002 IEEE International Feb. 3-7, 2002, Piscataway, NJ, USA, IEEE, vol. 1, 2002, pp. 234-235, XP010585547, ISBN: 0-7803-7335-9. |
Broyde F., et al., “The Noise Performance of aMultiple-Input-Port and Multiple-Output-Port Low-Noise Amplifier Connected to an Array of Coupled Antennas,” International Journal of Antennas and Propagation, vol. 2011, Article ID 438478, Jul. 18, 2011, 12 pages. |
Chen, et al, “A 5-6 GHz 1-V CMOS Direct-Conversion Receiver With an Integrated Quadrature Coupler,” IEEE Journal of Solid-State Circuits, vol. 42, No. 9, 2007, pp. 1963-1975. |
Chen, et al., “A monolithic 5.9-GHz CMOS I/Q direct-down converter utilizing a quadrature coupler and transformer-coupled subharmonic mixers,” Microwave and Wireless Components Letters, IEEE , vol. 16, No. 4, 2006, pp. 197-199. |
Garuda, et al., “A Multi-band CMOS RF Front-end for 4G WiMAX and WLAN Applications,” 2006 IEEE International Symposium on Circuits and Systes, 2006. ISCAS 2006. May 2006, 4 pages. |
Hashemi, et al., “Concurrent Multiband Low-Noise Amplifiers—Theory, Design, and Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, No. 1, Jan. 2002. |
Hwang, et al., “A High IIP2 Direct-Conversion Receiver using Even-Harmonic Reduction Technique for Cellular CDMA/PCS/GPS applications,” IEEE Transaction on Circuits and Systems. |
International Search Report and Written Opinion—PCT/US2012/051237—ISA/EPO—Dec. 6, 2012. |
Jones W. W., et al., “Narrowband interference suppression using filter-bank analysis/synthesis techniques”, Military Communications Conference, 1992. MILC0M '92, Conference Recor D. Communications—Fusing Command, Control and Intelligence., IEEE San Diego, CA, USA, Oct. 11, 14, 1992, New York, NY, USA, IEEE, US, Oct. 11, 1992 (Oct. 11, 1992), pp. 898-902, XP010060840, DOI: 10.1109/MILCOM.1992.243977, ISBN: 978-0-7803-0585-4. |
Kim, T.W., et al., Highly Linear Receiver Front-End Adopting MOSFET Transconductance Linearization by Multiple Gated Transistors, IEEE Journal of Solid-State Circuits, United States, IEEE, Jan. 1, 2004, vol. 39, No. 1, pp. 223-229. |
Lai, C.M., et al., “Compact router transceiver architecture for carrier aggregation systems”, Microwave Conference (EUMC), 2011 41st European, IEEE, Oct. 10, 2011 (Oct. 10, 2011), pp. 693-696, XP032072825, ISBN: 978-1-61284-235-6 the whole document. |
MSM6000 Chipset Solution, Qualcomm Incorporated. |
MSM6500 Chipset Solution, Qualcomm Incorporated. |
Qualcomm Europe: “UE Implementation Impact due to 4C-HSDPA Operation”, 3GPP Draft; R1-094067_UE_IMPL_IMPACT_4C_HSDPA, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex ; France, No. Miyazaki; Oct. 12, 2009, Oct. 12, 2009 (Oct. 12, 2009), XP050388547, [retrieved on Oct. 6, 2009]. |
Rahn D.G., et al., “A fully integrated multiband MIMO WLAN transceiver RFIC,” IEEE J. Solid-State Circuits, 2005, vol. 40 (8), 1629-1641. |
Sever et al. “A Dual-Antenna Phase-Array Ultra-Wideband CMOS Transceiver”. IEEE Communications Magazine [Online] 2006, vol. 44, Issue 8, pp. 102-110. See pp. 104-107. |
Winternitz, et al., “A GPS Receiver for High-Altitude Satellite Navigation,” IEEE Journal of Selected Topics in Signal Processing, vol. 3, No. 4, pp. 541-556, Aug. 2009. |
European Search Report—EP18169097—Search Authority—Munich—Oct. 4, 2018. |
Erdogan O.E., et al., “A Single-Chip Quad-Band GSM/GPRS Transceiver in 0.18 μm Standard CMOS”, ISSCC 2005/Session 17/RF Cellular ICs/17.6, IEEE International Solid-State Circuits Conference, Feb. 8, 2005, 3 Pages. |
Number | Date | Country | |
---|---|---|---|
20130043946 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
61524250 | Aug 2011 | US |