1. Field of the Invention
This invention relates generally to the field of modems for Digital Subscriber Line (DSL) applications. More particularly, the invention provides a hybrid architecture modem for use in Time Division Multiplexed (TDM) DSL which eliminates the requirement for a balanced network.
2. Description of Related Art
Most xDSL systems operate with Frequency Domain Duplex (FDD) or Frequency Domain Multiplex (FDM) signal transmission. The transmit and receive signals for these systems travel concurrently over the same twisted pair cabling. To be able to receive the incoming signal while transmitting the outgoing signal, modems typically employ a trans-hybrid balanced network. In such a modem, the line driver serves as both the source for the transmitting signal and the terminator for the receive signal.
The penalty of using the HBN is that the receive signal is also attenuated by about 3.5 dB. This degrades the receive signal's noise floor and makes the design of the receiver more difficult. Another side effect of the HBN is that it increases the line driver's power dissipation. A trade-off exists between thermal noise and the extra power dissipation. A ten percent increase in line driver power consumption is not uncommon due to the HBN.
In many modems, so called “active termination” schemes are used in the hybrid circuit to increase power efficiency. These schemes use active impedance to replace a portion of the line loading resistor so that smaller resistance values can be used, resulting in reduced waste in transmitter power. A typical actively terminated DSL modem hybrid circuit is shown in FIG. 2.
Active termination is created by the addition of resistors 20, 22, 24 and 26 having resistances R3, R4, R5 and R6, which provide feedback from the HBN nodes to the line driver. The degree of active impedance synthesis can be measured by the active termination ratio (ATR) defined as (R1+R2)/Zo where Zo is the nominal line impedance. In most DSL loops Zo=100 ohms. Conventionally R1=R2=Zo/2 is required to properly terminate the line. In an active termination hybrid R1=R2<Zo to reduce line driver power consumption. In the extreme case of R1=R2=0, 50% of the line driver power dissipation is saved. In practical embodiments, the ATR ranges from 0.1 to 0.5.
However, introduction of active termination further attenuates the receive signal in the modem. This attenuation is roughly proportional to the ATR. An ATR of 0.2 saves power by 40% but also results in an additional 14 dB attenuation of the receive signal, making the total noise floor 17.5 dB worse. The DSL line background noise is −140 dBm. The exemplary active impedance modem changes the effective noise floor to −157.5 dBm, making the receive amplifier design difficult and costly.
It is therefore desirable to employ a modem architecture for DSL, which does not include a HBN, to reduce the noise floor degradation to simplify amplifier design requirements for the receiver.
A modem for a Digital Subscriber Line (DSL) employing Time-Division Multiplexing (TDM) protocol as implemented using the present invention incorporates a line driver having inputs for receiving a transmit signal and outputs for connection to a twisted pair line with pigtails for connecting the twisted pair line to a receiver. Load resistors are coupled intermediate the line driver outputs and the receiver and a saturation loading circuit for the line driver or parallel active impedance are used for terminating the load resistors in a low noise termination responsive to a switching signal. The switching signal is generated synchronous with the receive time slot of the TDM protocol
These and other features and advantages of the present invention will be better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
The present invention employs ad Time Division Multiplexed (TDM) DSL system where the transmit and receive signals occur on the same twisted pair line in different time slots. In a TDM application, physical separation of transmit (Tx) and receive (Rx) signals are not necessary as in an FDM system. The Rx signal is tapped directly from the line without the use of an HBN. Consequently, there is no resultant attenuation of the signal. However, if the Rx signal is tapped from the line directly, a significant portion of the line driver noise will be included. A typical line driver produces around −135 to −145 dBm noise and will produce irrecoverable S/N degradation by up to 5 dB.
Referring to the drawings,
In applications of the modem where active termination of the load resistors is desirable to reduce power consumption of the line driver, i.e. R1+R2<>Zo, switching to a static terminator results in an impedance mismatch. To accommodate such applications, a second embodiment of a modem employing the present invention is shown in
Having now described the invention in detail as required by the patent statutes, those skilled in the art will recognize modifications and substitutions to the specific embodiments disclosed herein. Such modifications are within the scope and intent of the present invention as defined in the following claims.
This application claims priority of U.S. Provisional Application Ser. No. 60/453,562 filed on Mar. 10, 2003 and having the same title as the present application.
Number | Name | Date | Kind |
---|---|---|---|
4932022 | Keeney et al. | Jun 1990 | A |
6650177 | Tan | Nov 2003 | B1 |
6654409 | Scott et al. | Nov 2003 | B1 |
6741120 | Tan | May 2004 | B1 |
6765931 | Rabenko et al. | Jul 2004 | B1 |
20010033583 | Rabenko et al. | Oct 2001 | A1 |
20020061012 | Thi et al. | May 2002 | A1 |
Number | Date | Country |
---|---|---|
02022926 | Jan 1990 | JP |
03139943 | Jun 1991 | JP |
04157860 | May 1992 | JP |
05110803 | Apr 1993 | JP |
06077962 | Mar 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20040202193 A1 | Oct 2004 | US |
Number | Date | Country | |
---|---|---|---|
60453562 | Mar 2003 | US |