Low noise IDC terminal/pin arrangement for flat ribbon cable connectors

Information

  • Patent Grant
  • 6811429
  • Patent Number
    6,811,429
  • Date Filed
    Thursday, July 11, 2002
    22 years ago
  • Date Issued
    Tuesday, November 2, 2004
    19 years ago
Abstract
A cable connector assembly and method for making, wherein the assembly connects to a flat ribbon cable having a plurality of conductors and electrical insulation about the conductors. The cable connector assembly includes a plurality of electrical contacts, each including a terminal configured to connect to at least one of the conductors of the flat ribbon cable directly through the electrical insulation to form an electrical junction. Each contact is configured to electrically connect to an external member. The cable connector assembly has a housing for holding the contacts arranged in a first row and as second row where the contacts in the rows form a grid and are connected in an offset manner to minimize cross talk.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a multiconductor electrical cable connector and, more particularly, to IDC (insulation displacement crimp) connector assemblies for a flat ribbon-like multiconductor electrical cable.




Since individual manual connection of each conductor in a multiconductor electrical cable, which usually has more than three conductors and as many as eighty or more conductors therein, would be a difficult and tedious task. Therefore, a number of specialized connectors have been developed for simultaneously connecting each of the plural conductors to those of another multiconductor electrical cable via another connector, for example, to a plural signal input terminal of a computer or the like, to conductive paths on a printed circuit board or the like, etc. Typically, these specialized connectors include multiple housing parts between which the cable is clamped, and usually before or during that clamping the multiple contacts of the connector puncture the electrical insulation of the cable to connect with respective conductors therein. The housing parts are mechanically secured in clamping engagement with the cable, and strain relief is usually provided by the clamping strength and/or by the terminal parts of the contacts pierced through the cable insulation.




From the U.S. Pat. No. 4,824,394 an IDC connector with rotated conductor pairs and strain relief base molded onto cable is known. The IDC connector is formed by a cable termination assembly that comprises a generally flat electrical insulation. The cable has got a longitudinal extent and a planar extent. At least one pair of said conductors include connecting portions rotated relative to each other about an axis generally parallel to the longitudinal extent of the cable and aligned with respect to one another in a direction generally perpendicular to the planar extent of the cable. The conductors of said pair include an area of rotation where said conductors are so rotated. At least two electrical contacts each include terminal means for connecting with the connecting portion of a respective one of said pair of conductors and connecting means for connecting with an external electrically conductive member and a strain relief body is molded directly to said cable including the area of rotation of said pair of conductors.




The U.S. Pat. No. 4,030,799 shows a multiconductor electrical cable termination. The multiconductor electrical cable termination is formed as an integral structural combination of the multiconductor electrical cable, the plurality of electrical contacts, and a housing part that is molded about at least a portion of each of the contacts and a portion of the cable. Each contact forms a junction with a respective conductor of the cable, and the integral housing part is molded under elevated temperature and pressure conditions so that each of the junctions is substantially fully encapsulated by at least one of the cable insulation and the molded body part and, thus, maintained relatively free of moisture and oxygen. The terminal portion of each electrical contact preferably extends fully through the cable insulation, and openings provided in the molded housing part offer access to the ends of those terminal portions for test probing thereof. Furthermore, the terminal portion of each electrical contact is in the same plane and is offset with respect to the contacting portion thereof. The electrical contacts are arranged in a forward row and a rearward row. In the forward row they have their terminal portions offset to the left with respect to their contacting portions, and in the rearward row they have their terminal portions offset to the right with respect to the contacting portions. This offset configuration of the electrical contacts allows them to be of reasonable size and strength while the contacting portion of each electrical contact in one row is directly aligned with the contacting portion of an opposite electrical contact in the other row and with each of the relatively closely positioned parallel conductors being connected to only a single respective electrical contact.




In computer systems there is an increasing need for cables and connectors providing a high bandwidth and a high count of signal lines. Flat ribbon cables provide a high count of signal lines having a suitable high frequency behavior. Therefore, more and more flat ribbon cables are employed in such high frequency environments, e.g., as a connection for system-level interfacing between a computer and devices including hard disks, floppy disks, CD-ROM, printers and scanners, such as the high density 50 pin SCSI (Small Computer System Interface) 2 cable/connector. In order to improve the high frequency behavior of the cable, shieldings are provided to protect the electrical signals being transmitted through the cable from electromagnetic interference.




The noise caused in a cable can further be reduced by only using every other conductor in a flat ribbon cable to transmit a signal. The remaining conductors are functioning as ground lines in order to further shield the signal lines from each other. Hence, two adjacent conductors never carry signal lines, instead, signal lines and ground lines alternate, e.g., ground-signal-ground-signal and so on. However, reaching the connector most of the effort spend to improve the high frequency behavior is lost, since the cross talk of the available connectors are too high for a use in a high frequency environment.




SUMMARY OF THE INVENTION




Starting from this, the object of the present invention is to provide a cable connector assembly having an improved high frequency behavior, i.e., a cable connector assembly having a low noise characteristic.




According to the present invention a cable connector assembly for being connected to a flat ribbon cable containing a plurality of conductors is provided. The cable connector assembly comprises a plurality of electrical contacts arranged in a first row and a second row, whereby the arrangement of the electrical contacts forms an orthogonal grid. Assuming said plurality of conductors being consecutively numbered 1 to N, said electrical contacts being arranged in a way that an electrical contact associated to an odd numbered conductor has got adjacent electrical contacts in the same row and an electrical contact at the same position in the other row that each are associated to even numbered conductors.




In other words, the electrical contacts are being arranged in a way that the electrical contact associated to one conductor is spaced further apart to the electrical contact associated to the respective next but one neighboring conductor, so that cross talk is reduced when having every other conductor assigned to a signal line and the remaining conductors to ground lines.




Hence, according to the present invention a cable connector assembly for being connected to a flat ribbon cable including a plurality of conductors and electrical insulation about said conductors maintaining the latter electrically insulated from each other. The cable connector assembly comprises a plurality of electrical contacts, each including terminal means being configured to connect at least one of said conductors directly through said electrical insulation to form an electrical junction, and contacting means on each of said electrical contacts being configured to electrically connect each of said electrical contacts to an external member. It further comprises a housing for holding said contacting means arranged in a first row and a second row forming an orthogonal grid. Assuming the plurality of conductors being consecutively numbered 1 to N, said electrical contacts being formed so that such terminal means being associated with odd-numbered conductors being respectively connected with every other contacting means of said first row and every other contacting means of the second row, being offset by one, whereby such arrangement causes each conductor being space further apart to its next but one neighboring conductor so that cross talk is reduced when having every other conductor assigned to a signal line and the remaining conductors to ground lines.




The advantage is that a good high frequency behavior is provided by just providing in average one ground line per signal line and having maximum separation of signal lines from each other in the connector itself.




Furthermore, the present invention allows to use flat ribbon cables in areas in which up to know only more expensive cables could be used, such as coax cable, but the invention may not be a substitute for coax cables in general. The costs may be significantly reduced for a respective connection.




Advantageously, a connector in accordance with the present invention still meets the form requirements set by the International Electromechanical Commission (IEC), i.e., it is still form fit compatible, while providing a significantly improved crosstalk behavior between adjacent signal lines.











BRIEF DESCRIPTION OF THE DRAWINGS




These and other objects will be apparent to one skilled in the art from the following detailed description of the invention taken in conjunction with the accompanying drawings in which:





FIG. 1

shows a bottom view on the pin face of a low noise IDC terminal arrangement in accordance with the present invention;





FIG. 2

shows a perspective view of a set of electrical contacts connected to conductors of a flat ribbon cable in an arrangement according to a first embodiment of the present invention;





FIG. 3

shows a perspective view of the set of electrical contacts as shown in

FIG. 2

without showing the flat ribbon cable; and





FIG. 4

shows a perspective view of a set of electrical contacts connected to conductors of a flat ribbon cable according to a second embodiment of the present invention.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Now with reference to

FIG. 1

, there is depicted a bottom view on the pin face of a low noise IDC (insulation displacement crimp) terminal arrangement


100


in accordance with the present invention. The terminal arrangement


100


is connected to a flat ribbon cable (not shown) containing a plurality of conductors (not shown) and comprises a plurality of electrical contacts numbered 1 to 20. A housing


101


is provided for holding the electrical contacts arranged in a first row as indicated by arrow


102


and a second row as indicated by arrow


104


, whereby the arrangement of the electrical contacts are forming an orthogonal grid.




Assuming that the plurality of conductors are consecutively numbered 1 to N, the electrical contacts 1 to 20 being arranged in a way that each of the electrical contacts 1 to 20 are configured to establish an electrical connection the particular conductor having the same number associated. That is, in the drawing of

FIG. 1

, the first conductor of the flat ribbon cable connects to the left most electrical contact in the first row (arrow


102


) also marked by number 1. Whereas the second conductor of the flat ribbon cable connects to the left most electrical contact in the second row (arrow


104


) also marked by number 2. Now, in order to arrange the electrical contacts in a way that each conductor is spaced further apart to its next but one neighboring conductor so that cross talk is reduced when having every other conductor assigned to a signal line and the remaining conductors to ground lines, the third conductor of the flat ribbon cable connects to the second electrical contact from the left in the second row (arrow


104


) also marked by number 3. Whereas the fourth conductor of the flat ribbon cable connects to the second electrical contact from the left in the first row (arrow


102


) also marked by number 4 and so on. Thus, the increasing numbers of the respective conductors are meandering from left to right alternating between the first and the second row.




With reference now to

FIG. 2

, there is depicted a perspective view of a set of electrical contacts


201


to


216


in an arrangement according to a first embodiment of the present invention. The electrical contacts


201


to


216


are part of a multiconductor electrical cable connector. The cable connector include a multiple conductor electrical cable


220


, a plurality of electrical contacts


201


to


216


for connection at terminal portions


221


to


236


to the respective conductors


241


to


256


of the cable, and a housing (not shown), whereby the terminal portions


221


to


236


belong to the electrical contacts


201


to


216


and are electrically connected to the conductors


241


to


256


, respectively.




The terminal portions


221


to


236


of each electrical contact


201


to


216


preferably include a pair of elongate prong-like arms


260


commonly supported from a base portion


262


and defining a relatively narrow slot there between. The ends of the arms


260


remote from the base portion


262


preferably are tapered or chamfered to define an entranceway into the narrow slot and to form generally pointed tips to pierce easily through the cable insulation


264


. The width of the narrow slot is preferably narrower than the normal diameter of one of the conductors


241


to


256


. Therefore, as a typical electrical contact


201


is joined with the cable


220


by urging the two toward each other, the pointed tips pierce through the insulation


264


while the wide chamfered entranceway guides the conductor


241


into the narrow slot. As the conductor


241


enters the slot, it is somewhat flattened squeezed to provide a relatively enlarged surface area of a gas tight engagement or connection with the two arms


260


.




The terminal portions


260


of each the electrical contacts


201


,


205


,


209


and


213


are in the same plane. The same applies to the terminal portions of electrical contacts


202


,


206


,


210


and


214


, as well as to electrical contacts


203


,


207


,


211


and


215


as well as to electrical contacts


204


,


208


,


212


and


216


. Preferably, the conductors


242


,


244


,


246


,


248


,


250


,


252


,


254


and


256


being connected to electrical contacts


202


,


204


,


206


,


208


,


210


,


212


,


214


and


216


, respectively, are tight to ground. Hence, the arrangement of the terminal portions of such electrical contacts form a shielding separating the terminal portions of electrical contacts


201


,


205


,


209


and


213


from the terminal portions of electrical contacts


203


,


207


,


211


and


215


, which reduces the cross talk and allows to use the cable connector for higher frequencies.




From the illustration of

FIG. 2

it can be seen that the electrical contacts


201


to


216


are arranged in a way that an electrical contact associated to an odd numbered conductor


241


to


256


has got adjacent electrical contacts in the same row and an electrical contact at the same position in the other row that each are associated to even numbered conductors. For example, electrical contact


203


is associated to odd numbered conductor


243


. It has got adjacent electrical contacts


202


and


206


in the same row and an electrical contact


204


at the same position in the other row that each are associated to even numbered conductors. In other words, the electrical contact


203


associated to conductor


243


is arranged to be spaced further apart to the electrical contact


201


(or


205


) associated to the respective next but one neighboring conductor


241


(or


245


). Therefore, cross talk is reduced in the cable connector according to the present invention, when every other conductor is assigned to a signal line and the remaining conductors to ground lines.




To abstract, the electrical contacts are arranged in a first row (arrow


271


) and a second row (arrow


272


). Furthermore, they are formed so that such terminal portions


260


being associated with odd-numbered conductors


241


,


243


,


245


, . . . ,


255


being respectively connected with every other electrical contact of said first row (cf.


201


,


205


,


209


and


213


) and every other contacting means of the second row (cf.


203


,


207


,


211


and


215


), being offset by one.




Moreover, while the invention is illustrated and described above with reference to multiconductor electrical cable connector located at an end of the multiconductor electrical conductor, it will be apparent that such a connector also may be provided in accordance with the invention at a location on a multiconductor electrical cable intermediate the ends thereof.




Now with reference to

FIG. 3

, there is shown a perspective view of the set of electrical contacts


301


to


316


as shown in

FIG. 2

without depicting the flat ribbon cable, whereby the electrical contacts


301


to


316


of

FIG. 3

correspond to the electrical contacts


201


to


216


of FIG.


2


.




Each electrical contact


301


to


316


is provided with a terminal portions


320


. The terminal portion


320


of each electrical contact


301


to


316


preferably include a pair of elongate prong-like arms


322


,


324


commonly supported from a base portion


326


and defining a relatively narrow slot


328


there between. The ends of the arms


322


,


324


remote from the base portion


326


preferably are tapered or chamfered to define an entranceway into the narrow slot


328


and to form generally pointed tips


330


,


332


to pierce easily through a cable insulation.




The electrical contacts


301


to


316


are arranged in a first row (arrow


341


) and a second row (arrow


342


). As it can be seen in particularly in

FIG. 3

, the electrical contacts


301


,


305


,


309


and


313


in the first row (arrow


341


) have their terminal portions offset away from the second row (arrow


342


) with respect to their contacting portions, i.e., the portion aligned in the two rows. Whereas the electrical contacts


304


,


308


,


312


and


316


in the first row (arrow


341


) have their terminal portions offset towards the second row (arrow


342


) with respect to their contacting portions. Correspondingly, the electrical contacts


303


,


307


,


311


and


315


in the second row (arrow


342


) have their terminal portions offset away from the first row (arrow


341


) with respect to their contacting portions, whereas the electrical contacts


302


,


306


,


310


and


314


in the second row (arrow


342


) have their terminal portions offset towards the first row (arrow


341


) with respect to their contacting portions.




Each of the contact terminal arms


322


,


324


is preferably sufficiently long to extend fully through the cable (cf.

FIG. 2

) with a portion, for example, including the pointed ends


330


,


332


, being exposed beyond the plane of the cable (cf. FIG.


2


).




Finally, with reference to

FIG. 4

, there is depicted a perspective view of a set of electrical contacts connected to conductors of a flat ribbon cable according to a second embodiment of the present invention. The electrical contacts


401


to


416


are part of a multiconductor electrical cable connector. As in the previous embodiment, the electrical contacts


401


to


416


are arranged in a first row (arrow


471


) and a second row (arrow


472


). The cable connector include a multiple conductor electrical cable


420


, a plurality of electrical contacts


401


to


416


for connection at terminal portions


421


to


436


to the respective conductors


441


to


456


of the cable, and a housing (not shown), whereby the terminal portions


421


to


436


belong to the electrical contacts


401


to


416


and are electrically connected to the conductors


441


to


456


, respectively.




The terminal portions


421


to


436


of each electrical contact


401


to


416


preferably include a pair of elongate prong-like arms as known from the first embodiment described above.




The terminal portions


421


to


436


of each the electrical contacts


401


,


405


,


409


and


413


are in the same plane approaching the flat ribbon cable


420


from the top. The same applies to the terminal portions of electrical contacts


404


,


408


,


412


and


416


. In contrary, the electrical contacts


402


,


406


,


410


and


414


as well as the electrical contacts


403


,


407


,


411


and


415


approach the flat ribbon cable from below, whereby each set of electrical contacts are again arranged that the respective terminal portions are placed in the same plane. Thus, the electrical contacts shown in

FIG. 4

differ only in such a way from the electrical contacts according to the first embodiment that the depicted arrangement is suitable for a connector having the electrical contacts pointing in the same direction as the conductors of the flat ribbon cable.




However, from the illustration of

FIG. 4

it can be seen that the electrical contacts


401


to


416


itself are arranged in a the same way as explained for the first embodiment with regard to

FIGS. 2 and 3

. Thus, electrical contact


403


associated to odd numbered conductor


443


has got adjacent electrical contacts


402


and


406


in the same row and an electrical contact


404


at the same position in the other row that each are associated to even numbered conductors. In other words, the electrical contact


403


associated to conductor


443


is arranged to be spaced further apart to the electrical contact


401


(or


405


) associated to the respective next but one neighboring conductor


441


(or


445


). Therefore, cross talk is reduced in the cable connector according to the present invention, when every other conductor is assigned to a signal line and the remaining conductors to ground lines.




While the preferred embodiment of the invention has been illustrated and described herein, it is to be understood that the invention is not limited to the precise construction herein disclosed, and the right is reserved to all changes and modifications coming within the scope of the invention as defined in the appended claims.



Claims
  • 1. A cable connector assembly for being connected to a flat ribbon cable containing a plurality of conductors, said cable connector assembly comprising:a plurality of electrical contacts arranged in a first row and a second row forming a grid and having a first offset and a second offset, said plurality of conductors being consecutively numbered 1 to N, said electrical contacts first offsets being arranged in a way that an electrical contact associated with an odd numbered conductor has adjacent electrical contacts in the same row, and an electrical contact at the same position in the other row is associated with even numbered conductors and said electrical contacts second offsets being arranged in a way that adjacent electrical contacts in the same row are spaced away from each other.
  • 2. The cable connector assembly of claim 1 wherein said second offsets of said electrical contacts are arranged in a way that the electrical contact associated to one conductor is spaced further apart from the electrical contact associated to the respective next-but-one neighboring conductor so that cross talk is reduced when every-other conductor is assigned to a signal line and the remaining conductors are assigned to ground lines.
  • 3. The cable connector assembly according to claim 2 wherein the electrical contacts are configured to electrically connect to an external member.
  • 4. The cable connector assembly according to claim 2 wherein each electrical contact is provided with terminal means.
  • 5. A cable connector assembly for being connected to a flat ribbon cable including a plurality of conductors and having electrical insulation about said conductors maintaining the latter electrically insulated from each other, the cable connector assembly comprising:a plurality of electrical contacts each have a first offset and a second offset, each further including terminals being configured to connect at least one of said conductors directly through said electrical insulation to form an electrical junction, and contacting portions on each of said electrical contacts being configured to electrically connect each of said electrical contacts to an external member, and a housing for holding said contacting portions arranged in a first row and a second row forming a grid, wherein, when the plurality of conductors is consecutively numbered 1 to N, said first offset of said electrical contacts are arranged so that such terminals being associated with odd-numbered conductors are respectively connected with every-other contacting portion of said first row and every-other contacting portion of the second row, being offset by one, and said second offset of said electrical contacts are arranged such that each contact is spaced away from the adjacent contact in the same row whereby such arrangement causes each terminal being spaced further apart from its next-but-one neighboring terminal so that cross talk is reduced when every-other terminal is assigned to a signal conductor and the remaining terminals are assigned to ground conductors.
  • 6. The cable connector assembly according to claim 5, wherein the terminals of each electrical contact includes a pair of elongate prong-like arms commonly supported from a base portion and defining a relatively narrow slot there between.
  • 7. The cable connector assembly according to claim 5 wherein every-other electrical contact in the first row have their terminal means offset away from the second row with respect to their portion aligned in the two rows.
  • 8. The cable connector assembly according to claim 7 wherein remaining said every-other electrical contact have their terminal portions offset towards the second row with respect to their contacting portions.
  • 9. The cable connector assembly according to claim 8, wherein every-other electrical contact in the second row have their terminal portions offset away from the first row with respect to their contacting portions, whereas said remaining electrical contacts in the second row have their terminal portions offset towards the first row with respect to their contacting portions.
  • 10. A method of forming a cable connector assembly for being connected to a flat ribbon cable containing a plurality of conductors, said method comprising:arranging a plurality of electrical contacts having a first offset and a second offset in a first row and a second row forming a grid, said plurality of conductors being consecutively numbered 1 to N; arranging the first offsets of said electrical contacts in a way that an electrical contact associated with an odd numbered conductor has adjacent electrical contacts in the same row, and an electrical contact at the same position in the other row is associated with even numbered conductors; and arranging the second offsets of said electrical contacts in a way that adjacent electrical contacts in the same row are spaced away from each other.
  • 11. The method of claim 10 further comprising arranging the second offsets of said electrical contacts in a way that the electrical contact associated to one conductor is spaced further apart from the electrical contact associated to the respective next-but-one neighboring conductor so that cross talk is reduced when every-other conductor is assigned to a signal line and the remaining conductors are assigned to ground lines.
Priority Claims (1)
Number Date Country Kind
01120947 Aug 2001 EP
US Referenced Citations (6)
Number Name Date Kind
3434093 Wedekin Mar 1969 A
3930708 Wedekind et al. Jan 1976 A
4850887 Sugawara Jul 1989 A
6077105 Jochen et al. Jun 2000 A
6368148 Fogg et al. Apr 2002 B1
6371793 Doorhy et al. Apr 2002 B1
Foreign Referenced Citations (2)
Number Date Country
0 859 433 Aug 1998 EP
06104030 Apr 1994 JP