This invention relates to detecting acoustic signals, and more particularly to detecting low frequency acoustic signals in the presence of wind and/or engine noise.
One problem with microphones used in the outdoors is wind noise. For example, when microphones are flown on airborne vehicles for the purpose of airborne acoustic data collection, wind noise limits sensitivity and reception in the desired frequency range. In particular, the observed wind noise exhibits a 1/f characteristic with frequency and a V2 characteristic with velocity.
An airborne platform for remote acoustic data collection poses an additional challenge to practical implementation, which is interference from engine noise, if data is to be collected when the aircraft is operating with an engine on. The amplitudes of engine sounds can be many times greater than those of the desired signals, placing severe constraints on microphone dynamic range and sensitivity.
A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:
The following description is directed to several embodiments of microphone systems capable of good operational performance under windy conditions. The microphone can be configured to also eliminate the effects of engine noise.
More specifically, for conditions of both wind and engine noise, a parametric (nonlinear) microphone described herein has spectral and directional properties that can inherently reject both wind noise and engine noise. These attributes are uniquely suited for the acquisition of airborne acoustic data from a UAV (unmanned airborne vehicle) flying at cruise speed with the engine running.
Wind Noise Reduction
The embodiments described herein are directed to a low noise microphone for use in windy environments. Typical applications include airborne acoustic collection from aerial platforms (such as UAVs, airplanes, and balloons), wind tunnels, and outdoor terrestrial locations with high ambient wind conditions. The microphone is particularly useful for applications in which the sounds desired to be detected are low frequency sounds, such that wind noise can become a severe problem.
More specifically, the microphones reduce interference from wind noise in the low frequency part of the audio spectrum. There are two salient points regarding this type of wind noise.
The first point is that the noise is generated at the wind screen of the microphone. In the example of an airborne microphone on a UAV, if the UAV could suddenly stop its forward motion and listen at zero airspeed, there would be no wind noise. The wind noise depicted in
The second point is that the wind noise decreases rapidly with increasing frequency. In
The microphones described herein reduce low frequency wind noise by sensing the desired acoustic sounds in the air where the air is quiet and undisturbed, prior to generation of the wind noise by turbulence. This is accomplished by translating the desired sounds up in frequency by nonlinear mixing in air with a high frequency carrier. The air itself becomes the nonlinear element that accomplishes the frequency translation. In the case of the typical microphone having a windscreen, the mixing occurs in front of the windscreen.
Air is a compressible medium, and under high levels of acoustic excitation, the interaction of two sound waves becomes nonlinear and frequency mixing occurs. The nonlinear interaction (mixing) of the desired sounds with the high frequency carrier drives the air into nonlinear compression. The up-converted signals pass through the wind screen in the higher part of the spectrum where the wind noise is low. Demodulating the ultrasonic signals then recovers the desired signals without the wind noise.
The carrier frequency is bounded on the high side by attenuation in the air and on the low side by (1) the actual frequency content of the desired sounds, and (2) the 1/f noise caused by the microphone windscreen. For example, a typical audio of the desired sounds might extend up to 3000 Hz. Since an acoustic carrier would produce both upper and lower sidebands, the carrier frequency should be high enough so that the resulting lower sideband would not overlap the baseband signal. In this example any carrier frequency higher than 9000 Hz would do. So the lower bound for the carrier is twice the bandwidth of the baseband audio. If 1/f noise is present, the carrier frequency must also be high enough to be above it. For purposes of this description, a “high frequency carrier” is defined as a carrier meeting these criteria, and is often ultrasonic in frequency.
Detection of the desired sounds is accomplished by passing the up-converted modulation sidebands through the wind screen in a frequency range wherein the 1/f wind noise has subsided to a low level. The sounds pass through the wind screen without the wind noise. Once the modulated spectra passes through the wind screen above the 1/f noise region, the desired sound information can be recovered through detection and various demodulation techniques. The latter may include synchronous or non-synchronous AM, DSB, or SSB demodulation techniques.
In practice, a simple way to create the microphone is to illuminate the desired sound field with an ultrasonic flood, and then sense the scattered mixed signals with an ultrasonic receiving transducer. However, the magnitude of the interaction increases with the interaction length of the two sound waves. For low frequency sound detection, constraining the physical extent of the microphone to a smaller volume is often desirable. An example is airborne acoustic collection, where several microphones disposed along the wing and fuselage of an aircraft are desired so a steerable phased array can be implemented.
The effect is similar to an optical analog of a Fabry-Perot interferometer. The resulting standing wave can be considered as a continually reinforced reverberant beam, traversing the interaction zone in the center many times, increasing interaction length. In the two-transducer case (
In the embodiment of
The windscreen need not be a wind screen of the conventional type. A smooth and non-porous surface for housing the “active” components of the microphone would be suitable. An “airpathless” microphone geometry would use a smooth non-porous surface backed by a cavity and the microphone components.
A further embodiment is to include additional transducers in additional planes. This would create a 3-dimensional structure resembling a sphere. Multiple excitation transducers would be useful in generating the intense ultrasonic sound field necessary for efficient mixing, and the multiple receiving transducers would help make the microphone omnidirectional.
In sum, the above-described embodiments have the following features: 1. A means to ameliorate low frequency wind noise by sensing the desired acoustic sounds in the air in front of a wind screen prior to generation of wind induced noise at the wind screen surface. 2. A means to detect acoustic sounds in a windy environment by translating the desired low frequency sounds up in frequency by nonlinear mixing in air with an ultrasonic carrier, and then passing the up-converted signals through the wind screen in the higher part of the spectrum where the wind noise is low. Demodulating the ultrasonic signals then recovers the desired signals but without the wind noise. 3. A means to increase the interaction length between the sensed acoustic signals and the up-converting ultrasonic carrier by folding the ultrasonic path back on itself between parallel reflectors and/or transducers. 4. A means to increase the non-linear interaction between the sensed low frequency acoustic signals and the up-converting ultrasonic carrier by use of an ultrasonic standing wave. 5. A means to reduce the dependence of interaction efficiency to angle of arrival by using multiple ultrasonic carrier beams that cross at a plurality of angles.
Engine Noise Reduction
Engine noise is particularly difficult to overcome using conventional microphones, whose limitations stem primarily from their omnidirectionality and limited dynamic range. Their wide angular acceptance means that usually both noise from the desired emitter and the engine are in their field of view at the same time. Even if an adaptive noise cancellation signal could be obtained from the engine, few microphones possess the dynamic range required to separate the two signals.
The property of the proposed microphone that can be used to defeat engine noise is extreme unidirectionality. Parametric modulation occurs only when the carrier and the baseband audio signals are co-propagating and aligned within a few degrees. If an array of correctly positioned microphones is mounted on an aircraft, the engine sounds interfere only with channels pointing directly at the engine. Radial channels out to the sides largely reject the engine sounds because they cross the ultrasonic interaction length at a large angle. The dual properties of wind noise immunity and engine noise rejection could enable high quality airborne acoustic collection in powered flight at cruise speeds.
An ultrasonic emitter 61 directs a narrow beam of ultrasonic energy towards an ultrasonic receiver 62. Narrow beams are easy to achieve in the ultrasound region because the wavelength is small, and emitters and receivers can have effective apertures that are several wavelengths in diameter in a small physical size.
In the pitch-catch configuration of
The amplitude of the parametric mixing products between co-propagating sound waves falls off sharply as a function of angular departure from co-axial.
Experimentation indicates a 3-dB interaction angle to be less than +/−3 degrees. Even loud sounds crossing the ultrasound path at oblique angles are virtually undetectable. It is precisely this property that can be exploited to reject high-level engine noise.
The microphone array 70 has a radially emitting ultrasonic transmitter 71 surrounded by a circular array of ultrasonic receiving transducers 72. The radial emitter 71 is positioned below the plane of the circular array 70 to establish a down tilt in the resulting coverage area. Sounds entering coverage area from below align with a radius from the central emitter 71 to one or more receivers 72 in the annulus. The number of receivers 72 is arbitrary. An example of a suitable array 70 has 60 receivers, which provide 360 degrees of azimuth coverage assuming an acceptance angle of 6 degrees per station.
Angle-of-arrival information is deduced simply by correlation and interpolation of the receiver outputs. The down tilt angle could be adjusted by the geometry of array 70 to give the desired ground footprint for a specified cruising altitude.
In enhanced embodiments, multiple central emitters that operate on different frequencies could be stacked vertically in the center of the array. This type of configuration would add elevation resolution to sensed data for precise emitter geolocation.
The cross section of the array, radial emitter, and all support struts could be made with an appropriate airfoil shape to minimize drag and wind induced high frequency noise. Laboratory experiments have shown that good parametric modulation is obtained with an interaction length as little as 50 cm (about 1½ feet). Thus, assembly of a suitable airborne microphone array could be accomplished on an aircraft of modest size.
This application claims the benefit of U.S. Provisional Application No. 60/840,654, filed Aug. 28, 2006 and entitled “LOW NOISE MICROPHONE FOR USE IN WINDY ENVIRONMENTS.”
Number | Date | Country | |
---|---|---|---|
60840654 | Aug 2006 | US |