The subject invention is directed to fire suppression systems, and more particularly, to a low noise nozzle assembly for use with a fire suppression system.
Data centers are relied upon to store and distribute valuable information across many industries. Industry demands that these data centers remain continuously functional. Downtime can damage the reputation of a data center and result in the loss of customers. Information handled by data centers is primarily stored on magnetic Hard Disk Drives (HDDs). These hardware devices have a known sensitivity to sound, that is, sound pressure can cause vibration-induced damage or disruptions to an HDD.
Unfortunately, inert gas fire suppression systems typically used to protect the server rooms that house this type of equipment in a data center, utilize nozzles that can produce sound levels which may have an adverse effect on this noise sensitive hardware. Some common nozzles generate noise levels in excess of 130 db, which creates an unacceptable risk of lost operation time for a data center.
The subject invention is directed to a new and useful nozzle assembly for a fire suppression system that does not generate sound levels that are high enough to have an adverse effect on magnetic HDDs. The nozzle assembly includes a body having an inlet end for receiving a flow of fire extinguishing agent from the fire suppression system at an entrance velocity and inlet pressure.
The nozzle assembly further includes a nozzle portion extending from the body and having an interior cavity defining a central axis. A plurality of exit orifices are formed in an outer wall of the nozzle portion, in communication with the interior cavity, for vectoring the flow of fire extinguishing agent exiting therefrom. The nozzle assembly further includes at least one perforated filter member positioned upstream from the exit orifices, for reducing the entrance pressure of the fire extinguishing agent.
Preferably, the inlet end of the body includes a threaded flange configured for operative engagement with a threaded fitting adapted to communicate with the fire suppression system. The threaded fitting preferably includes a metering orifice plate, and the perforated filter member is preferably supported within the interior cavity of the body, sandwiched between an interior abutment surface of the body and a leading edge of the threaded fitting, downstream from the metering orifice.
In an embodiment of the invention, the perforated filter member is formed from a perforated metal plate. It is envisioned that the perforated filter member can include a plurality of perforated filter members positioned within the interior cavity of the nozzle inlet in spaced apart relationship along the central axis thereof. It is also envisioned that each of the plurality of perforated filter members could have a different porosity. In such an embodiment, the filter members could decrease in porosity in a downstream direction or may remain the same along the central axis of the nozzle portion. In another embodiment of the subject invention, the perforated filter member is formed from porous metal foam. Alternatively, the perforated filter member could be formed as a combination of a perforated metal plate and porous metal foam insert, where the porous metal foam insert would be positioned upstream from the perforated filter member.
In an embodiment of the subject invention, the nozzle portion is axially aligned with the body of the nozzle assembly, the nozzle portion has a conical outer wall, and the exit orifices are defined in the conical outer wall of the nozzle portion. In such an embodiment, it is envisioned that the exit orifices defined in the conical outer wall of the nozzle portion could be oriented at an angle that is perpendicular to the central axis of the nozzle portion to control fluid vectoring.
Alternatively, the exit orifices defined in the conical outer wall of the nozzle portion could be oriented at angle that is perpendicular to the local wall angle of the conical outer wall of the nozzle portion. It is also envisioned that the exit orifices in the conical outer wall of the nozzle portion could vary in diameter along the central axis of the nozzle portion, in a downstream direction.
In another embodiment of the subject invention, the nozzle assembly is designed for use in a server room that has height limitations. The nozzle assembly includes a cylindrical body portion having a threaded inlet end for receiving fire extinguishing agent from a fire suppressant system at a particular entrance mass flow and inlet pressure, and a radially enlarged cylindrical nozzle portion that has an outer peripheral wall having a plurality of exit orifices formed therein for vectoring the flow of agent in a 360 degree pattern.
In this embodiment of the nozzle assembly, turning vanes are provided between the inlet end of the body and the outer peripheral wall of the nozzle portion for directing flow. In addition, at least one perforated filter member is positioned within the cylindrical nozzle portion downstream from the turning vanes for reducing the inlet pressure of the fire extinguishing agent.
These and other features of the subject invention will become more readily apparent to those having ordinary skill in the art to which the subject invention appertains from the detailed description of the embodiments of the invention taken in conjunction with the following brief description of the drawings.
So that those skilled in the art will readily understand how to make and use the low velocity acoustic reduction nozzle of the subject invention without undue experimentation, embodiments thereof will be described in detail herein below with reference to the figures wherein:
A nozzle for a fire suppression system that produces lower noise levels would protect data centers without risk of lost operation time. Referring now to the drawings wherein like reference numerals identify similar structural elements and features of the subject invention, there is illustrated in
A perforated filter member 30 is positioned within the interior cavity 26 of the nozzle portion 24, upstream from the exit orifices 28 formed in the conical outer wall 25, for reducing the entrance velocity of the fire extinguishing agent, in furtherance of acoustic noise level reduction. Moreover, the perforated filter member 30 described in further detail below functions to lower the pressure of the incoming flow before entering the nozzle portion 24, dropping the inlet pressure by about 60 psig to a preferred exit pressure of about 2 psig to avoid supersonic jet flow through the nozzle assembly 20.
As a result of the perforated filter member 30 advantageously lowering the velocity and pressure of the incoming flow of fire suppressant, in combination with the exit orifices 28 lowering the acoustic signature of the nozzle assembly 20, the nozzle assembly has a resulting noise level of less than 110 db. Those skilled in the art will readily appreciate that achieving such a noise level will not cause damage or disruption to the HDDs 16 that are located within the server room of a data center 12 in the event of a fire.
The perforated filter member 30 is in the form of a perforated metal plate, which is best seen in
With continuing reference to
In the embodiment of
Alternatively, the exit orifices 28 can be oriented at other angles ranging from the orientation shown in
Those skilled in the art will readily appreciate that the frequency of the noise generated by the nozzle assembly 20 will increase as the exit orifices 28 decrease in size. Accordingly, the diameter of the exit orifices 28 should be sized so as to minimize the overall acoustic signature of the nozzle assembly 20, while maintaining a preferred coverage volume of about 100 m3.
Furthermore, the nozzle portion 24 is preferably dimensioned and configured so that the cross-sectional area thereof at any point along the central axis X-X is equal to the total open area of the exit orifices 28 formed in the conical outer wall 25 of the nozzle portion 24 downstream from that point. Consequently, the static pressure within the interior cavity 26 of the nozzle portion 24 will be maintained at a level that will ensure that fire extinguishing agent is uniformly fed to all of the exit orifices 28 for the entire duration of the discharge, which could range from 60 seconds to 120 seconds.
While the nozzle assembly 20 is illustrated in
Furthermore, a porous metal foam insert could be associated with an upstream side of each of the perforated filter members 30a and 30b to further reduce the inlet pressure of the fire suppressant. More particularly, a porous metal foam insert 40a would be associated with an upstream side of perforated filter member 30a and a porous metal foam insert 40b would be associated with an upstream side of perforated filter member 30b. When it is present in the nozzle assembly 20, the porous metal foam inserts are about 0.5 inches in thickness. When used alone or in combination with one another, these porous components function to reduce the pressure while evenly distributing the flow throughout the cross-sectional area, and reducing the noise associated with flow turbulence. When the porous components/perforated metal foam are used just downstream of a metering orifice (see element 37 in
While the perforated filter members 30a and 30b preferably have the same porosity, it is envisioned that each of a plurality of perforated filter members could have a different porosity. For example, in such an embodiment, the perforated filter members 30a and 30b would decrease in porosity in a downstream direction Ds along the axis X-X of the interior cavity 26. Thus, the upstream filter member 30a could be a perforated metal plate having a porosity of about 40% and the downstream filter member 30b could be a perforated metal plate having a porosity of about 30%, so as to gradually or otherwise progressively reduce the flow velocity of the fire suppression agent in a stepwise or multi-staged manner. It is also envisioned that the porosity of the upstream filter member 30a and the downstream filter member 30b could be the same.
Referring now to
With continuing reference to
The inlet end 54 of the body portion 52 of nozzle assembly 50 includes a metering orifice 64, a porous metal foam insert 66 downstream from the metering orifice 64, and a perforated filter member 68 of the type shown in
Referring to
While the subject disclosure has been shown and described with reference to various embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/044765 | 8/1/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62713609 | Aug 2018 | US |