(1) Field of the Invention
The invention concerns a rotary pump with a pump housing, consisting of plastic material that can be processed by injection molding, with a first housing part delimiting a pump space, which is connected to a second intermediate housing part accommodating an electric motor, comprising a split core and consisting of plastic material, a wound claw pole stator of the electric motor being mounted on the split core and a permanent magnetic rotor being mounted to rotate within split core, and a motor housing part, consisting of plastic material that delimits a motor space.
(2) Description of Related Art Including Information Disclosed Under 37 CFR 1.97 and 1.98
A generic rotary pump is known from US 2007/0290568 A1. During joining of a slotted return with the claw pole stator, a deformation process of a tab is carried out in the known rotary pump, through which a slit in the return ring is narrowed and the return therefore lies tightly against the claw pole stator. However, it has turned out that this connection, because of the low rigidity of the tab, cannot guarantee complete freedom from play in each case over the entire lifetime and under a variety of temperature conditions. Under these circumstances, unpleasant noise, vibrations and possibly even resonances can occur.
The task of the present invention ensures stable structure of a stator free of play in a generic rotary pump, so that no vibrations, noise or resonances occur, the design being simple and production economical.
This task is accomplished according to the invention in a rotary pump with a plastic pump housing, that can be processed by injection molding, with a first housing part defining a pump space, which is connected to a second intermediate housing part accommodating an electric motor with a wound core stator. The rotary pump includes a plastic split core, the wound claw pole stator being mounted on the split core and a permanent magnetic rotor being mounted to rotate within the split core. A plastic motor housing part defines a motor space, wherein three axial and parallel split core ribs are provided between the split core and the claw pole stator, the ribs being distributed about the periphery of the split core at predetermined angles relative to each other. A return ring has first and second end sections, the return ring being connected to the wound claw pole stator, so that the first and second end sections are welded to each other. The stator is press-fit onto the split core via the ribs. More than three axial-parallel housing ribs protrude radially inward and are formed with the motor housing part, the axial-parallel housing ribs being distributed on the inside periphery of the motor housing part. Finally, the stator is press-fit into the motor housing part via the housing ribs.
The axial-parallel ribs between the split core and the claw pole stator form the prerequisite for a stable and reliable connection free of play between the claw pole stator and the split core. The non-uniform angle distances of the ribs relative to each other ensure a low-resonance structure. The welding connection between the return ring and the claw pole stator is particularly stable and inflexible, for which reason the produced mechanical connection remains free of play and firm under all conditions to be expected. The ribs between the claw pole stator and the split core, after press-fitting of the claw pole stator, produce a firm connection free of play with the split core. The ribs on the split core also ensure stable mechanical connection free of play during connection between the return ring and the motor housing part. It is precisely the different number of ribs and their distribution that can suppress the formation of resonances without additional damping measures.
The task is also solved by a method wherein no additional noise damping devices are installed between the claw pole stator and the motor housing part and between the claw pole stator and the split core, in which assembly is facilitated by the larger diameter of the rolled return ring on the claw pole stator. Press-fitting of the return ring on the claw pole stator with simultaneous laser welding of the edge sections of the return ring to each other permits excellent firm connection free of play, which is so inflexible that the connection persists over the entire lifetime. The occurrence of noticeable vibrations is avoided on this account. By press-fitting the compact stator in the split core and the motor housing part on the claw pole stator, an overall more stable and low-noise structure is achieved with simple and economical assembly.
Practical examples of the invention are further explained below with reference to the drawings. In the drawings:
In describing preferred embodiments of the present invention illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish a similar purpose.
Modifications and variations of the above-described embodiments of the present invention are possible, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the appended claims and their equivalents, the invention may be practiced otherwise than as specifically disclosed.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 054 037 | Oct 2008 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
1833747 | Haughton | Nov 1931 | A |
2330207 | England et al. | Sep 1943 | A |
4381465 | Renkl et al. | Apr 1983 | A |
4999533 | King et al. | Mar 1991 | A |
6118198 | Hollenbeck et al. | Sep 2000 | A |
6144137 | Engelbert | Nov 2000 | A |
6570284 | Agnes et al. | May 2003 | B1 |
20030178903 | Rapp | Sep 2003 | A1 |
20050127768 | Welke et al. | Jun 2005 | A1 |
20070286753 | Ihle et al. | Dec 2007 | A1 |
20070290568 | Ihle et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
102006021242 | Oct 2007 | DE |
2000018187 | Jan 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20100111730 A1 | May 2010 | US |