1. Technical Field
This disclosure relates to gas burners in general, and more specifically, to gas burners of multi-burner applications where only one burner contains an igniter and the remaining burners must be lit from the single burner with the igniter using flame carryover. Still more specifically, this disclosure relates to improvements in flame carryover aspects of low NOx burners that reduce the gas used for flame carryover while still providing a robust ignition for all burners.
2. Description of the Related Art
During the combustion of natural gas, liquefied natural gas on propane, NOx is formed and emitted to the atmosphere with other combustion products. Because these fuels contain little or no fuel-bound nitrogen per se, NOx is largely formed as a consequence of oxygen and nitrogen in the air reacting at the high temperatures resulting from the combustion of the fuel.
Governmental agencies have passed legislation regulating the amount of NOx that may be admitted to the atmosphere by gas furnaces and other devices. For example, in certain areas of the United States, e.g., California, regulations limit the permissible emission of NOx from residential furnaces to less than 40 ng/J (nanograms of NOx per Joule of useful heat generated). Future regulations include plans to restrict NOx emissions from residential furnaces and boilers to less than 15 ng/J.
Gas furnaces often use a particular type of gas burner commonly referred to as an in-shot burner or two-stage burner. Such burners include a burner nozzle having an inlet at one end for receiving separate fuel and primary air streams and an outlet at the other end through which mixed fuel and primary air discharges from the burner nozzle in a generally downstream direction. Fuel gas under pressure passes through a central port disposed at or somewhat upstream of the inlet of the burner nozzle. The diameter of the inlet to the burner nozzle is larger than the diameter of the fuel inlet so as to form an annular area through which atmospheric air (a.k.a. primary air) is drawn into the burner nozzle about the incoming fuel gas.
The primary air mixes with the fuel gas as it passes through the tubular section of the burner nozzle to form a primary air/gas mix. This primary air/gas mix discharges from the burner nozzle and ignites as it exits the nozzle outlet section forming a flame projecting downstream from a flame front located immediately downstream of the burner nozzle outlet and spaced apart from an inlet of the primary heat exchanger. Secondary air flows around the outside of the burner nozzle and is entrained in the burning mixture downstream of the nozzle in order to provide additional air to support combustion as the burning mixture enters the heat exchanger inlet.
In-shot burner designs cannot meet the more stringent NOx emission requirements because of their reliance on secondary air to complete the combustion process. The mixing of air and fuel of such systems produced unacceptably high NOx emissions higher-than the future regulations. In order to comply, the current in-shot burner design is being replaced by burner designs where the air and fuel is fully premixed before combustion, without the use of secondary air. Instead of providing a gap between the burner and heat exchanger which allows for the entrainment of secondary air, the premixed burners are coupled to the heat exchanger inlet. By eliminating the use of secondary air, the premixing of the fuel and air can be controlled and a premixed, lean mixture may be used for combustion which produces less NOx than traditional in-shot burners.
In multi-burner applications such as a typical sectional gas furnaces each heat exchanger is supplied hot combustion products by individual burners. Typically only one burner contains an igniter and therefore, upon ignition, the remaining burners are lit from the single burner with the igniter. Flame carryover is the ability to transfer the flame from one burner to the next. The current industry standard “in-shot” burner uses a small channel between burners where a small flame transfers hot gases to light each successive burner as shown in
A gas burner for low NOx gas furnaces is disclosed with improved flame carryover for igniting one or more adjacent burners. The burner comprises a burner tube that receives a mixture of fuel and air. The burner tube is coupled to an outlet. The outlet includes a primary outlet opening which is in communication with at least one transverse slot for communicating a flame to at least one adjacent burner.
A burner assembly is also disclosed that comprises a plurality of burners. Each burner comprises a burner tube that receives a mixture of fuel and air. Each burner tube is coupled to an outlet. Each outlet comprises a primary outlet opening that is in communication with at least one transverse slot for communicating a flame to at least one adjacent burner.
A low NOx sectional furnace is also disclosed that comprises a burner assembly comprising a plurality of burners. Each burner comprises a burner tube that receives a mixture of fuel and air. Each burner tube is coupled to a primary outlet opening. Each primary outlet opening is in communication with at least one transverse slot for communicating a flame to at least one adjacent burner.
Other advantages and features will be apparent from the following detailed description when read in conjunction with the attached drawings.
For a more complete understanding of the disclosed methods and apparatuses, reference should be made to the embodiments illustrated in greater detail in the accompanying drawings, wherein:
Referring first to
The relatively cool exhaust gases then pass through the collector box 16 and exhaust vent 17 before being vented to the atmosphere, while the condensate flows from the collector box 16 through a drain line 22 for disposal. Flow of combustion air into the air inlet through the heat exchanger sections 13, 14 and the exhaust vent 17 is controlled by an inducer fan 23. The inducer fan 23 is driven by a motor 24 in response to signals from the integrated furnace control or IFC 29. The household air is drawn into a blower 26 which is driven by a drive motor 27, in response to signals received from the IFC 29. The discharge air from the blower 26 passes over the condensing heat exchanger sections 14 and the primary heat exchanger sections 13, in a counter-flow relationship with the hot combustion gases to thereby heat the indoor air, which then flows from the discharge opening 28 in the upward direction as indicated by the arrows 15 to a duct system (not shown) within the space being heated.
Turning to
For example, turning to
An improved outlet section 142 is provided as illustrated in
Because the flame retainer device 134 can provide a complex flow field that allows the flame to anchor to it, mesh burners like those shown at 36 in
While only certain embodiments have been set forth, alternatives and modifications will be apparent from the above description to those skilled in the art. These and other alternatives are considered equivalents and within the spirit and scope of this disclosure and the appended claims.
Number | Date | Country | |
---|---|---|---|
61431252 | Jan 2011 | US |