LOW PAPR COMPUTER GENERATED SEQUENCE PAIRING

Information

  • Patent Application
  • 20200351070
  • Publication Number
    20200351070
  • Date Filed
    April 29, 2020
    4 years ago
  • Date Published
    November 05, 2020
    4 years ago
Abstract
A UE receives an indication for transmitting a first DMRS sequence having a first length in an uplink transmission. The first DMRS sequence is time domain based. The first DMRS sequence is associated with one or more other DMRS sequences each having a different length. The UE generates the first DMRS sequence and modulates the first DMRS sequence to obtain a set of modulation symbols. The UE maps the set of modulation symbols to a first set of resource elements. An interference, to a first modulation symbol of the set of modulation symbols and mapped to a first resource element of the first set of resource elements, that would be caused by a respective modulation symbol, obtained from a respective one of the one or more other DMRS sequences and mapped to the first resource element if generated, is in a predetermined relationship with the first modulation symbol.
Description
BACKGROUND
Field

The present disclosure relates generally to communication systems, and more particularly, to techniques of pairing low Peak-to-Average Power Ratio (PAPR) demodulation reference signal (DMRS) sequences.


Background

The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.


Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.


These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is 5G New Radio (NR). 5G NR is part of a continuous mobile broadband evolution promulgated by Third Generation Partnership Project (3GPP) to meet new requirements associated with latency, reliability, security, scalability (e.g., with Internet of Things (IoT)), and other requirements. Some aspects of 5G NR may be based on the 4G Long Term Evolution (LTE) standard. There exists a need for further improvements in 5G NR technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.


SUMMARY

The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.


In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE. The apparatus may be a UE. The UE receives an indication for transmitting a first DMRS sequence having a first length in an uplink transmission. The first DMRS sequence is time domain based. The first DMRS sequence is associated with one or more other DMRS sequences each having a different length. The UE generates the first DMRS sequence. The UE modulates the first DMRS sequence to obtain a set of modulation symbols. The UE maps the set of modulation symbols to a first set of resource elements. An interference, to a first modulation symbol of the set of modulation symbols and mapped to a first resource element of the first set of resource elements, that would be caused by a respective modulation symbol, obtained from a respective one of the one or more other DMRS sequences and mapped to the first resource element if generated, is in a predetermined relationship with the first modulation symbol. The UE transmits the set of modulation symbols on the first set of resource elements.


To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network.



FIG. 2 is a diagram illustrating a base station in communication with a UE in an access network.



FIG. 3 illustrates an example logical architecture of a distributed access network.



FIG. 4 illustrates an example physical architecture of a distributed access network.



FIG. 5 is a diagram showing an example of a DL-centric subframe.



FIG. 6 is a diagram showing an example of an UL-centric subframe.



FIG. 7 is a diagram illustrating communications between a base station and UE.



FIG. 8 is a diagram illustrating DMRSs transmitted on multiple cells.



FIG. 9 is a flow chart of a method (process) for generating a DMRS sequence.



FIG. 10 is a conceptual data flow diagram illustrating the data flow between different components/means in an exemplary apparatus.



FIG. 11 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.


Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements”). These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.


By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs), central processing units (CPUs), application processors, digital signal processors (DSPs), reduced instruction set computing (RISC) processors, systems on a chip (SoC), baseband processors, field programmable gate arrays (FPGAs), programmable logic devices (PLDs), state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.


Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM), a read-only memory (ROM), an electrically erasable programmable ROM (EEPROM), optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.



FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN)) includes base stations 102, UEs 104, and a core network 160. The base stations 102 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station). The macro cells include base stations. The small cells include femtocells, picocells, and microcells.


The base stations 102 (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN)) interface with the core network 160 through backhaul links 132 (e.g., S1 interface). In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity), inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS), subscriber and equipment trace, RAN information management (RIM), paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the core network 160) with each other over backhaul links 134 (e.g., X2 interface). The backhaul links 134 may be wired or wireless.


The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102′ may have a coverage area 110′ that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macro cells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs), which may provide service to a restricted group known as a closed subscriber group (CSG). The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102/UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100 MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL). The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell).


The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152/AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.


The small cell 102′ may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102′ may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102′, employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.


The gNodeB (gNB) 180 may operate in millimeter wave (mmW) frequencies and/or near mmW frequencies in communication with the UE 104. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may be referred to as an mmW base station. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW/near mmW radio frequency band has extremely high path loss and a short range. The mmW base station 180 may utilize beamforming 184 with the UE 104 to compensate for the extremely high path loss and short range.


The core network 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the core network 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS), a PS Streaming Service (PSS), and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN), and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.


The base station may also be referred to as a gNB, Node B, evolved Node B (eNB), an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), or some other suitable terminology. The base station 102 provides an access point to the core network 160 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA), a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player), a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a toaster, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, etc.). The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.



FIG. 2 is a block diagram of a base station 210 in communication with a UE 250 in an access network. In the DL, IP packets from the core network 160 may be provided to a controller/processor 275. The controller/processor 275 implements layer 3 and layer 2 functionality. Layer 3 includes a radio resource control (RRC) layer, and layer 2 includes a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The controller/processor 275 provides RRC layer functionality associated with broadcasting of system information (e.g., MIB, SIBs), RRC connection control (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release), inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting; PDCP layer functionality associated with header compression/decompression, security (ciphering, deciphering, integrity protection, integrity verification), and handover support functions; RLC layer functionality associated with the transfer of upper layer packet data units (PDUs), error correction through ARQ, concatenation, segmentation, and reassembly of RLC service data units (SDUs), re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs), demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.


The transmit (TX) processor 216 and the receive (RX) processor 270 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 216 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), M-phase-shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)). The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 274 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 250. Each spatial stream may then be provided to a different antenna 220 via a separate transmitter 218TX. Each transmitter 218TX may modulate an RF carrier with a respective spatial stream for transmission.


At the UE 250, each receiver 254RX receives a signal through its respective antenna 252. Each receiver 254RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 256. The TX processor 268 and the RX processor 256 implement layer 1 functionality associated with various signal processing functions. The RX processor 256 may perform spatial processing on the information to recover any spatial streams destined for the UE 250. If multiple spatial streams are destined for the UE 250, they may be combined by the RX processor 256 into a single OFDM symbol stream. The RX processor 256 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT). The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the base station 210. These soft decisions may be based on channel estimates computed by the channel estimator 258. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the base station 210 on the physical channel. The data and control signals are then provided to the controller/processor 259, which implements layer 3 and layer 2 functionality.


The controller/processor 259 can be associated with a memory 260 that stores program codes and data. The memory 260 may be referred to as a computer-readable medium. In the UL, the controller/processor 259 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the core network 160. The controller/processor 259 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.


Similar to the functionality described in connection with the DL transmission by the base station 210, the controller/processor 259 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression/decompression, and security (ciphering, deciphering, integrity protection, integrity verification); RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demultiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.


Channel estimates derived by a channel estimator 258 from a reference signal or feedback transmitted by the base station 210 may be used by the TX processor 268 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 268 may be provided to different antenna 252 via separate transmitters 254TX. Each transmitter 254TX may modulate an RF carrier with a respective spatial stream for transmission. The UL transmission is processed at the base station 210 in a manner similar to that described in connection with the receiver function at the UE 250. Each receiver 218RX receives a signal through its respective antenna 220. Each receiver 218RX recovers information modulated onto an RF carrier and provides the information to a RX processor 270.


The controller/processor 275 can be associated with a memory 276 that stores program codes and data. The memory 276 may be referred to as a computer-readable medium. In the UL, the controller/processor 275 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 250. IP packets from the controller/processor 275 may be provided to the core network 160. The controller/processor 275 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.


New radio (NR) may refer to radios configured to operate according to a new air interface (e.g., other than Orthogonal Frequency Divisional Multiple Access (OFDMA)-based air interfaces) or fixed transport layer (e.g., other than Internet Protocol (IP)). NR may utilize OFDM with a cyclic prefix (CP) on the uplink and downlink and may include support for half-duplex operation using time division duplexing (TDD). NR may include Enhanced Mobile Broadband (eMBB) service targeting wide bandwidth (e.g. 80 MHz beyond), millimeter wave (mmW) targeting high carrier frequency (e.g. 60 GHz), massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low latency communications (URLLC) service.


A single component carrier bandwidth of 100 MHZ may be supported. In one example, NR resource blocks (RBs) may span 12 sub-carriers with a sub-carrier bandwidth of 60 kHz over a 0.125 ms duration or a bandwidth of 15 kHz over a 0.5 ms duration. Each radio frame may consist of 20 or 80 subframes (or NR slots) with a length of 10 ms. Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched. Each subframe may include DL/UL data as well as DL/UL control data. UL and DL subframes for NR may be as described in more detail below with respect to FIGS. 5 and 6.


The NR RAN may include a central unit (CU) and distributed units (DUs). A NR BS (e.g., gNB, 5G Node B, Node B, transmission reception point (TRP), access point (AP)) may correspond to one or multiple BSs. NR cells can be configured as access cells (ACells) or data only cells (DCells). For example, the RAN (e.g., a central unit or distributed unit) can configure the cells. DCells may be cells used for carrier aggregation or dual connectivity and may not be used for initial access, cell selection/reselection, or handover. In some cases DCells may not transmit synchronization signals (SS) in some cases DCells may transmit SS. NR BSs may transmit downlink signals to UEs indicating the cell type. Based on the cell type indication, the UE may communicate with the NR BS. For example, the UE may determine NR BSs to consider for cell selection, access, handover, and/or measurement based on the indicated cell type.



FIG. 3 illustrates an example logical architecture 300 of a distributed RAN, according to aspects of the present disclosure. A 5G access node 306 may include an access node controller (ANC) 302. The ANC may be a central unit (CU) of the distributed RAN 300. The backhaul interface to the next generation core network (NG-CN) 304 may terminate at the ANC. The backhaul interface to neighboring next generation access nodes (NG-ANs) may terminate at the ANC. The ANC may include one or more TRPs 308 (which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, or some other term). As described above, a TRP may be used interchangeably with “cell.”


The TRPs 308 may be a distributed unit (DU). The TRPs may be connected to one ANC (ANC 302) or more than one ANC (not illustrated). For example, for RAN sharing, radio as a service (RaaS), and service specific AND deployments, the TRP may be connected to more than one ANC. A TRP may include one or more antenna ports. The TRPs may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.


The local architecture of the distributed RAN 300 may be used to illustrate fronthaul definition. The architecture may be defined that support fronthauling solutions across different deployment types. For example, the architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter). The architecture may share features and/or components with LTE. According to aspects, the next generation AN (NG-AN) 310 may support dual connectivity with NR. The NG-AN may share a common fronthaul for LTE and NR.


The architecture may enable cooperation between and among TRPs 308. For example, cooperation may be preset within a TRP and/or across TRPs via the ANC 302. According to aspects, no inter-TRP interface may be needed/present.


According to aspects, a dynamic configuration of split logical functions may be present within the architecture of the distributed RAN 300. The PDCP, RLC, MAC protocol may be adaptably placed at the ANC or TRP.



FIG. 4 illustrates an example physical architecture of a distributed RAN 400, according to aspects of the present disclosure. A centralized core network unit (C-CU) 402 may host core network functions. The C-CU may be centrally deployed. C-pCU functionality may be offloaded (e.g., to advanced wireless services (AWS)), in an effort to handle peak capacity. A centralized RAN unit (C-RU) 404 may host one or more ANC functions. Optionally, the C-RU may host core network functions locally. The C-RU may have distributed deployment. The C-RU may be closer to the network edge. A distributed unit (DU) 406 may host one or more TRPs. The DU may be located at edges of the network with radio frequency (RF) functionality.



FIG. 5 is a diagram 500 showing an example of a DL-centric subframe. The DL-centric subframe may include a control portion 502. The control portion 502 may exist in the initial or beginning portion of the DL-centric subframe. The control portion 502 may include various scheduling information and/or control information corresponding to various portions of the DL-centric subframe. In some configurations, the control portion 502 may be a physical DL control channel (PDCCH), as indicated in FIG. 5. The DL-centric subframe may also include a DL data portion 504. The DL data portion 504 may sometimes be referred to as the payload of the DL-centric subframe. The DL data portion 504 may include the communication resources utilized to communicate DL data from the scheduling entity (e.g., UE or BS) to the subordinate entity (e.g., UE). In some configurations, the DL data portion 504 may be a physical DL shared channel (PDSCH).


The DL-centric subframe may also include a common UL portion 506. The common UL portion 506 may sometimes be referred to as an UL burst, a common UL burst, and/or various other suitable terms. The common UL portion 506 may include feedback information corresponding to various other portions of the DL-centric subframe. For example, the common UL portion 506 may include feedback information corresponding to the control portion 502. Non-limiting examples of feedback information may include an ACK signal, a NACK signal, a HARQ indicator, and/or various other suitable types of information. The common UL portion 506 may include additional or alternative information, such as information pertaining to random access channel (RACH) procedures, scheduling requests (SRs), and various other suitable types of information.


As illustrated in FIG. 5, the end of the DL data portion 504 may be separated in time from the beginning of the common UL portion 506. This time separation may sometimes be referred to as a gap, a guard period, a guard interval, and/or various other suitable terms. This separation provides time for the switch-over from DL communication (e.g., reception operation by the subordinate entity (e.g., UE)) to UL communication (e.g., transmission by the subordinate entity (e.g., UE)). One of ordinary skill in the art will understand that the foregoing is merely one example of a DL-centric subframe and alternative structures having similar features may exist without necessarily deviating from the aspects described herein.



FIG. 6 is a diagram 600 showing an example of an UL-centric subframe. The UL-centric subframe may include a control portion 602. The control portion 602 may exist in the initial or beginning portion of the UL-centric subframe. The control portion 602 in FIG. 6 may be similar to the control portion 502 described above with reference to FIG. 5. The UL-centric subframe may also include an UL data portion 604. The UL data portion 604 may sometimes be referred to as the pay load of the UL-centric subframe. The UL portion may refer to the communication resources utilized to communicate UL data from the subordinate entity (e.g., UE) to the scheduling entity (e.g., UE or BS). In some configurations, the control portion 602 may be a physical DL control channel (PDCCH).


As illustrated in FIG. 6, the end of the control portion 602 may be separated in time from the beginning of the UL data portion 604. This time separation may sometimes be referred to as a gap, guard period, guard interval, and/or various other suitable terms. This separation provides time for the switch-over from DL communication (e.g., reception operation by the scheduling entity) to UL communication (e.g., transmission by the scheduling entity). The UL-centric subframe may also include a common UL portion 606. The common UL portion 606 in FIG. 6 may be similar to the common UL portion 606 described above with reference to FIG. 6. The common UL portion 606 may additionally or alternatively include information pertaining to channel quality indicator (CQI), sounding reference signals (SRSs), and various other suitable types of information. One of ordinary skill in the art will understand that the foregoing is merely one example of an UL-centric subframe and alternative structures having similar features may exist without necessarily deviating from the aspects described herein.


In some circumstances, two or more subordinate entities (e.g., UEs) may communicate with each other using sidelink signals. Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications. Generally, a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS), even though the scheduling entity may be utilized for scheduling and/or control purposes. In some examples, the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum).


In the present disclosure, one or more terms or features are defined or described in “3GPP TS 38.211 V15.5.0 (2019-03) Technical Specification; 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical channels and modulation (Release 15)” (3GPP TS 38.211), which is expressly incorporated by reference herein in its entirety. Those terms and features are known by a person having ordinary skill in the art.



FIG. 7 is a diagram 700 illustrating communications between a base station 702 and a UE 704. The base station 702 may send to the UE 704 an indication (e.g., via RRC signalings) indicating a particular time domain DMRS sequence 742. “DMRS” stands for Demodulation Reference Signal. Upon receiving the indication, the UE 704 instructs a DMRS sequence component 712 to generate the DMRS sequence 742. The DMRS sequence component 712 accordingly generates the DMRS sequence 742. The DMRS sequence component 712 sends the DMRS sequence 742 to the modulation component 714. The modulation component 714 generates modulation symbols 744 representing the DMRS sequence 742. The modulation component 714 then sends the modulation symbols 744 to a DFT-s-OFDM component 718. “DFT-s-OFDM” stands for Discrete Fourier Transmission-Single Carrier-Orthogonal Frequency Division Multiplexing.


More specifically, the DFT-s-OFDM component 718 includes a DFT component 722, an optional FDSS component 724, a tone mapper 726, an IFFT component 728, and a cyclic prefix component 730. “FDSS” stands for Frequency Domain Spectrum Shaping. “IFFT” stands for Inverse Fast Fourier Transform. The DFT component 722 performs a DFT on the modulation symbols 744. The outcome symbols from the DFT component 722 may be optionally sent to the FDSS component 724. The outcome symbols from the FDSS component 724 are then mapped to resource elements by the tone mapper 726. The resource elements carrying the symbols are converted to a time domain signal by the IFFT component 728. The cyclic prefix component 730 further adds a cyclic prefix to the time domain signal. As such, the UE 704 may transmit the DMRS sequence 742 to the base station 702 through a Physical Uplink Control Channel (PUCCH) or a Physical Uplink Shared Channel (PUSCH).


When the length of the DMRS sequence 742 is equal to or less than 24, the DMRS sequence 742 is selected from a set predetermined computer-generate-sequences (CGSs). In particular, the set may contain 30 base DMRS sequences. The set of predetermined CGSs may have desired properties such as good auto-correlation (within a delay window) or frequency flatness, good cross-correlation (between any pair of 30 base sequences), and good Peak-to-Average Power Ratio (PAPR).


When the length of the DMRS sequence 742 is 12, 18, or 24, the modulation component 714 may employ a π2-BPSK modulation. When the length of the DMRS sequence 742 is 6, the modulation component 714 may employ an 8-BPSK modulation.



FIG. 8 is a diagram 800 illustrating DMRSs transmitted on multiple cells. In this example, the UE 704 communicates with the base station 702 on a cell 810. Further, a base station 874 communicates with a UE 872 on a cell 820. A base station 875 communicates with a UE 873 on a cell 830. Further, the cells 810, 820, 830 occupy resources that overlap in frequency domain.


Each of the UE 704, the UE 872, and the UE 873 are configured with one or more tables listing DMRS sequences used to generate DMRSs. In this example, the tables include the below table (1) listing DMRS sequences of length 24, the below table (2) listing DMRS sequences of length 18, the below table (3) listing DMRS sequences of length 12, and the below table (4) listing DMRS sequences of length 6:










TABLE 1





u
b(0), . . . , b(23)







































0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
1
0
0
1
0
0
1
0
0
1


1
0
0
0
0
0
0
0
1
0
0
1
0
1
1
0
1
1
1
0
0
0
1
1
0


2
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
1
1
1
0
1
1


3
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
1
0
1
1


4
1
0
0
1
1
1
1
1
0
1
1
0
1
1
1
0
1
1
0
0
0
1
1
1


5
1
0
1
0
1
1
0
1
1
0
0
1
1
1
1
1
0
0
1
1
0
1
1
1


6
0
1
1
0
0
1
0
0
1
1
1
1
1
1
0
1
1
1
1
0
1
1
0
1


7
1
0
1
1
1
1
1
1
1
1
1
0
1
0
0
1
1
1
0
0
1
1
0
1


8
0
0
1
0
0
1
0
1
0
0
0
1
0
0
1
0
0
0
0
0
1
1
1
0


9
0
0
0
0
1
0
0
1
1
0
1
0
0
0
0
0
1
1
0
0
0
1
0
1


10
1
0
1
0
0
0
1
1
1
0
0
1
1
1
1
0
1
1
1
1
0
0
1
0


11
0
0
1
0
0
1
0
0
0
0
0
1
1
1
0
0
0
1
0
0
1
0
1
0


12
1
0
1
0
0
1
1
1
0
1
0
0
0
1
0
1
1
1
0
0
1
0
1
1


13
1
0
1
0
0
1
1
0
1
1
0
1
0
1
0
1
1
0
1
1
0
0
1
0


14
1
0
1
0
0
0
1
0
0
1
1
1
0
0
0
0
0
1
0
0
1
0
1
1


15
1
0
0
1
0
1
0
0
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1


16
0
0
0
1
1
1
1
0
0
1
0
1
0
0
1
1
1
0
1
1
1
0
0
1


17
1
1
0
1
0
1
1
1
0
0
1
1
1
0
0
0
0
0
0
1
1
0
1
0


18
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
0
1
1
0
0
0
1


19
1
0
0
0
1
0
1
1
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
1


20
0
0
0
0
0
0
1
1
1
0
1
1
0
0
0
1
1
0
0
0
1
0
1
0


21
0
1
1
0
1
0
1
1
1
0
0
0
0
1
0
0
0
0
1
0
0
0
1
1


22
1
0
1
0
0
1
0
0
0
0
0
1
1
1
0
0
1
0
0
0
1
0
1
1


23
1
0
0
1
1
0
1
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1


24
1
0
0
0
1
1
0
1
0
1
0
0
1
0
0
1
1
1
1
1
1
0
0
0


25
1
0
1
0
1
1
0
0
0
1
0
0
0
1
1
1
1
1
1
0
0
1
0
0


26
0
1
0
0
1
0
1
0
1
1
0
0
0
1
1
1
1
1
1
0
0
1
0
0


27
0
1
0
1
1
0
1
0
1
0
1
0
1
1
0
1
1
0
0
1
0
0
1
1


28
0
1
0
0
0
1
1
0
1
0
1
0
1
1
1
0
1
0
0
1
0
0
1
1


29
0
1
0
0
1
0
0
1
1
1
1
1
1
1
1
1
1
0
0
1
0
0
1
1

















TABLE 2





u
b(0), . . . , b(17)

































0
0
0
0
0
0
1
0
0
0
1
1
1
1
1
0
0
0
1


1
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
0
0
1


2
0
0
0
0
0
1
1
1
1
0
1
1
1
0
1
1
1
1


3
0
1
0
1
1
0
1
1
0
0
0
1
1
0
1
0
1
1


4
1
1
0
1
0
0
1
0
1
0
1
0
0
1
1
1
1
0


5
0
1
0
1
0
1
1
1
0
0
1
0
1
1
0
1
1
0


6
0
0
0
1
1
1
0
0
0
1
0
0
0
1
1
1
1
1


7
0
1
0
1
0
0
0
1
1
0
1
0
0
0
0
0
1
1


8
0
0
1
0
1
0
0
0
1
0
1
0
0
1
0
0
0
1


9
1
0
1
1
0
0
1
0
1
0
1
0
0
1
0
0
0
1


10
1
0
1
1
0
0
0
1
1
1
0
0
0
0
0
0
0
1


11
1
1
0
1
1
0
1
1
1
0
1
1
1
1
1
0
0
0


12
1
0
0
0
1
0
1
0
1
0
0
0
1
1
0
1
0
1


13
1
0
1
1
0
1
0
1
1
1
0
0
0
0
0
1
1
0


14
0
0
0
0
0
1
1
1
0
1
1
0
1
0
1
1
0
0


15
0
0
1
1
1
0
1
1
0
1
0
0
0
1
1
0
1
0


16
0
1
0
0
1
0
0
0
1
1
1
0
1
0
0
1
1
1


17
0
1
0
0
1
1
0
1
1
0
0
0
0
0
0
0
1
0


18
0
0
1
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0


19
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
0
1
1


20
0
0
0
0
0
1
1
0
0
0
0
1
0
0
1
1
1
1


21
1
1
1
1
0
1
0
1
1
1
1
1
0
0
1
0
0
1


22
1
0
0
1
0
0
0
1
0
0
1
1
1
1
0
1
1
1


23
0
0
1
0
0
0
1
1
1
0
0
0
1
0
0
1
0
1


24
1
1
0
1
1
0
0
0
0
0
0
0
1
1
0
1
1
0


25
1
1
0
1
0
1
0
1
1
0
0
0
0
1
0
0
1
0


26
0
1
1
1
1
1
1
1
0
0
1
0
1
0
0
1
0
0


27
0
1
1
0
1
1
1
0
0
0
0
0
0
0
1
1
0
0


28
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
0
0


29
0
1
1
1
0
1
1
0
1
0
1
1
1
0
1
1
0
0

















TABLE 3





u
b(0), . . . , b(11)



























0
0
0
0
0
0
0
1
1
0
1
1
0


1
0
0
0
0
0
1
0
0
0
1
1
1


2
0
0
0
0
0
1
1
1
0
1
1
1


3
1
1
0
1
1
0
1
0
1
0
0
0


4
1
1
0
0
1
0
1
0
1
0
0
1


5
1
0
1
1
0
1
0
0
1
0
1
1


6
0
0
0
1
0
0
1
0
0
0
1
0


7
0
1
0
0
0
1
0
0
1
0
0
0


8
1
0
1
1
1
1
0
1
1
0
1
1


9
1
0
1
1
0
1
1
1
1
0
0
0


10
1
0
1
1
0
1
0
0
0
1
1
0


11
1
0
1
0
0
1
0
0
1
0
1
0


12
1
1
0
0
0
0
0
1
1
1
1
0


13
0
1
0
0
0
1
1
0
1
0
1
1


14
0
0
0
0
0
1
1
0
0
0
1
1


15
0
0
0
0
0
1
0
0
1
0
0
1


16
0
0
1
0
0
1
0
0
0
0
0
1


17
0
0
0
0
0
1
1
0
1
1
1
0


18
0
0
0
1
1
1
1
1
0
0
0
1


19
1
0
0
0
1
0
0
0
0
0
1
1


20
0
1
1
1
1
0
1
0
1
1
1
1


21
0
1
1
1
0
1
0
0
1
1
0
1


22
0
1
1
1
1
1
0
0
1
0
0
0


23
0
1
1
1
0
0
0
0
0
1
0
0


24
0
0
1
1
1
1
1
1
1
1
0
0


25
0
1
1
1
0
0
1
1
0
1
0
0


26
0
1
1
1
0
1
1
1
0
1
1
1


27
0
1
1
1
1
1
1
0
0
0
1
1


28
0
1
1
1
1
0
0
0
0
0
1
1


29
0
1
1
1
0
1
1
1
1
0
1
1

















TABLE 4





u
φ(0), . . . , φ(5)





















0
−1
−7
−3
−5
−1
3


1
−1
3
7
−3
7
3


2
−1
3
1
5
−1
−5


3
−7
−3
−7
5
−7
−3


4
7
5
−1
−7
−3
1


5
3
−3
1
5
−1
−1


6
−7
−3
−7
−3
7
−5


7
−7
−3
1
−5
−1
−5


8
−7
−3
3
−3
−7
−3


9
−7
−7
−1
1
−5
1


10
−7
−3
−7
5
−1
5


11
−7
−7
−3
1
5
−1


12
5
7
−3
−5
5
−5


13
−3
7
−5
−1
−5
−1


14
5
−7
7
1
5
1


15
−7
3
1
5
−1
3


16
−7
−5
−1
−7
−5
5


17
−7
1
−3
3
7
5


18
−7
−7
3
5
1
5


19
−7
−3
3
−1
3
−5


20
−7
−5
5
3
−7
−1


21
1
5
1
5
3
7


22
1
−3
1
−5
−1
3


23
1
7
1
−5
−7
−1


24
1
−1
3
−1
−7
−3


25
1
−1
−5
−1
3
−3


26
1
−1
3
−1
3
7


27
−5
3
7
5
3
7


28
−7
1
−3
1
5
1


29
1
5
3
−7
5
−3









As shown, the DMRS sequences in each table are indexed from 0 to 29.


In this example, the UE 704 transmits DMRSs to the base station 702 over 4 physical resource blocks 814-1, 814-2, 814-3, 814-4. The DMRSs may be generated according to a DMRS sequence of length 24. The UE 704 is configured with the table (1) listing DMRS sequences of length 24. The base station 702 allocates a particular DMRS sequence to the UE 704. The base station 702 also sends to the UE 704 an indication (e.g., the DMRS sequence index) indicating the particular DMRS sequence to be used by the UE 704 to generate the DMRSs. Upon receiving the indication, the UE 704 can determine the DMRS sequence used to generate the DMRSs to be transmitted to the base station 702.


Similarly, the UE 872 transmits DMRSs to the base station 874 over 2 physical resource blocks 814-2, 814-3. The DMRSs may be generated according to a DMRS sequence of length 12. The UE 872 is configured with the table (2) listing DMRS sequences of length 12. Similarly, the base station 874 allocates a DMRS sequence of length 12 to the UE 872. The base station 874 also sends to the UE 872 an indication indicating the allocated DMRS sequence.


Further, the UE 873 transmits DMRSs to the base station 875 over 2 physical resource blocks 814-4, 814-5. The DMRSs may be generated according to a DMRS sequence of length 12. The UE 873 is configured with the table (2) listing DMRS sequences of length 12. Similarly, the base station 875 allocates a DMRS sequence of length 12 to the UE 873. The base station 875 also sends to the UE 873 an indication indicating the allocated DMRS sequence.


In this example, the resources carrying the DMRSs on the cell 810 (i.e., the physical resource blocks 814-1, 814-2, 814-3, 814-4) and the resources carrying DMRSs on the cell 820 (i.e., the physical resource blocks 814-2, 814-3) overlap at the physical resource blocks 814-2, 814-3. The resources carrying the DMRSs on the cell 810 (the physical resource blocks 814-1, 814-2, 814-3, 814-4) and the resources carrying DMRSs on the cell 830 (the physical resource blocks 814-4, 814-5) overlap at the physical resource block 814-4. As such, the DMRSs carried on the cell 820 may interfere with the DMRSs carried on cell 810 at the physical resource blocks 814-2, 814-3. The DMRSs carried on the cell 830 may interfere with the DMRSs carried on the cell 810 at the physical resource block 814-4.


In one technique, the DMRS sequences listed in the tables (1), (2), (3), (4) configured at each of the UE 704-1, the UE 872, and the UE 873 can be rearranged and associated with each other to reduce the interference caused by overlapping DMRSs. A DMRS sequence of a particular length is paired with a respective DMRS sequence of each other length. For example, a given DMRS sequence of length 24 is paired or associated with a respective DMRS sequence of length 18, with a respective DMRS sequence of length 12, and with a respective DMRS sequence of length 6. When carried on overlapping physical resource blocks, DMRSs generated by the associated DMRS sequences cause strongest interference among each other.


One example of such an association are listed in the below table (5) and indexed from 0 to 29.













TABLE 5





u
Length 24
Length 18
Length 12
Length 6



















0
0
0
20
27


1
1
22
28
11


2
2
13
9
7


3
3
16
24
19


4
4
27
11
8


5
5
24
18
20


6
6
17
23
25


7
7
14
12
24


8
8
28
14
29


9
9
21
7
23


10
10
1
4
17


11
11
25
3
18


12
12
20
8
1


13
13
11
6
21


14
14
8
21
5


15
15
6
29
28


16
16
4
0
16


17
17
5
16
26


18
18
7
17
14


19
19
12
19
15


20
20
10
15
12


21
21
19
26
6


22
22
18
25
22


23
23
26
10
9


24
24
9
22
4


25
25
15
5
3


26
26
3
27
2


27
27
29
1
13


28
28
23
13
0


29
29
2
2
10









In particular, each association is a group of DMRS sequences that is a disjoint partition of the DMRS sequences from the Tables (1), (2), (3), and (4). For example, the association #0 includes DMRS sequence #0 of length 24, DMRS sequence #0 of length 18, DMRS sequence #0 of length 12, and DMRS sequence #0 of length 6. When a UE is assigned to one DMRS sequence of a particular length in an association on one cell, other cells will not use the other DMRS sequences in the same association. For example, if the UE 704 transmits to the base station 702 on the cell 810 DMRSs generated from the DMRS sequence #0 of length 24 from the association #0, UEs on the cell 820 and the cell 830 do not transmit DMRSs generated from the DMRS sequences of the same association #0.


Certain techniques can be used to obtain the above table (5). When frequency domain overlap is happened, a smaller RB allocation could have bigger impact than a larger RB allocation as the latter could only have partial RBs are interfered. For example, the entire DMRSs on the cell 820, which are carried on the physical resource blocks 814-2, 814-3, are interfered by the DMRSs on the cell 810, while the DMRSs on the cell 810 are only partially interfered by the DMRSs on the cell 820 or the cell 830. A pairing scheme is in favor of smaller bandwidth (shorter length CGS). Nonetheless, if two longer sequences rlong0, rlong1 both have the strongest interference from a shorter sequence rshort (therefore they both prefer to pair with rshort), the one that makes stronger interference to rshort is assigned to rshort.


Further, pairing of CGS sequences can be based on the cross-correlation measurements. In particular, let rl(k) denote k -th CGS sequence of length l according to some order. The cross-correlation XC(rl1(k1), rl2(k2)), l1≠l2, k1, k2 ϵ[0, . . . 29] is measured as the maximum (normalized) cross-correlation for all delays within CP and all RB offsets that result in frequency domain overlap.



FIG. 9 is a flow chart 900 of a method (process) for generating a DMRS sequence. The method may be performed by a first UE (e.g., the UE 704, the apparatus 1002, and the apparatus 1002′). At operation 902, the UE receives an indication for transmitting a first DMRS sequence having a first length in an uplink transmission. The first DMRS sequence is time domain based. The first DMRS sequence is associated with one or more other DMRS sequences each having a different length. At operation 904, the UE generates the first DMRS sequence. At operation 906, the UE modulates the first DMRS sequence to obtain a set of modulation symbols. At operation 908, the UE maps the set of modulation symbols to a first set of resource elements. An interference, to a first modulation symbol of the set of modulation symbols and mapped to a first resource element of the first set of resource elements, that would be caused by a respective modulation symbol, obtained from a respective one of the one or more other DMRS sequences and mapped to the first resource element if generated, is in a predetermined relationship with the first modulation symbol. At operation 910, the UE transmits the set of modulation symbols on the first set of resource elements.


In certain configurations, the interference is determined based on a cross-correlation measurement between the first modulation symbol and the respective modulation symbol. In certain configurations, each of the first length and respective lengths of the one or more other DMRS sequences is a different one of 6, 12, 18 and 24. In certain configurations, the first length is 24. In certain configurations, the one or more other DMRS sequences are a second DMRS sequence having a length of 18, a third DMRS sequence having a length of 12, and a fourth DMRS sequence having a length of 6. In certain configurations, the first DMRS sequence, the second DMRS sequence, the third DMRS sequence, the fourth DMRS sequence are listed in Table (5).


In certain configurations, the predetermined relationship defines that the interference that would be caused by the respective modulation symbol obtained from the respective one other DMRS sequence is larger than or equal to an interference caused by any other modulation symbol, if mapped to the first resource element, obtained from the respective one other DMRS sequence. In certain configurations, the first set of resource elements overlaps, at a subset of resource elements, with a respective set of resource elements to which a set of modulation symbols obtained from the respective one other DMRS sequence is mapped, In certain configurations, the first resource element is any one of the subset of resource elements.



FIG. 10 is a conceptual data flow diagram 1000 illustrating the data flow between different components/means in an exemplary apparatus 1002. The apparatus 1002 may be a UE. The apparatus 1002 includes a reception component 1004, a DMRS sequence generator 1006, a modulation component 1008, an OFDM component 1009, and a transmission component 1010.


The DMRS sequence generator 1006 receives an indication for transmitting a first DMRS sequence having a first length in an uplink transmission. The first DMRS sequence is time domain based. The first DMRS sequence is associated with one or more other DMRS sequences each having a different length. The DMRS sequence generator 1006 generates the first DMRS sequence. The modulation component 1008 modulates the first DMRS sequence to obtain a set of modulation symbols. The OFDM component 1009 maps the set of modulation symbols to a first set of resource elements. An interference, to a first modulation symbol of the set of modulation symbols and mapped to a first resource element of the first set of resource elements, that would be caused by a respective modulation symbol, obtained from a respective one of the one or more other DMRS sequences and mapped to the first resource element if generated, is in a predetermined relationship with the first modulation symbol. The transmission component 1010 transmits the set of modulation symbols on the first set of resource elements.


In certain configurations, the interference is determined based on a cross-correlation measurement between the first modulation symbol and the respective modulation symbol. In certain configurations, each of the first length and respective lengths of the one or more other DMRS sequences is a different one of 6, 12, 18 and 24. In certain configurations, the first length is 24. In certain configurations, the one or more other DMRS sequences are a second DMRS sequence having a length of 18, a third DMRS sequence having a length of 12, and a fourth DMRS sequence having a length of 6. In certain configurations, the first DMRS sequence, the second DMRS sequence, the third DMRS sequence, the fourth DMRS sequence are listed in Table (5).


In certain configurations, the predetermined relationship defines that the interference that would be caused by the respective modulation symbol obtained from the respective one other DMRS sequence is larger than or equal to an interference caused by any other modulation symbol, if mapped to the first resource element, obtained from the respective one other DMRS sequence. In certain configurations, the first set of resource elements overlaps, at a subset of resource elements, with a respective set of resource elements to which a set of modulation symbols obtained from the respective one other DMRS sequence is mapped, In certain configurations, the first resource element is any one of the subset of resource elements.



FIG. 11 is a diagram 1100 illustrating an example of a hardware implementation for an apparatus 1002′ employing a processing system 1114. The apparatus 1002′ may be a UE. The processing system 1114 may be implemented with a bus architecture, represented generally by a bus 1124. The bus 1124 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1114 and the overall design constraints. The bus 1124 links together various circuits including one or more processors and/or hardware components, represented by one or more processors 1104, the reception component 1004, the DMRS sequence generator 1006, the modulation component 1008, the OFDM component 1009, the transmission component 1010, and a computer-readable medium/memory 1106. The bus 1124 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, etc.


The processing system 1114 may be coupled to a transceiver 1110, which may be one or more of the transceivers 354. The transceiver 1110 is coupled to one or more antennas 1120, which may be the communication antennas 352.


The transceiver 1110 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 1110 receives a signal from the one or more antennas 1120, extracts information from the received signal, and provides the extracted information to the processing system 1114, specifically the reception component 1004. In addition, the transceiver 1110 receives information from the processing system 1114, specifically the transmission component 1010, and based on the received information, generates a signal to be applied to the one or more antennas 1120.


The processing system 1114 includes one or more processors 1104 coupled to a computer-readable medium/memory 1106. The one or more processors 1104 are responsible for general processing, including the execution of software stored on the computer-readable medium/memory 1106. The software, when executed by the one or more processors 1104, causes the processing system 1114 to perform the various functions described supra for any particular apparatus. The computer-readable medium/memory 1106 may also be used for storing data that is manipulated by the one or more processors 1104 when executing software. The processing system 1114 further includes at least one of the reception component 1004, the DMRS sequence generator 1006, the modulation component 1008, the OFDM component 1009, and the transmission component 1010. The components may be software components running in the one or more processors 1104, resident/stored in the computer readable medium/memory 1106, one or more hardware components coupled to the one or more processors 1104, or some combination thereof. The processing system 1114 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the communication processor 359.


In one configuration, the apparatus 1002/apparatus 1002′ for wireless communication includes means for performing each of the operations of FIG. 9. The aforementioned means may be one or more of the aforementioned components of the apparatus 1002 and/or the processing system 1114 of the apparatus 1002′ configured to perform the functions recited by the aforementioned means.


As described supra, the processing system 1114 may include the TX Processor 368, the RX Processor 356, and the communication processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the communication processor 359 configured to perform the functions recited by the aforementioned means.


It is understood that the specific order or hierarchy of blocks in the processes/flowcharts disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes/flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.


The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C,” “one or more of A, B, or C,” “at least one of A, B, and C,” “one or more of A, B, and C,” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C,” “one or more of A, B, or C,” “at least one of A, B, and C,” “one or more of A, B, and C,” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module,” “mechanism,” “element,” “device,” and the like may not be a substitute for the word “means.” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for.”

Claims
  • 1. A method of wireless communication of a user equipment (UE), comprising: receiving an indication for transmitting a first demodulation reference signal (DMRS) sequence having a first length in an uplink transmission, wherein the first DMRS sequence is time domain based, wherein the first DMRS sequence is associated with one or more other DMRS sequences each having a different length;generating the first DMRS sequence;modulating the first DMRS sequence to obtain a set of modulation symbols;mapping the set of modulation symbols to a first set of resource elements, wherein an interference, to a first modulation symbol of the set of modulation symbols and mapped to a first resource element of the first set of resource elements, that would be caused by a respective modulation symbol, obtained from a respective one of the one or more other DMRS sequences and mapped to the first resource element if generated, is in a predetermined relationship with the first modulation symbol; andtransmitting the set of modulation symbols on the first set of resource elements.
  • 2. The method of claim 1, wherein the interference is determined based on a cross-correlation measurement between the first modulation symbol and the respective modulation symbol.
  • 3. The method of claim 1, wherein each of the first length and respective lengths of the one or more other DMRS sequences is a different one of 6, 12, 18 and 24.
  • 4. The method of claim 3, wherein the first length is 24, wherein the one or more other DMRS sequences are a second DMRS sequence having a length of 18, a third DMRS sequence having a length of 12, and a fourth DMRS sequence having a length of 6; wherein the first DMRS sequence is 101001101101010110110010, wherein the second DMRS sequence is 101101011100000110, wherein the third DMRS sequence is 000100100010, and wherein a set of modulation symbols obtained from the fourth DMRS sequence are [ejπ/8, ej5π/8, ejπ/8, ej5π/8, ej3π/8, ej7π/8].
  • 5. The method of claim 1, wherein the predetermined relationship defines that the interference that would be caused by the respective modulation symbol obtained from the respective one other DMRS sequence is larger than or equal to an interference caused by any other modulation symbol, if mapped to the first resource element, obtained from the respective one other DMRS sequence.
  • 6. The method of claim 1, wherein the first set of resource elements overlaps, at a subset of resource elements, with a respective set of resource elements to which a set of modulation symbols obtained from the respective one other DMRS sequence is mapped, wherein the first resource element is any one of the subset of resource elements.
  • 7. An apparatus for wireless communication, the apparatus being a user equipment (UE), comprising: a memory; andat least one processor coupled to the memory and configured to:receive an indication for transmitting a first demodulation reference signal (DMRS) sequence having a first length in an uplink transmission, wherein the first DMRS sequence is time domain based, wherein the first DMRS sequence is associated with one or more other DMRS sequences each having a different length;generate the first DMRS sequence;modulate the first DMRS sequence to obtain a set of modulation symbols;map the set of modulation symbols to a first set of resource elements, wherein an interference, to a first modulation symbol of the set of modulation symbols and mapped to a first resource element of the first set of resource elements, that would be caused by a respective modulation symbol, obtained from a respective one of the one or more other DMRS sequences and mapped to the first resource element if generated, is in a predetermined relationship with the first modulation symbol; andtransmit the set of modulation symbols on the first set of resource elements.
  • 8. The apparatus of claim 7, wherein the interference is determined based on a cross-correlation measurement between the first modulation symbol and the respective modulation symbol.
  • 9. The apparatus of claim 7, wherein each of the first length and respective lengths of the one or more other DMRS sequences is a different one of 6, 12, 18 and 24.
  • 10. The apparatus of claim 9, wherein the first length is 24, wherein the one or more other DMRS sequences are a second DMRS sequence having a length of 18, a third DMRS sequence having a length of 12, and a fourth DMRS sequence having a length of 6; wherein the first DMRS sequence is 101001101101010110110010, wherein the second DMRS sequence is 101101011100000110, wherein the third DMRS sequence is 000100100010, and wherein a set of modulation symbols obtained from the fourth DMRS sequence are [ejπ/8, ej5π/8, ejπ/8, ej5π/8, ej3π/8, ej7π/8].
  • 11. The apparatus of claim 7, wherein the predetermined relationship defines that the interference that would be caused by the respective modulation symbol obtained from the respective one other DMRS sequence is larger than or equal to an interference caused by any other modulation symbol, if mapped to the first resource element, obtained from the respective one other DMRS sequence.
  • 12. The apparatus of claim 7, wherein the first set of resource elements overlaps, at a subset of resource elements, with a respective set of resource elements to which a set of modulation symbols obtained from the respective one other DMRS sequence is mapped, wherein the first resource element is any one of the subset of resource elements.
  • 13. A computer-readable medium storing computer executable code for wireless communication of a user equipment (UE), comprising code to: receive an indication for transmitting a first demodulation reference signal (DMRS) sequence having a first length in an uplink transmission, wherein the first DMRS sequence is time domain based, wherein the first DMRS sequence is associated with one or more other DMRS sequences each having a different length;generate the first DMRS sequence;modulate the first DMRS sequence to obtain a set of modulation symbols;map the set of modulation symbols to a first set of resource elements, wherein an interference, to a first modulation symbol of the set of modulation symbols and mapped to a first resource element of the first set of resource elements, that would be caused by a respective modulation symbol, obtained from a respective one of the one or more other DMRS sequences and mapped to the first resource element if generated, is in a predetermined relationship with the first modulation symbol; andtransmit the set of modulation symbols on the first set of resource elements.
  • 14. The computer-readable medium of claim 13, wherein the interference is determined based on a cross-correlation measurement between the first modulation symbol and the respective modulation symbol.
  • 15. The computer-readable medium of claim 13, wherein each of the first length and respective lengths of the one or more other DMRS sequences is a different one of 6, 12, 18 and 24.
  • 16. The computer-readable medium of claim 15, wherein the first length is 24, wherein the one or more other DMRS sequences are a second DMRS sequence having a length of 18, a third DMRS sequence having a length of 12, and a fourth DMRS sequence having a length of 6; wherein the first DMRS sequence is 101001101101010110110010, wherein the second DMRS sequence is 101101011100000110, wherein the third DMRS sequence is 000100100010, and wherein a set of modulation symbols obtained from the fourth DMRS sequence are [ejπ/8, ej5π/8, ejπ/8, ej5π/8, ej3π/8, ej7π/8].
  • 17. The computer-readable medium of claim 13, wherein the predetermined relationship defines that the interference that would be caused by the respective modulation symbol obtained from the respective one other DMRS sequence is larger than or equal to an interference caused by any other modulation symbol, if mapped to the first resource element, obtained from the respective one other DMRS sequence.
  • 18. The computer-readable medium of claim 13, wherein the first set of resource elements overlaps, at a subset of resource elements, with a respective set of resource elements to which a set of modulation symbols obtained from the respective one other DMRS sequence is mapped, wherein the first resource element is any one of the subset of resource elements.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims the benefits of U.S. Provisional Application Ser. No. 62/841,911, entitled “CGS SEQUENCES PAIRING FOR PI/2-BPSK BASED DMRS” and filed on May 2, 2019, which is expressly incorporated by reference herein in their entirety.

Provisional Applications (1)
Number Date Country
62841911 May 2019 US