Coaxial Radio Frequency (RF) connectors are used to terminate coaxial cable in order to act as an interface to conjoin multiple cables and cables to system equipment.
RF connectors come in a variety of dimensions and shapes for different powers, frequencies and applications, with most conforming to published standard dimensions to facilitate inter compatibility of different manufacturers' parts. Two such generally high power and frequency connector types are designated as “7-16” connectors and ‘N Type’ connectors.
A specific application for the 7-16 and N Type connectors has been in cellular communications networks to terminate ‘Jumper Cables’ to interconnect between infrastructure cables such as ‘Feeder Cables’ and to system equipment such as receiver and antennae systems and as an interface on the equipment itself. Feeder cables are rigid and larger such as Spinner LF 1⅝″-50. Jumper Cables are generally smaller and more flexible such as Hansen RF50 ½″ S.
Said cables, particularly Jumper Cables are known to Generate Passive Inter Modulation. ‘PIM’ describes the mathematical calculation of interference incurred in mixing one or more desired signals that result in a family of undesired signals; which in cellular telecommunications may interfere with the Base Receiver and result in desired signal losses and dropped calls. PIM represents a significant problem encountered with high frequency networks. The term is actually now taken to mean any disturbance or corruption of the original signal that includes 3rd harmonic modulation through mixing via introduced multiple signal paths, noise, reflections through impedance mismatches and a variety of other distortions that can affect signal integrity. The introduced 3rd harmonic side bands of the higher allocated centre frequencies easily can fall in the same place as other allocated centre frequencies within the spectrum and thus cause interference, distortions and noise to cascade through the spectrum creating what is termed as “spectrum filling” which reduces the effective Signal to Noise Ratio (SNR), slowing data rates and causing ‘dropped’ signals and in extreme cases effectively preventing or severely restricting use of entire sections of bandwidth
Coaxial connectors terminating jumper cables particularly the 7-16 connector make the major contribution to PIM generated from ‘Jumper Leads’. Such connectors are constructed from multifarious contiguous metal parts. The outer contiguous metal parts endow the connectors with an electromagnetic screen and return transmission pathway but the form factor and junctions of the contiguous metal parts cause non-linear and parallel path signals to be generated. The connection ‘Locking Nut’ which forms part of the return transmission channel typifies the problem, it must revolve around other parts of the transmission channel therefore without the application of significant compression forces which may in themselves be deleterious the assembly can only result in capacitive couplings at best. Moreover the screw threaded interior form of the locking nut causes arcing and further capacitive effects which all add to the problems of PIM.
Importantly the published standard for 7-16 General Purpose Connectors allows for up to 1 mm tolerance in some dimensions and aggregated with poor generic design and manufacturers individual tolerances provides too much variation in connector “form, fit & function” within the overall expected “standard” design as supplied by different manufacturers. Said variability presents a major inter-compatibility problem between different manufacturers' connectors in respect of electrical parameter performance that in some cases cannot be reconciled and as a result connections on any project must usually be limited to one manufacturer which has commercial implications. Even connectors from the same manufacturer require compression intensity achievable only by the use of sometimes inconvenient wrenches or other tools to create torsion of sufficient force to create only a moderately effective low PIM signal transition between male and female connectors. But such high torsion forces can result in flaking of electroplating the consequence of which is signal reflections and disturbances and in any event high torque cannot in of itself fully mitigate completely the inherent poor contact that creates higher than desired resistances and insertion losses that contribute to PIM
Significant magnetic field effects, signal harmonics and harmonic resonances from vibrations are also generated within the bulk of the connector bodies' conjoined metal parts and plating, all contributory factors to PIM. The metal structure is susceptible to noise and other detrimental environmental effects and if un-isolated is disposed to oxidisation and subsequent corrosion which is deleterious to electrical transmissions and a significant contributory factor to PIM, it is for this reason that most cables and Jumper Leads are terminated in factories dedicated to the process. The metal connectors are generally covered in a moulded shroud to prevent water ingress and oxidisation, but over-moulding cannot be effected on the connector locking nut which is a fundamental component of the return transmission path so notwithstanding metal and thermoplastic are not best suited to gas tight seals, no matter how competent the over moulding, corrosion is inevitable and corrosion based PIM gets worse as the installation ages.
Factory assembly of Jumper leads also causes its own problems in field installation; standard length, non-bespoke cables generally need to be bent or coiled to fit and cable bending especially close to the connector causes joints to flex and adds to the assault on the signal integrity and hence PIM problems. Moreover the excess of cable is generally difficult to manage and may become loose causing vibrations and ‘strike’ noise to be introduced in the signal path which can resonate through the transmission channel and is a further source of potential PIM.
Said connectors were designed in the 1940's primarily for terminating ‘Radio Guide’* Mil Spec* equipment and cables with straight braided and or foil type electromagnetic screens. Efficient deployment on more recently introduced broadcasting cables with undulating waveform design electromagnetic screening is less efficient and field termination in particular mostly results in poor termination and capacitive couplings, moreover it cannot result in the gas tight assembly necessary to resist ingress and corrosion.
Connector manufacturer mutability, component mutability, corrosion, poor mating features, multi component transmission paths and variability in assembled connector dimensions cause resistance, reflections, capacitive couplings, signal hysteresis, harmonics and Microphonics, all contributory factors to PIM.
Upon the introduction of 4G operating standards using wider frequency bandwidth allocations from 800 MHz through to 2.69 GHz in the UK (depending on the operator) many network systems employed for 3g have been upgraded by deploying higher specification transmission and receiver equipment. The upgraded systems often use the same infrastructure cabling systems and connectors. Even when entirely new systems are installed the cable, connectors and Jumper leads deployed are still frequently similar to or the same as those deployed in systems up to and including 3g standards but these traditional connective products are extremely limiting in the latest and future environments and in delivering on burgeoning demands for low PIM bandwidth that some present and future applications require.
A combination of methods incorporated into a connector device intended to terminate cables that will reduce cable induced PIM. The connector device will incorporate methods that provide better electrical connectivity and improved mechanical strength of the signal paths particularly the Electromagnetic Screen and Return Path circuit and to reduce parallel path signals and electromagnetic distortions by providing a linear signal passage without multiple transition points, threaded screw forms and other sharp features that cause PIM. The connector further Mitigates PIM by decoupling mechanical and electrical retention of connector to cable using a Locknut with Lock and Seal Ring. The step change improvements are made possible by incorporating a constrained electromagnetic screen ‘WaveWay’ which carries return transmissions and is formed from a single element independent uni-structure that when conjoined to its opposite gender may be isolated from all other transmission paths and sources of electrical interference within and or without the Connector Housings throughout its entireness and is electrically independent to any substrate with the ability to carry signal or interference within or without the connector. The WaveWay increases microscopic adhesion within the Electromagnetic Screen and Return Path of cable and connector at transition points by employing a cooperating Conical Mating Feature that reduces capacitive coupling and unwanted corrosive material ingress along with an improved undulating design feature that cooperates with standard commercial cables.
PIM caused by Microphonics have been mitigated by use of Connector Housings formed from dampening composite and compound materials such as ABS and vulcanised rubber.
This patent relates to the reduction of potential sources of PIM in Jumper Cable connections deployed in cellular communications and particularly the RF connector components incorporated therein, such as but not limited to N type and 7-16 connectors by preferably incorporating composite polymer, ceramic or vulcanised rubber based non-metallic Connector Housings and associated components that contain very little or no magnetic iron or other ferro-magnetic impurities currently causing problems in traditional metallic connectors. The preferred non-conductive non-ferrous materials do not oxidise, display no magnetic or harmonic properties and cannot propagate electrical signals, pulses or waves thereby limiting transmissions to defined, perfectly linear and constrained unified pathways that are isolated from all sources of electrical interference thus inhibiting interference and multiple signal pathways, including through the deleterious ‘Locking Nut’ and obliging such transmissions to follow the prescribed constrained pathways. Since the preferred materials of the Connector Housings and associated parts have virtually no electrical conduction properties they display effectively no signal hysteresis response to environmental, electromagnetic and other interference, contrariwise they have a dampening effect on eddy currents mechanical vibrations, and microphonic and harmonic sources of PIM.
The described linear return transmission path also serves as the electromagnetic screen and may preferably be provided in a single element form, the ‘WaveWay’, whose structure provides a constrained, single linear signal pathway that that is essentially formed in the inverse to the form of the undulating Electromagnetic Screen and Return Path of broadcast cable and may be formed on the inner surface of the Connector Housing or as an independent component. Conductivity for the WaveWay may be affected by selective coating on the non-conductive Connector Housings. Reproducing the undulating form of the broadcast cable in the substrate of the connector increases empathetic surface connection area between the ‘WaveWay’ and cable and prevents microscopic separation of the transmission pathway thus forming a harmonious unification of conjoined surface area that promotes enhanced electrical performance between conjoined surfaces and thereby enhances efficiency of signal transition from cable to connector. The single element ‘WaveWay’ further provides a perfectly linear transmission path through the connector that prevents the parallel transmissions, resistances and distortions that are created by multiple conjoined parts thereby delivering the enhanced signal to the inter-mating face of the ‘WaveWay’ with minimum distortion and loss.
Male and Female WaveWay inter-mating surfaces may preferably incorporate a Conical Mating Feature each in the inverse design and co-operative to its opposite gender thereby bestowing a more ergonomic mating surface which requires very little compression or torque in consequence preventing stressed connections whilst increasing conjoined surface area thereby increasing the bond and electrical performance between the two WaveWay genders without applied high compression which can be a cause of other sources of PIM. The said Conical Mating Feature may incorporate one part of its circumference area that is compatible with established connector manufacturer dimensions thereby allowing the return transmission path to establish an electrical connection with all other manufacturers connectors in addition to the connector described herein and facilitate the processing of electrical signals, impulses and waves between other connector designs and the subject connector of this patent application.
When assembled to cable, the empathetic undulating design of the WaveWay forms an exceptional union or bond to the cable through the interconnected undulating corrugations that unless disassembled requires such equivalent forces as are necessary to destroy the physical form of the cable and or connector to break thereby imparting an exceptional durability to the connection.
Alternatively the required Electromagnetic Screen and Return Transmission Path may be provided via an independent ‘WaveWay’ inserted into the Connector Housing that co-operates with the undulating form of the cable and may be selectively coated with conductive polymers or any other conductive material. Said ‘WaveWay’ may typically be manufactured of the same or similar material as the Connector Housing or from metal or any suitable conductive or none conductive substrate that may be coated to provide electrical conduction thus similarly constraining returned transmissions to a single linear pathway that prevents multiple transmission paths and forms an empathic almost indestructible bond between connector, ‘WaveWay’ and cable.
Through use of relatively thin skin-effect coatings signal paths may be tightly constrained compared to solid large cross-sectional conductor components. Said constrained pathways reduce PIM by reducing signal phase distortions, harmonic resonances, microphonic effects and unwanted multi-path signal mixing. Said designs facilitate low return path resistances and improve signal integrity and amplitudes throughout the system as well as reducing I2R losses and provide lower damping time constants all of which are essential for lowering PIM in high efficiency, high-speed network data transmission.
Preferred design of the ‘WaveWay is preferably formed of one piece monocoque or uni-structural design but may also be a clam-shell design with WaveWay Adaptor and the aforesaid Connector Housing designed to fit over it and protect it from environmental effects and interference. The Undulating Waveform design feature of the WaveWay may preferably be formed in exactly the inverse dimensions and co-operative to the undulations of the broadcast cable to which it is designed to be conjoined thereby increasing the conjoined surface area between the cable and the connector when assembled and in so doing increasing the microscopic adhesion and efficacy of the electrical performance between the two in addition to forming a physical and electrical connection that can only be broken upon disassembly or by such forces as are necessary for destruction of the cable and or connector.
Composite and compound plastic or ceramic materials such as glass filled ABS or similar materials that impart robustness, stability and accuracy of shaping may preferably be employed in the construction of the Connector Housing and such other materials as may benefit a desired application may preferably be introduced such as but not limited to vulcanised rubber to provide an element of flexing to lower torsion and refraction stresses and hydrophobic matter to provide fluid repulsion at areas vulnerable to ingress. Such materials may be injection moulded to create complex shapes at lower cost without the currently necessary machining and assembly of multiple metal parts commonly used in conventional connectors, the combination of which are in any event inefficient and generate their own resistances and electrical problems. Moreover the preferred lightweight composite materials display vibration dampening and attenuating qualities which help to reduce PIM.
The relatively poor forward transmission path contact co-operation at signal contact areas may be improved by incorporating a Contact Closing Collet circumventing the male contact to stop the female contact ‘splaying’ or relaxing its grip over time and to constrain the female contact thereby to prevent microscopic separation between the two and increase contact area in a stress free manner, in so doing increase signal efficiency by decreasing capacitive couplings, reflections and resistances.
The WaveWay described herein and the Contact Closing Collet prevent microscopic separation within the forward and return transmission paths providing the connector with increased tolerance to flexure thereby imparting far greater tolerance to environmental stresses such as striking and movement of Jumper leads and conjoined cables and taken together with the vibration dampening effect of the Connector Housings and associated components reduce connector and channel generated PIM considerably.
Some broadcast cables incorporate a displaced non-axial centre conductor to improve flexibility therefore in order to ensure centrality of said conductor when conjoined with the Connector Dielectric said Connector Dielectric may incorporate a Dielectric Contact Guide that ensures concentricity of the conductor at the WaveWay inter-Mating Feature.
The Connector Housing may preferably incorporate super Hydrophobic matter within its substrate or be factory or field treated with a super hydrophobic nano coating to impart water repellent qualities to areas vulnerable to ingress thereby providing a method of repelling fluid. An enveloping watertight Cable Locknut with Cable Lock and Seal “O” Rings may also be incorporated at the rear cable mating part of the connector housing not only to prevent ingress but also to decouple the WaveWay from retention stresses and Male Connector Housing Nose and Locknut Seal Silicone “O” Rings at the forward connector mating areas of the connector together with a Male Connector Housing Locknut Retaining Ring to prevent ingress. Further options to improve ingress resistance may include the incorporation of further seals and Silicone “O” Rings or an ingress resistant Boot either as a separate entity or as an extension of the Compression Cap thereby to ensure the connector has a gas tight seal to the cable and is impervious to ingress. A further or alternative improvement to IP ratings may be the placement of a water resistant shroud, boot or over-sheath to the exterior of the connector for certain applications. Water resistant oils or other water resistant material may also be applied to the exterior parts of the connector at the more vulnerable areas to ingress such as the Male Connector Locknut and Cable Locknut conjoining areas.
The preferred low compression coupling and Signal Transition Area designs described herein provide robust high microscopic adhesion with such low compression necessary to provide proficient low PIM signal transit that inter-coupling of connectors may be effected by hand without wrenches or other torsion or compression inducing tools. A preferred embodiment of the connectors incorporates a hand grip ‘Handigrip’ design to be configured into the Male Locking Nut and Female Connector Housing to assist in effecting a rapid and convenient quick-twist method of conjoining connectors. The quick-twist feature imparts a rapid and efficient tool less method of field termination that taken together with the preferred methods of providing a low compression, low signal distortion, gas tight fit and fluid repulsion permits hand assembly of bespoke cables in the field of exceptional durability and high PIM performance that bestows an almost indestructible union of cables and connectors on the assembly in addition to galvanic corrosion prevention of the transmission channels.
The connectors described herein provide a method of hand manufacturing low PIM high performance Feeder and Jumper cables in the field so competently there is no requirement for Feeder and Jumper Cables to be factory manufactured remotely thereby allowing bespoke Cables to be made in the field of the exact length required for the individual site and application thus eliminating PIM caused from loose cable.
The described connector may not conform to all published standard dimensions of the general standard of connectors such as but not limited to 7-16 but the Conical Mating feature nevertheless provides a progression of inter-mating dimensions that creates a method of bestowing a functional fit to all major manufacturers connectors and may conjoin with those connectors to provide a conduit for electrical signals, impulses or radio waves. Alternatively perfect compatibility with other manufacturers connecters can be achieved by the incorporation of an independent bespoke WaveWay Converter that may provide a Mating Feature of the exact dimensions to those of any specified manufacturer thereby to provide the WaveWay connector with the ability to be conjoined with any specified manufacturers connector in order to create a lower PIM coupling to that of said specific manufacturers connector as if the manufacturers own connectors had been coupled together and further makes the WaveWay connector the only known connector that is interchangeable with any other manufacturers connector without any deleterious effect on signal transit or performance between the two connectors.
The Figures show preferred embodiment forms of the new connector that incorporates a Connector Housing as shown in
There will now be described further embodiments of the WaveWay;
Said WaveWays may alternatively preferably be formed of separate components to the Connector Housing structure as shown in
A further preferred embodiment of the described WaveWay may incorporate at least one Longitudinal Split
A further embodiment of the WaveWay is of ‘clam-shell’ design as shown in
A further embodiment may be a bespoke Convertor WaveWay
A preferred embodiment of the Connector Housings preferably incorporates a Male
Connector Locknut
The Male Contact
Conversely the Contact Closing Collet may be formed from a metallic substrate or form part of the structure of the Male Contact.
A preferred connector embodiment preferably incorporates Connector Dielectric components
A preferred embodiment preferably also incorporates a rear compression Cable Locknut
A further preferred embodiment preferably incorporates a Male Connector Locknut incorporating at least one Male Connector Housing Nose Seal “O” Ring
The described Splice Housing may preferably exhibit all the same beneficial properties as afore ascribed to the Male and Female Connector Housings and is provided with internal recesses that cooperate with the WaveWay external Mating
Features to allow a close radial fit but are smooth
Cable Compression Locknuts may then be tightened to compress the WaveWays together to ensure good electrical connectivity.
Cable Compression Locknut O Rings
This embodiment maintains a relatively small diameter such that a simple parallel tubular heat shrink may be applied over the entire assembly and heat shrunk to fit to provide a high integrity atmospheric seal suitable for underwater and similar applications.
All the aforesaid embodiments may incorporate Super Nano Hydrophobic matter to provide the connector with fluid repulsion properties the better to seal and protect the transmission elements from fluid ingress and subsequent galvanic corrosion.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2015/000246 | 8/18/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/027050 | 2/25/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3793610 | Brishka | Feb 1974 | A |
4046451 | Juds | Sep 1977 | A |
5354217 | Gabel | Oct 1994 | A |
5911599 | Masuda | Jun 1999 | A |
6019635 | Nelson | Feb 2000 | A |
6802739 | Henningsen | Oct 2004 | B2 |
6939169 | Islam | Sep 2005 | B2 |
7311554 | Jackson | Dec 2007 | B1 |
7347729 | Thomas | Mar 2008 | B2 |
7351101 | Montena | Apr 2008 | B1 |
7462069 | Studerus | Dec 2008 | B2 |
7635283 | Islam | Dec 2009 | B1 |
7637774 | Vaccaro | Dec 2009 | B1 |
7690693 | Moner | Apr 2010 | B2 |
7736181 | Benevento | Jun 2010 | B1 |
7934954 | Chawgo | May 2011 | B1 |
8038472 | Montena | Oct 2011 | B2 |
8047870 | Clausen | Nov 2011 | B2 |
8113878 | Clausen | Feb 2012 | B2 |
8157589 | Krenceski | Apr 2012 | B2 |
8177582 | Amidon | May 2012 | B2 |
9166306 | Montena | Oct 2015 | B2 |
9172156 | Nugent | Oct 2015 | B2 |
9270046 | Natoli | Feb 2016 | B2 |
9772348 | McGrath, Jr. | Sep 2017 | B2 |
9806473 | Kim | Oct 2017 | B2 |
9941609 | Paynter | Apr 2018 | B2 |
10177469 | Wu | Jan 2019 | B2 |
20050023832 | Edler | Feb 2005 | A1 |
20130244484 | Wild | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
9400943 | Apr 1994 | DE |
4309775 | Sep 1994 | DE |
2530708 | Apr 2016 | GB |
Entry |
---|
International Search Report dated Feb. 4, 2016 for corresponding International Application No. PCT/GB2015/000246, filed Aug. 18, 2015. |
Written Opinion of the International Searching Authority dated Feb. 4, 2016 for corresponding International Application No. PCT/GB2015/000246, filed Aug. 18, 2015. |
International Preliminary Report on Patentability dated Oct. 21, 2016 for corresponding International Application No. PCT/GB2015/000246, filed Aug. 18, 2015. |
European Examination Report dated Feb. 13, 2020 for corresponding EP Application No. 15774946.6. |
Number | Date | Country | |
---|---|---|---|
20170162989 A1 | Jun 2017 | US |