The present invention relates to a centrifugal blower assembly for a heating, ventilation, and air-conditioning (HVAC) module for a motor vehicle; more specifically, to the air entrance of a centrifugal blower assembly for a HVAC module.
Heating, ventilation, and air-conditioning (HVAC) modules for automotive applications are known to use centrifugal blower assemblies. A centrifugal blower assembly typically includes an impeller disposed within a blower housing. The impeller is defined by a hub having a series of radially disposed and axially extending fan blades. An air flow space is defined between the outer edges of the fan blades and the interior surfaces of the blower housing. The shaft of an electric motor is attached to the center of the hub and the motor is operative to rotate the impeller at varying speeds. The electric motor rotates the blower at a predetermined speed causing the fan blades to pull in outside air in an axial direction toward the center of the blower housing and then forces the air radially outward out of the blower housing and through the HVAC module.
At certain speeds of rotation of the impeller during normal operation, a large sector of fan blades may be subjected to blade stall, resulting in reduced blower efficiency. During stall conditions, the air flow separates from the fan blades resulting in eddies downstream close to the impeller hub and upstream close to the fan edges. The reversing of the air flow through stalled blades results in turbulent flow and significant noise production
Based on the foregoing, there is need for centrifugal blow assembly that has a reduced susceptibility for stall conditions, greater efficiency of energy transfer, and lower noise generation.
The present invention provides a centrifugal blow assembly having a blower housing, an impeller adapted for rotation about an axis A-A disposed in the blower housing, and an intake plenum cooperating with the interior first surface of the blower housing to define an air entrance passage for receiving an incoming air flow. The intake plenum includes means to split the incoming air flow into a plurality of air streams and direct the air streams to predetermined portions of the impeller that are susceptible to stall conditions as the impeller rotates about the axis A-A. The means to split the incoming air flow may include a splitter plate disposed in the air entrance passage or at least one port defined in a portion of the air intake plenum adjacent the impeller.
Further features and advantages of the invention will appear more clearly on a reading of the following detailed description of an embodiment of the invention, which is given by way of non-limiting example only and with reference to the accompanying drawings.
This invention will be further described with reference to the accompanying drawings in which:
In reference to
Referring to
The impeller 50 is defined by a central hub 122 having a series of fan blades 124 disposed radially on a perimeter surface of the hub 122. Each of the fan blades 124 includes an interior edge 126 facing the hub 122, an exterior edges 128 facing away from the hub 122, and a distal edge 130 extending from the hub 122 in a direction toward the air entrance passage 116. The center of the hub 122 is attached to a shaft 105 of an electric motor 104 operative to rotate the impeller 102 at varying speeds. The impeller 102 and blower housing 108 may be made of any molded plastic material known in the art.
Referring to the prior art centrifugal blower assembly 100 shown in
Also, due to the dynamics of the incoming axial air flow with the blower housing 108 and impeller 102, the incoming axial air flow may not be uniformly loading the entire length of each fan blade 124. A greater mass amount of air flow loads the portion of the fan blade 124 nearest the hub 122 and a lesser mass amount of air flow loads the portion of the fan blade 124 nearest the distal edge 130. The non-uniform loading of air onto the full length of the fan blades 124 significantly impairs the fan's ability to transfer energy into the incoming air stream. The non-uniform distribution of the air flow to the circumference of the impeller 102 and the non-uniform loading of the air flow onto the full length of each fan blades 124 result in reduced efficiency of the impeller 102 and increase in operating noise.
Referring to
Referring to
The splitter plate 200 may include a central opening 202 sized to reduce the mass of airflow toward the center of the impeller 102 and at least one periphery openings 204 disposed adjacent the perimeter of the splitter plate 200 to target the circumference of the impeller 102 and distal ends 130 of the fan blades 124. The periphery openings 204 may be channeled through the splitter plate 200 in a direction to direct an auxiliary stream of air flow substantially perpendicular to the primary flow. It is preferable to position the splitter plate 200 within about 0.5 times the diameter of the impeller 102 away from the distal ends 130 of the blades 124. For a typical blower assembly used in an automobile, 0.5 mm may be about the max distance desirable, best location is about 0.1-0.2 times the impeller diameter.
Referring to
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the intentions without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/782,092 for a “Low Power and Low Noise Fan-Scroll with Strategic Flow Control and Selective Targeting of Fan with Multiply Split Incoming Air Stream” filed on Mar. 14, 2013, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5063832 | Mirumachi | Nov 1991 | A |
5690470 | Zimmer | Nov 1997 | A |
5813831 | Matsunaga | Sep 1998 | A |
7175398 | Kinmartin et al. | Feb 2007 | B2 |
7381028 | Hancock et al. | Jun 2008 | B2 |
7699587 | Chapman et al. | Apr 2010 | B2 |
7972110 | Seki | Jul 2011 | B2 |
20040253098 | Hancock | Dec 2004 | A1 |
20050217624 | Gunter | Oct 2005 | A1 |
20130052001 | Su et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
0846868 | Oct 1998 | EP |
Number | Date | Country | |
---|---|---|---|
20140271166 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61782092 | Mar 2013 | US |