Complementary Metal Oxide Semiconductor (CMOS) circuits, especially large drivers as found in Input/Output (I/O) buffer designs, are required to output high and low levels. This requires transistors to pull voltage signals “up” for high level outputs and pull signals “down” for low level outputs. Large pull-up and pull-down field effect transistors (FETs) in totem pole drivers can be required for clock drivers and to generate fast edge rates required for high bandwidth connectivity. One disadvantage of these drivers are the large amounts of alternating current (AC) switching power that they require for their operation.
Accordingly, a need exists for improved circuit switching and, in particular, an improved CMOS switching circuit.
A switching circuit consistent with the present invention includes a charge reservoir and a control circuit connected to the charge reservoir. The control circuit receives signals at control terminals, and it delivers a switching signal to an output terminal. A first set of signals delivered to the control terminals causes the charge reservoir to deliver charge to the output terminal, and a second set of signals delivered to the control terminals causes charging of the charge reservoir. With the charge reservoir, charge from falling signals is conserved and used to help rising signals at the output, reducing the power required to provide an output switching signal.
The accompanying drawings are incorporated in and constitute a part of this specification and, together with the description, explain the advantages and principles of the invention. In the drawings,
Embodiments of the present invention can significantly reduce the amount of power dissipated by CMOS circuit switching. A switching circuit and method, consistent with the present invention, use less power and can be used to slow down edge rates for lower electromagnetic interference (EMI), less power supply noise, and better signal integrity of output drivers. Embodiments of the present invention can also reduce the switching noise induced on power supplies.
A CMOS switching circuit is used to transmit data. CMOS circuits can be used for many different applications such as, for example, to perform the following functions: invert signals; repeat signals; and perform logical operations such as AND, OR, NAND, NOR, XOR, or XNOR operations. A CMOS switching circuit can also be used as, for example, an I/O buffer. The purpose of an I/O CMOS circuit (buffer) is to communicate signals from a chip embodying the circuit to the hardware outside of the chip, and from the hardware to the chip embodying the circuit. Examples of that hardware include the board on which the chip is located, other chips, cables, or other hardware elements. Therefore, I/O CMOS circuits communicate data from the chips embodying the circuits to the environment outside of the chips, and from the outside environment to the chips. A CMOS switching circuit, consistent with the present invention, may be used on any chip that may have power constraints such as, for example, an Integrated Circuit (IC), application specific integrated circuit (ASIC), or central processing unit (CPU).
The delay line 34 is used to control the transition point between using the mid-rail voltage 38 and the supply voltages for transitioning low-to-high or high-to-low. The output and delay lines 32 and 34 drive the output MUX select lines 48 (S1) and 50 (S0) to select the correct output voltage (supply voltage VDD or mid-rail reference voltage 38) during switching. The S1 and S0 signals (lines 48 and 50), used to control the MUX 36, are connected to the Output signal, which is the data bit being transmitted out from the chip containing circuit 30 to, for example, a pad or circuit board. In this example, the delay line 34 is implemented with a plurality of CMOS inverters connected in series.
Table 1 is a truth table which identifies how the circuit 30 functionally operates. When there are many I/O buffers or large CMOS inverters in parallel, they can benefit from each other's switching and conserver charge. Assuming half the output signals in circuit 30 are switching from VDD to GND and the other half from GND to VDD at any given time, and assuming they all drive the same size of load 46, then the charge placed on Vmid-rail 38 from the falling signals is conserved and used to help the rising signals rise from GND to Vmid-rail 38.
While the present invention has been described in connection with an exemplary embodiment, it will be understood that many modifications will be readily apparent to those skilled in the art, and this application is intended to cover any adaptations or variations thereof. For example, different components for the various circuit elements may be used without departing from the scope of the invention. This invention should be limited only by the claims and equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4342927 | Hull | Aug 1982 | A |
4446390 | Alaspa | May 1984 | A |
5406141 | Yero et al. | Apr 1995 | A |
5424656 | Gibson et al. | Jun 1995 | A |
6211701 | Kuljik et al. | Apr 2001 | B1 |
6307417 | Proebsting | Oct 2001 | B1 |
6369632 | Barnes | Apr 2002 | B1 |
6456126 | Lo et al. | Sep 2002 | B1 |
6483886 | Sung et al. | Nov 2002 | B1 |
6526374 | Martin | Feb 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20060055422 A1 | Mar 2006 | US |