The present disclosure pertains to control devices and particularly to devices consuming low amounts of power.
The disclosure reveals a circuit that may ensure ultra-low power relay switching to control an AC load and avoid much of a reduction of a battery's lifetime. A control circuit may be designed to work where power is provided at very low duty cycles in that the on-time of applied voltage is quite short compared to its off-time. During the on-time, power such as that from a battery may be consumed to drive the circuit but overall such consumption of power is almost miniscule, for instance, a few microamperes or less from a three volt battery. An input FET may drive a pair of switching FETs that provide pulses to a transformer which provides a ramp of voltage that remains above zero volts to a pair of AC switch FETs. An output of the AC switch may go to operate relays of a wire saver for operating one or more thermostats.
The present system and approach may incorporate one or more processors, computers, controllers, user interfaces, wireless and/or wire connections, and/or the like, in an implementation described and/or shown herein.
This description may provide one or more illustrative and specific examples or ways of implementing the present system and approach. There may be numerous other examples or ways of implementing the system and approach.
Circuit 10, 20 may disconnect unused parts from battery power while a load is turned on by a high side load FET 16 and a low side load FET 19. As a result, an AC load 35 may be normally on while battery power is cut, and the entire circuit may consume just a few microamperes.
Circuit 10, 20 may work at very low duty cycle, where the on-time is quite short compared to the off-time. During the on-time, battery power may be consumed but such consumption of power may be rather low since the duty cycle is low. During the off-time, a load 35 may be on but the battery power to the load can be cut-off by switch FETs 25 and 26 of package 37 (FDMC89521L), and the load may consume only leakage current, i.e., few microamperes. A supply voltage on conductor 18 for circuit 10 may operate in a range from 2.0 Vdc to 5.0 Vdc. FETs 16 and 19 of package 36 (FDC6321C) may be used as a load switch. A P-channel FET 16 may be placed in a high side of the load and an N-channel FET 19 may be placed in a low side of the load, respectively. FETs 16 and 19 may be controlled by an N-channel FET 14 (2N7002) and turned on and off simultaneously in less than 3.3 microseconds every 100 milliseconds by an input switching signal 38 (
Both positive and negative AC waveforms may pass through AC switch FETs (FDC89521L) while package 36 (FDC6321C) is turned off. A 68 micro-henry dual power inductor (SDQ12-680-R) or transformer 21 may be used as a load. Inductor 21 may isolate the battery power and AC load 35. Inductor 21 may work with a flyback switching topology. Total power consumption may be measured to be less than two microamperes while AC switch 37 (FDMC89521L) stays on.
A “K” circuit 30 that uses field effect transistors (FETs) 43 and 44 may be noted. A thermostat wire saver 41 (i.e., a Honeywell™ THP9045A wiring module with K circuitry) may be used with a thermostat that needs a 24 volt common wire but does not have one. The thermostat may work with a multiplexer which consists of two relays and two diodes mounted on the thermostat. But a relay may switch off so slowly that the K circuitry switches stay on for about two seconds. After this, the load may run continuously after another load runs. The present circuit may use MOSFETS (FETs) which can handle large voltage and current much faster than a relay. The circuit may insure that when the switch circuit is off, the load stops virtually instantly.
There may be a reliability increase with a MOSFET switching circuit used lieu of a relay circuit. The MOSFET circuit switching time appears to be much faster than that of a relay. When a FET is turned on, the load may run virtually instantly. When the FET is turned off, the load may stop virtually instantly.
When a Y FET 10 is switched on, the following may occur. If an N-channel FET 43 (2N7002) is switched on, 24 VAC pulses may appear on the drain of FET 43. However, the positive 24 VAC pulses may be blocked by diode 45 and just the negative 24 VAC pulses appear on a K line 47 of wire saver 41. The pulses may enable a relay on the wire saver 41, such as a K2 relay 51 may be enabled in that the contacts close. In the meanwhile, a K1 relay 52 may be disabled because the 24 VAC negative pulses are being blocked by a body diode of FET 44. Also, the negative pulses may be blocked by diode 54. Relays 51 and 52 of wire saver or circuit 41 are shown in a diagram of
When a G FET 20 is switched on, the following may occur. The N-channel FET 44 (2N7002) may be switched on and 24 VAC pulses may appear on the drain of FET 44. But the negative 24 VAC may be blocked by diode 46 and just the positive 24 VAC pulses may appear on K line 47 of wire saver 41. The positive pulses may enable a K1 relay 52 on the wire saver 41, and the G relay may be enabled in that the contacts close. In the meanwhile, the K2 relay 51 may be disabled because the 24 VAC positive pulses are being blocked by the body diode of FET 43. The positive pulses may also be blocked by diode 53.
When both Y FET 10 and G FET 20 are switched on, the following may occur. If FET 43 and FET 44 are switched on and 24 VAC pulses appear on the drains of FET 43 and FET 44, and both positive and negative 24 VAC pulses appear on K line 47 of wire saver 41, both K1 relay 52 and K2 relay 51 may be enabled in that both sets of contacts close. A K1 relay 52 may provide a G output. A K2 relay 51 may provide a Y output.
When both Y FET 10 and G FET 20 are switched off, the following may occur. When both Y and G FETs 10 and 20 are switched off, then both FET 43 and FET 44 may be switched off, and no 24 VAC pulses will appear on K line 47 of wire saver 41. Both K1 relay 52 and K2 relay 51 may be disabled in that both sets of contacts are open.
When just FET 44 is on, then a waveform 55 may appear on line 47 and turn on relay 52 in wire saver 41. When just FET 43 is on, then a waveform 56 may appear on line 47 and turn on relay 51. When FET 44 and FET 43 are on, then a waveform 57 may appear on line 47 and turn on relay 52 and relay 51. Waveforms 55, 56 and 57 are shown in
When wire saver 41 is not in use, there may be a 24 VAC load relay 51 output Y relative to circuit 10. When wire saver 41 is not in use, there may be a 24 VAC load relay 52 output G relative to circuit 20.
Examples for relay out connections may be noted. As to “Relay out-G” from component 52 in
To reiterate,
Signal 38 may proceed from terminal 12 through a 10 ohm resistor 13 and on to a gate of an N-channel FET 14. A 100 k ohm resistor 15 may be connected between the gate of FET 14 and a ground 15. The source of FET 14 may be connected to ground 15. The drain of FET 14 may be connected a gate of a high side P-channel FET 16 and to a one end of a 2.26 k ohm resistor 17. The other end of resistor 17 may be connected to conductor 18 for connection to a positive terminal of a battery. A negative terminal of the battery may be connected to ground 15. There may be a 0.1 microfarad capacitor 48 connected from conductor 18 to ground 15 (
A drain of FET 16 may be connected to a dot-end of a first winding (i.e., primary side) of a transformer 21. A drain of FET 19 may be connected to a non-dot end of the first winding of transformer 21. A signal 39 shown in
A non-dot end of a second winding (i.e., secondary side) of transformer 21 may be connected to an anode of a diode 22. A 100 picofarad capacitor 23 may be connected across the terminals of diode 22. A cathode of diode 22 may be connected to one end of a 15 ohm resistor 24. The other end of resistor 24 may be connected to a gate of an N-channel FET 25 and a gate of an N-channel FET 26 via a gate conductor 29. A signal 42 shown in
A dot-end of the second winding of transformer 21 may be connected to sources of FET 25 and FET 26 along conductive line 49. A 0.01 microfarad capacitor 27 may have one end connected to the gates of FETs 25 and 26 and the other end connected to the dot-end of the second winding of transformer 21. A 10 mega ohm resistor 28 may have one end connected to the gates of FETs 25 and 26 and the other end connected to the dot-end of the second winding of transformer 21. Two zener diodes 31 and 32 may have their cathodes connected to the gates of FETs 25 and 26 and their anodes connected to the dot-end of the second winding of transformer 21. The windings of transformer 21 may have a one-to-one turn's ratio. A drain of FET 25 may be connected as an AC output 33 of AC load 35. A drain of FET 26 may be connected to an AC input 34 of AC load 35.
FET 14 may be a 2N7002 N-Channel enhancement mode device. FETs 16 and 19 may be in a package 36 of dual N and P channel logic level enhancement mode FETs having a model no. FDC6321C. FETs 25 and 26 may be in a package 37 of a dual N-channel MOSFET having a model no. FDMC89521L. The noted FET products may be those of Fairchild Semiconductor Corporation. Transformer 21 may have a model no. SDQ12-680-R that is a Coiltronics™ product. Diode 22 may have a model no. 1N914BWS that is a product of Fairchild Semiconductor Corporation.
To recap, a mechanism for low power consumption load switches, may incorporate a switch having an input terminal for a low duty cycle signal having a duty cycle of less than ten percent, and having an output terminal for connection to a voltage supply, a dual switch having a first input terminal connected to the output terminal of the single switch, a second input terminal connected to the input terminal of the single switch, and having first and second output terminals, respectively, a transformer having a first end of a primary winding connected to the second output terminal of the dual switch, a second end of the primary winding connected to the first output terminal of the dual switch, and having a first end and a second end of a secondary winding, and an AC switch having a first terminal connected to the first end of the secondary winding of the transformer, a second terminal connected to the second end of the secondary winding of the transformer, and having third and fourth terminals. The third and fourth terminals of the AC switch may be for connection to a load.
The low duty cycle signal may incorporate a series of pulses.
A signal appearing across the first and second ends of the primary winding of the transformer, may start at a trailing edge of each pulse of the low duty cycle signal, with an initial maximum magnitude and, within a period of time less than a width of a pulse of the low duty cycle signal, may ramp down to zero.
A signal appearing at the first terminal of the AC switch may start at a leading edge of the signal appearing across the first and second ends of the primary winding of the transformer, then rise to a first voltage and then ramp down to a second voltage, where the signal at a next leading edge of the signal appearing across the first and second ends of the primary winding of the transformer, may then rise to the first voltage and then ramp down to the second voltage at a next leading edge of a next signal appearing across the first and second ends of the primary winding of the transformer, in a repetitive manner as long as the low duty cycle signal appears at the input of the signal switch and the voltage supply is provided at the output terminal of the single switch.
An amount of current from the voltage supply may range from one-tenth microampere to one milliampere for a control current at the load greater than ten milliamperes.
An approach for low power switching of a load, may incorporate providing an input FET for receiving a low duty cycle signal having a duty cycle of less than ten percent and for connection to a supply voltage, to be switched in accordance with the low duty cycle signal, connecting an input of a high side FET to an output of the input FET, connecting an input of a low side FET to a terminal for receiving the low duty cycle signal, connecting a first end of a primary winding of a transformer to an output of the low side FET, connecting a second end of the primary winding of the transformer to an output of the high side FET, connecting a first end of a secondary winding of the transformer to an input of a first AC switch FET and an input of a second AC switch FET, connecting a second end of the secondary winding of the transformer to a first terminal of the first AC switch FET and a first terminal of the second AC switch FET, and connecting a second terminal of the first AC switch FET and a second terminal of the second AC switch FET to an AC load.
The input FET may incorporate a gate for receiving the low duty cycle signal. The input FET may incorporate a drain for connection to the supply voltage and as an output of the input FET. The high side FET may incorporate a gate as the input connected to the output of the input FET. The low side FET may incorporate a gate as the input connected to the terminal for receiving the low duty cycle signal. The low side FET may incorporate a drain as the output of the low side FET. The high side FET may incorporate a drain as the output of the high side FET. The first AC switch FET may incorporate a gate as the input of the first AC switch FET. The second AC switch FET may incorporate a gate as the input of the second AC switch FET. The first AC switch FET may incorporate a source as the first terminal of the first AC switch FET. The second AC switch FET may incorporate a source as the first terminal of the second AC switch FET. The first AC switch FET may incorporate a drain as the second terminal of the first AC switch FET. The second AC switch FET may incorporate a drain as the second terminal of the second AC switch FET.
The input FET may be an N-channel device. The high side FET may be a P-channel device. The low side FET may be an N-channel device. The first AC switch FET may be an N-channel device. The second AC switch FET may be an N-channel device.
The low duty cycle signal, incorporating pulses, may have a duty cycle less than five percent. A signal appearing across the first and second ends of the primary winding of the transformer, may begin at a trailing edge of each pulse of the low duty cycle signal, with an initial maximum magnitude and after a period of time less than a period of time of a width of pulse of the low duty cycle signal, ramp with a decline to a minimum magnitude.
A signal appearing on an input of the first AC switch FET may start at a leading edge of the signal appearing across the first and second ends of the primary winding of the transformer, rise to first voltage and then decline to a second voltage, where a next leading edge of a signal appearing across the first and second ends of the primary winding may rise to the first voltage and then decline to the second voltage at a next signal appearing across the first and second ends of the primary winding, in a repetitive manner as long as the low duty cycle signal is being received by the input FET, and connection to the supply voltage is provided at the input FET.
An amount of current from the supply voltage may range from one-tenth microampere to one milliampere for a control current of ten milliamperes or greater at the AC load.
A load switch system may incorporate an input interface, a signal conditioner and driver connected to the input interface, an inductive load connected to the signal conditioner and driver, and an AC switch connected to the inductive load. A signal to the input interface may have a duty cycle less than ten percent.
The input interface may incorporate a transistor having an input for receiving the signal. The signal conditioner and driver may incorporate a dual channel circuit. The inductive load may incorporate a transformer. The AC switch may incorporate a dual transistor AC switch.
The dual channel circuit may have a first input connected to an output of the transistor, and a second input connected to the input of the transistor. The transformer may have a first end of a primary winding connected to a first output of the dual channel circuit and a second end of the primary winding connected to a second output of the dual channel circuit. The dual transistor AC switch may have a first common terminal connected to a first end of a secondary winding of the transformer, a second common terminal connected to a second end of the secondary winding of the transformer, and a first output and second output connected to an AC load.
The input of the transistor may be for the signal having a duty cycle. The output of the transistor and the first input of the dual channel circuit may be for connection via a resistor to a battery voltage. A first common terminal of the dual channel circuit may be for connection to a battery voltage. A common terminal of the transistor and a second common terminal of the dual channel circuit may be for connection to a ground having a zero voltage reference.
The duty cycle may be less than one-tenth percent.
The transistor may be an N-channel FET. The dual channel circuit may incorporate a P-channel FET and an N-channel FET. The dual transistor AC switch may incorporate a first N-channel FET and a second N-channel FET.
The input of the transistor may incorporate a gate of a FET. The output of the transistor may incorporate a drain of the FET. The first input of the dual channel circuit may incorporate a gate of a first FET. The first common terminal of the dual channel circuit may incorporate a source of the first FET. The common terminal of the transistor may incorporate a source of the FET. The second common terminal of the dual channel circuit may incorporate a source of a second FET. The first output of the dual channel circuit may incorporate a drain of the first FET. The second output of the dual channel circuit may incorporate a drain of the second FET.
A load switch system may further incorporate a diode connected in series between the second common terminal of the dual transistor AC switch and the second end of the secondary winding of the transformer.
The second common terminal of the dual transistor AC switch may incorporate first and second gates of a first FET and a second FET, respectively, of the dual transistor AC switch. The first common terminal of the dual transistor AC switch may incorporate a first source and second source of the first FET and the second FET, respectively, of the dual transistor AC switch. The first output and the second output connected to the AC load may incorporate a first drain and second drain of the first FET and the second FET, respectively, of the dual transistor AC switch.
In the present specification, some of the matter may be of a hypothetical or prophetic nature although stated in another manner or tense.
Although the present system and/or approach has been described with respect to at least one illustrative example, many variations and modifications will become apparent to those skilled in the art upon reading the specification. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the related art to include all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
3464673 | Cargo et al. | Sep 1969 | A |
3665159 | Becker et al. | May 1972 | A |
3899713 | Barkan et al. | Aug 1975 | A |
3942028 | Baker | Mar 1976 | A |
4078720 | Nurnberg | Mar 1978 | A |
4079366 | Wong | Mar 1978 | A |
4093943 | Knight | Jun 1978 | A |
4151387 | Peters, Jr. | Apr 1979 | A |
4174807 | Smith et al. | Nov 1979 | A |
4197571 | Grunert | Apr 1980 | A |
4206872 | Levine | Jun 1980 | A |
4224615 | Penz | Sep 1980 | A |
4232819 | Bost | Nov 1980 | A |
4257555 | Neel | Mar 1981 | A |
4264034 | Hyltin et al. | Apr 1981 | A |
4274045 | Goldstein | Jun 1981 | A |
4296334 | Wong | Oct 1981 | A |
4298946 | Hartsell et al. | Nov 1981 | A |
4300199 | Yoknis et al. | Nov 1981 | A |
4308991 | Peinetti et al. | Jan 1982 | A |
4316256 | Hendricks et al. | Feb 1982 | A |
4332352 | Jaeger | Jun 1982 | A |
4337822 | Hyltin et al. | Jul 1982 | A |
4337893 | Flanders et al. | Jul 1982 | A |
4373664 | Barker et al. | Feb 1983 | A |
4379483 | Farley | Apr 1983 | A |
4382544 | Stewart | May 1983 | A |
4384213 | Bogel | May 1983 | A |
4386649 | Hines et al. | Jun 1983 | A |
4388692 | Jones et al. | Jun 1983 | A |
4431134 | Hendricks et al. | Feb 1984 | A |
4446913 | Krocker | May 1984 | A |
4479604 | Didner | Oct 1984 | A |
4503471 | Hanajima et al. | Mar 1985 | A |
4504778 | Evans | Mar 1985 | A |
4506827 | Jamieson et al. | Mar 1985 | A |
4556169 | Zervos | Dec 1985 | A |
4585164 | Butkovich et al. | Apr 1986 | A |
4606401 | Levine et al. | Aug 1986 | A |
4621336 | Brown | Nov 1986 | A |
4622544 | Bially et al. | Nov 1986 | A |
4628201 | Schmitt | Dec 1986 | A |
4641013 | Dunnigan et al. | Feb 1987 | A |
4646964 | Parker et al. | Mar 1987 | A |
4692596 | Payne | Sep 1987 | A |
4706177 | Josephson | Nov 1987 | A |
4717333 | Carignan | Jan 1988 | A |
4725001 | Carney et al. | Feb 1988 | A |
4745300 | Kammerer et al. | May 1988 | A |
4745311 | Iwasaki | May 1988 | A |
4806843 | Mertens et al. | Feb 1989 | A |
4811163 | Fletcher | Mar 1989 | A |
4829779 | Munson et al. | May 1989 | A |
4837731 | Levine et al. | Jun 1989 | A |
4881686 | Mehta | Nov 1989 | A |
4918439 | Wozniak et al. | Apr 1990 | A |
4939995 | Feinberg | Jul 1990 | A |
4942613 | Lynch | Jul 1990 | A |
4948040 | Kobayashi et al. | Aug 1990 | A |
4969508 | Tate et al. | Nov 1990 | A |
4992779 | Sugino et al. | Feb 1991 | A |
4997029 | Otsuka et al. | Mar 1991 | A |
5005365 | Lynch | Apr 1991 | A |
5012973 | Dick et al. | May 1991 | A |
5025134 | Bensoussan et al. | Jun 1991 | A |
5036698 | Conti | Aug 1991 | A |
5038851 | Mehta | Aug 1991 | A |
5053752 | Epstein et al. | Oct 1991 | A |
5065813 | Berkeley et al. | Nov 1991 | A |
5081411 | Walker | Jan 1992 | A |
5086385 | Launey et al. | Feb 1992 | A |
5088645 | Bell | Feb 1992 | A |
5118963 | Gesin | Jun 1992 | A |
5120983 | Samann | Jun 1992 | A |
5140310 | DeLuca et al. | Aug 1992 | A |
5161606 | Berkeley et al. | Nov 1992 | A |
5170935 | Federspiel et al. | Dec 1992 | A |
5172565 | Wruck et al. | Dec 1992 | A |
5181653 | Foster et al. | Jan 1993 | A |
5187797 | Nielsen et al. | Feb 1993 | A |
5192874 | Adams | Mar 1993 | A |
5210685 | Rosa | May 1993 | A |
5221877 | Falk | Jun 1993 | A |
5226591 | Ratz | Jul 1993 | A |
5230482 | Ratz et al. | Jul 1993 | A |
5238184 | Adams | Aug 1993 | A |
5251813 | Kniepkamp | Oct 1993 | A |
5259445 | Pratt et al. | Nov 1993 | A |
5272477 | Tashima et al. | Dec 1993 | A |
5277244 | Mehta | Jan 1994 | A |
5289047 | Broghammer | Feb 1994 | A |
5294849 | Potter | Mar 1994 | A |
5329991 | Mehta et al. | Jul 1994 | A |
5348078 | Dushane et al. | Sep 1994 | A |
5351035 | Chrisco | Sep 1994 | A |
5361009 | Lu | Nov 1994 | A |
5386577 | Zenda | Jan 1995 | A |
5390206 | Rein et al. | Feb 1995 | A |
5404934 | Carlson et al. | Apr 1995 | A |
5414618 | Mock et al. | May 1995 | A |
5429649 | Robin | Jul 1995 | A |
5439441 | Grimsley et al. | Aug 1995 | A |
5452197 | Rice | Sep 1995 | A |
5482209 | Cochran et al. | Jan 1996 | A |
5495887 | Kathnelson et al. | Mar 1996 | A |
5506572 | Hills et al. | Apr 1996 | A |
5526422 | Keen | Jun 1996 | A |
5537106 | Mitsuhashi | Jul 1996 | A |
5544036 | Brown, Jr. et al. | Aug 1996 | A |
5566879 | Longtin | Oct 1996 | A |
5570837 | Brown et al. | Nov 1996 | A |
5579197 | Mengelt et al. | Nov 1996 | A |
5590831 | Manson et al. | Jan 1997 | A |
5603451 | Helander et al. | Feb 1997 | A |
5654813 | Whitworth | Aug 1997 | A |
5668535 | Hendrix et al. | Sep 1997 | A |
5671083 | Connor et al. | Sep 1997 | A |
5673850 | Uptegraph | Oct 1997 | A |
5679137 | Erdman et al. | Oct 1997 | A |
5682206 | Wehmeyer et al. | Oct 1997 | A |
5711785 | Maxwell | Jan 1998 | A |
5732691 | Maiello et al. | Mar 1998 | A |
5736795 | Zuehlke et al. | Apr 1998 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
5782296 | Mehta | Jul 1998 | A |
5801940 | Russ et al. | Sep 1998 | A |
5810908 | Gray et al. | Sep 1998 | A |
5818428 | Eisenbrandt et al. | Oct 1998 | A |
5833134 | Ho et al. | Nov 1998 | A |
5839654 | Weber | Nov 1998 | A |
5840094 | Osendorf et al. | Nov 1998 | A |
5862737 | Chin et al. | Jan 1999 | A |
5873519 | Beilfuss | Feb 1999 | A |
5886697 | Naughton et al. | Mar 1999 | A |
5899866 | Cyrus et al. | May 1999 | A |
5902183 | D'Souza | May 1999 | A |
5903139 | Kompelien | May 1999 | A |
5909429 | Satyanarayana et al. | Jun 1999 | A |
5915473 | Ganesh et al. | Jun 1999 | A |
5917141 | Naquin, Jr. | Jun 1999 | A |
5917416 | Read | Jun 1999 | A |
D413328 | Kazama | Aug 1999 | S |
5937942 | Bias et al. | Aug 1999 | A |
5947372 | Tiernan | Sep 1999 | A |
5950709 | Krueger et al. | Sep 1999 | A |
6009355 | Obradovich et al. | Dec 1999 | A |
6013121 | Chin et al. | Jan 2000 | A |
6018700 | Edel | Jan 2000 | A |
6020881 | Naughton et al. | Feb 2000 | A |
6032867 | Dushane et al. | Mar 2000 | A |
D422594 | Henderson et al. | Apr 2000 | S |
6059195 | Adams et al. | May 2000 | A |
6081197 | Garrick et al. | Jun 2000 | A |
6084523 | Gelnovatch et al. | Jul 2000 | A |
6089221 | Mano et al. | Jul 2000 | A |
6101824 | Meyer et al. | Aug 2000 | A |
6104963 | Cebasek et al. | Aug 2000 | A |
6119125 | Gloudeman et al. | Sep 2000 | A |
6121875 | Hamm et al. | Sep 2000 | A |
6140987 | Stein et al. | Oct 2000 | A |
6141595 | Gloudeman et al. | Oct 2000 | A |
6145751 | Ahmed | Nov 2000 | A |
6149065 | White et al. | Nov 2000 | A |
6152375 | Robison | Nov 2000 | A |
6154081 | Pakkala et al. | Nov 2000 | A |
6167316 | Gloudeman et al. | Dec 2000 | A |
6190442 | Redner | Feb 2001 | B1 |
6192282 | Smith et al. | Feb 2001 | B1 |
6196467 | Dushane et al. | Mar 2001 | B1 |
6205041 | Baker | Mar 2001 | B1 |
6208331 | Singh et al. | Mar 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6236326 | Murphy | May 2001 | B1 |
6259074 | Brunner et al. | Jul 2001 | B1 |
6260765 | Natale et al. | Jul 2001 | B1 |
6285912 | Ellison et al. | Sep 2001 | B1 |
6288458 | Berndt | Sep 2001 | B1 |
6290140 | Pesko et al. | Sep 2001 | B1 |
D448757 | Okubo | Oct 2001 | S |
6315211 | Sartain et al. | Nov 2001 | B1 |
6318639 | Toth | Nov 2001 | B1 |
6321637 | Shanks et al. | Nov 2001 | B1 |
6330806 | Beaverson et al. | Dec 2001 | B1 |
6344861 | Naughton et al. | Feb 2002 | B1 |
6351693 | Monie et al. | Feb 2002 | B1 |
6356038 | Bishel | Mar 2002 | B2 |
6385510 | Hoog et al. | May 2002 | B1 |
6394359 | Morgan | May 2002 | B1 |
6397612 | Kernkamp et al. | Jun 2002 | B1 |
6398118 | Rosen et al. | Jun 2002 | B1 |
6448896 | Bankus et al. | Sep 2002 | B1 |
6449726 | Smith | Sep 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
D464948 | Vasquez et al. | Oct 2002 | S |
6460774 | Sumida et al. | Oct 2002 | B2 |
6466132 | Caronna et al. | Oct 2002 | B1 |
6478233 | Shah | Nov 2002 | B1 |
6490174 | Kompelien | Dec 2002 | B1 |
6502758 | Cottrell | Jan 2003 | B2 |
6507282 | Sherwood | Jan 2003 | B1 |
6512209 | Yano | Jan 2003 | B1 |
6518953 | Armstrong | Feb 2003 | B1 |
6518957 | Lehtinen et al. | Feb 2003 | B1 |
6546419 | Humpleman et al. | Apr 2003 | B1 |
6556899 | Harvey et al. | Apr 2003 | B1 |
6566768 | Zimmerman et al. | May 2003 | B2 |
6574537 | Kipersztok et al. | Jun 2003 | B2 |
6578770 | Rosen | Jun 2003 | B1 |
6580950 | Johnson et al. | Jun 2003 | B1 |
6581846 | Rosen | Jun 2003 | B1 |
6587739 | Abrams et al. | Jul 2003 | B1 |
6595430 | Shah | Jul 2003 | B1 |
6596059 | Greist et al. | Jul 2003 | B1 |
D478051 | Sagawa | Aug 2003 | S |
6608560 | Abrams | Aug 2003 | B2 |
6619055 | Addy | Sep 2003 | B1 |
6619555 | Rosen | Sep 2003 | B2 |
6621507 | Shah | Sep 2003 | B1 |
6622925 | Carner et al. | Sep 2003 | B2 |
6635054 | Fjield et al. | Oct 2003 | B2 |
6663010 | Chene et al. | Dec 2003 | B2 |
6671533 | Chen et al. | Dec 2003 | B2 |
6685098 | Okano et al. | Feb 2004 | B2 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6726112 | Ho | Apr 2004 | B1 |
D492282 | Lachello et al. | Jun 2004 | S |
6771996 | Bowe et al. | Aug 2004 | B2 |
6783079 | Carey et al. | Aug 2004 | B2 |
6786421 | Rosen | Sep 2004 | B2 |
6789739 | Rosen | Sep 2004 | B2 |
6801849 | Szukala et al. | Oct 2004 | B2 |
6807041 | Geiger et al. | Oct 2004 | B2 |
6808524 | Lopath et al. | Oct 2004 | B2 |
6810307 | Addy | Oct 2004 | B1 |
6810397 | Qian et al. | Oct 2004 | B1 |
6824069 | Rosen | Nov 2004 | B2 |
6833990 | LaCroix et al. | Dec 2004 | B2 |
6842721 | Kim et al. | Jan 2005 | B2 |
6851621 | Wacker et al. | Feb 2005 | B1 |
6868293 | Schurr et al. | Mar 2005 | B1 |
6893438 | Hall et al. | May 2005 | B2 |
6934862 | Sharood et al. | Aug 2005 | B2 |
D512208 | Kubo et al. | Dec 2005 | S |
6973410 | Seigel | Dec 2005 | B2 |
7001495 | Essalik et al. | Feb 2006 | B2 |
D520989 | Miller | May 2006 | S |
7050026 | Rosen | May 2006 | B1 |
7055759 | Wacker et al. | Jun 2006 | B2 |
7080358 | Kuzmin | Jul 2006 | B2 |
7083109 | Pouchak | Aug 2006 | B2 |
7083189 | Ogata | Aug 2006 | B2 |
7084774 | Martinez | Aug 2006 | B2 |
7089088 | Terry et al. | Aug 2006 | B2 |
7108194 | Hankins, II | Sep 2006 | B1 |
7130719 | Ehlers et al. | Oct 2006 | B2 |
D531588 | Peh | Nov 2006 | S |
7133748 | Robinson | Nov 2006 | B2 |
D533515 | Klein et al. | Dec 2006 | S |
7146253 | Hoog et al. | Dec 2006 | B2 |
7152806 | Rosen | Dec 2006 | B1 |
7156318 | Rosen | Jan 2007 | B1 |
7163156 | Kates | Jan 2007 | B2 |
7188002 | Chapman, Jr. et al. | Mar 2007 | B2 |
D542236 | Klein et al. | May 2007 | S |
7212887 | Shah et al. | May 2007 | B2 |
7222800 | Wruck et al. | May 2007 | B2 |
7225054 | Amundson et al. | May 2007 | B2 |
7231605 | Ramakasavan | Jun 2007 | B1 |
7232075 | Rosen | Jun 2007 | B1 |
7240289 | Naughton et al. | Jul 2007 | B2 |
7244294 | Kates | Jul 2007 | B2 |
7261762 | Kang et al. | Aug 2007 | B2 |
7263283 | Knepler | Aug 2007 | B2 |
7274973 | Nichols et al. | Sep 2007 | B2 |
7302642 | Smith et al. | Nov 2007 | B2 |
7331187 | Kates | Feb 2008 | B2 |
7331426 | Jahkonen | Feb 2008 | B2 |
7341201 | Stanimirovic | Mar 2008 | B2 |
7354005 | Carey et al. | Apr 2008 | B2 |
RE40437 | Rosen | Jul 2008 | E |
7419532 | Sellers et al. | Sep 2008 | B2 |
7435278 | Terlson | Oct 2008 | B2 |
7451606 | Harrod | Nov 2008 | B2 |
7452396 | Terlson et al. | Nov 2008 | B2 |
7476988 | Mulhouse et al. | Jan 2009 | B2 |
7489094 | Steiner et al. | Feb 2009 | B2 |
7496627 | Moorer et al. | Feb 2009 | B2 |
7500026 | Fukanaga et al. | Mar 2009 | B2 |
7505914 | McCall | Mar 2009 | B2 |
7542867 | Steger et al. | Jun 2009 | B2 |
7556207 | Mueller et al. | Jul 2009 | B2 |
7574283 | Wang et al. | Aug 2009 | B2 |
7584897 | Schultz et al. | Sep 2009 | B2 |
7594960 | Johansson | Sep 2009 | B2 |
7595613 | Thompson et al. | Sep 2009 | B2 |
7600694 | Helt et al. | Oct 2009 | B2 |
7604046 | Bergman et al. | Oct 2009 | B2 |
7617691 | Street et al. | Nov 2009 | B2 |
7642674 | Mulhouse et al. | Jan 2010 | B2 |
7644591 | Singh et al. | Jan 2010 | B2 |
7665019 | Jaeger | Feb 2010 | B2 |
7676282 | Bosley | Mar 2010 | B2 |
7692559 | Face et al. | Apr 2010 | B2 |
7707189 | Haselden et al. | Apr 2010 | B2 |
7713339 | Johansson | May 2010 | B2 |
7739282 | Smith et al. | Jun 2010 | B1 |
7755220 | Sorg et al. | Jul 2010 | B2 |
7770242 | Sell | Aug 2010 | B2 |
7786620 | Vuk et al. | Aug 2010 | B2 |
7793056 | Boggs et al. | Sep 2010 | B2 |
7814516 | Stecyk et al. | Oct 2010 | B2 |
7837676 | Sinelnikov et al. | Nov 2010 | B2 |
7838803 | Rosen | Nov 2010 | B1 |
7852645 | Fouquet et al. | Dec 2010 | B2 |
7859815 | Black et al. | Dec 2010 | B2 |
7865252 | Clayton | Jan 2011 | B2 |
7941431 | Bluhm et al. | May 2011 | B2 |
7952485 | Schecter et al. | May 2011 | B2 |
7956719 | Anderson, Jr. et al. | Jun 2011 | B2 |
7957775 | Allen, Jr. et al. | Jun 2011 | B2 |
7984220 | Gerard et al. | Jul 2011 | B2 |
7992764 | Magnusson | Aug 2011 | B2 |
7992794 | Leen et al. | Aug 2011 | B2 |
8032254 | Amundson et al. | Oct 2011 | B2 |
8060470 | Davidson et al. | Nov 2011 | B2 |
8087593 | Leen | Jan 2012 | B2 |
8091796 | Amundson et al. | Jan 2012 | B2 |
8110945 | Simard et al. | Feb 2012 | B2 |
8138634 | Ewing et al. | Mar 2012 | B2 |
8167216 | Schultz et al. | May 2012 | B2 |
8183818 | Elhalis | May 2012 | B2 |
8216216 | Warnking et al. | Jul 2012 | B2 |
8219249 | Harrod et al. | Jul 2012 | B2 |
8239066 | Jennings et al. | Aug 2012 | B2 |
8276829 | Stoner et al. | Oct 2012 | B2 |
8280556 | Besore et al. | Oct 2012 | B2 |
8314517 | Simard et al. | Nov 2012 | B2 |
8346396 | Amundson et al. | Jan 2013 | B2 |
8417091 | Kim et al. | Apr 2013 | B2 |
8437878 | Grohman et al. | May 2013 | B2 |
8511577 | Warren et al. | Aug 2013 | B2 |
8523083 | Warren et al. | Sep 2013 | B2 |
8532190 | Shimizu et al. | Sep 2013 | B2 |
8554374 | Lunacek et al. | Oct 2013 | B2 |
8574343 | Bisson et al. | Nov 2013 | B2 |
8613792 | Ragland et al. | Dec 2013 | B2 |
8621881 | Votaw et al. | Jan 2014 | B2 |
8623117 | Zavodny et al. | Jan 2014 | B2 |
8629661 | Shimada | Jan 2014 | B2 |
8680442 | Reusche et al. | Mar 2014 | B2 |
8704672 | Hoglund et al. | Apr 2014 | B2 |
8729875 | Vanderzon | May 2014 | B2 |
8731723 | Boll et al. | May 2014 | B2 |
8734565 | Hoglund et al. | May 2014 | B2 |
8752771 | Warren et al. | Jun 2014 | B2 |
8768341 | Coutelou et al. | Jul 2014 | B2 |
8881172 | Schneider | Nov 2014 | B2 |
8886179 | Pathuri et al. | Nov 2014 | B2 |
8886314 | Crutchfield et al. | Nov 2014 | B2 |
8892223 | Leen et al. | Nov 2014 | B2 |
8902071 | Barton et al. | Dec 2014 | B2 |
9002523 | Erickson et al. | Apr 2015 | B2 |
9071145 | Simard et al. | Jun 2015 | B2 |
9080784 | Dean-Hendricks et al. | Jul 2015 | B2 |
9098279 | Mucignat et al. | Aug 2015 | B2 |
9143006 | Lee et al. | Sep 2015 | B2 |
9206993 | Barton et al. | Dec 2015 | B2 |
9234877 | Hattersley et al. | Jan 2016 | B2 |
9261287 | Warren et al. | Feb 2016 | B2 |
9264035 | Tousignant et al. | Feb 2016 | B2 |
9272647 | Gawade et al. | Mar 2016 | B2 |
9366448 | Dean-Hendricks et al. | Jun 2016 | B2 |
9374268 | Budde et al. | Jun 2016 | B2 |
9419602 | Tousignant et al. | Aug 2016 | B2 |
20010029585 | Simon et al. | Oct 2001 | A1 |
20010052459 | Essalik et al. | Dec 2001 | A1 |
20020011923 | Cunningham et al. | Jan 2002 | A1 |
20020022991 | Sharood et al. | Feb 2002 | A1 |
20020082746 | Schubring et al. | Jun 2002 | A1 |
20020092779 | Essalik et al. | Jul 2002 | A1 |
20030033230 | McCall | Feb 2003 | A1 |
20030034897 | Shamoon et al. | Feb 2003 | A1 |
20030034898 | Shamoon et al. | Feb 2003 | A1 |
20030040279 | Ballweg | Feb 2003 | A1 |
20030060821 | Hall et al. | Mar 2003 | A1 |
20030103075 | Rosselot | Jun 2003 | A1 |
20030177012 | Drennan | Sep 2003 | A1 |
20040262410 | Hull | Dec 2004 | A1 |
20050083168 | Breitenbach | Apr 2005 | A1 |
20050270151 | Winick | Dec 2005 | A1 |
20060112700 | Choi et al. | Jun 2006 | A1 |
20060196953 | Simon et al. | Sep 2006 | A1 |
20060242591 | Van Dok et al. | Oct 2006 | A1 |
20070013534 | DiMaggio | Jan 2007 | A1 |
20070045429 | Chapman, Jr. et al. | Mar 2007 | A1 |
20070114293 | Gugenheim | May 2007 | A1 |
20070114295 | Jenkins et al. | May 2007 | A1 |
20070119961 | Kaiser | May 2007 | A1 |
20070241203 | Wagner et al. | Oct 2007 | A1 |
20070277061 | Ashe | Nov 2007 | A1 |
20070289731 | Deligiannis et al. | Dec 2007 | A1 |
20070290924 | McCoy | Dec 2007 | A1 |
20070296260 | Stossel | Dec 2007 | A1 |
20080015740 | Osann | Jan 2008 | A1 |
20090143880 | Amundson et al. | Jun 2009 | A1 |
20090165644 | Campbell | Jul 2009 | A1 |
20100084482 | Kennedy et al. | Apr 2010 | A1 |
20100204834 | Comerford et al. | Aug 2010 | A1 |
20110073101 | Lau et al. | Mar 2011 | A1 |
20110185895 | Freen | Aug 2011 | A1 |
20120323377 | Hoglund et al. | Dec 2012 | A1 |
20130158714 | Barton et al. | Jun 2013 | A1 |
20130158715 | Barton et al. | Jun 2013 | A1 |
20130158717 | Zywicki et al. | Jun 2013 | A1 |
20130158718 | Barton et al. | Jun 2013 | A1 |
20130158720 | Zywicki et al. | Jun 2013 | A1 |
20130213952 | Boutin et al. | Aug 2013 | A1 |
20130238142 | Nichols et al. | Sep 2013 | A1 |
20130245838 | Zywicki et al. | Sep 2013 | A1 |
20130261807 | Zywicki et al. | Oct 2013 | A1 |
20140062672 | Gudan et al. | Mar 2014 | A1 |
20140312131 | Tousignant et al. | Oct 2014 | A1 |
20140312697 | Landry et al. | Oct 2014 | A1 |
20150001930 | Juntunen et al. | Jan 2015 | A1 |
20150115045 | Tu et al. | Apr 2015 | A1 |
20150144706 | Robideau et al. | May 2015 | A1 |
20150370265 | Ren et al. | Dec 2015 | A1 |
20150370268 | Tousignant et al. | Dec 2015 | A1 |
20160010880 | Bravard et al. | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
1035448 | Jul 1978 | CA |
3334117 | Apr 1985 | DE |
0070414 | Jan 1983 | EP |
0434926 | Aug 1995 | EP |
0678204 | Mar 2000 | EP |
0985994 | Mar 2000 | EP |
1033641 | Sep 2000 | EP |
1143232 | Oct 2001 | EP |
1074009 | Mar 2002 | EP |
2138919 | Dec 2009 | EP |
2491692 | Apr 1982 | FR |
2711230 | Apr 1995 | FR |
9711448 | Mar 1997 | WO |
9739392 | Oct 1997 | WO |
0043870 | Jul 2000 | WO |
0152515 | Jul 2001 | WO |
0179952 | Oct 2001 | WO |
0223744 | Mar 2002 | WO |
2010021700 | Feb 2010 | WO |
Entry |
---|
U.S. Appl. No. 14/300,228, filed Jun. 9, 2014. |
U.S. Appl. No. 14/300,232, filed Jun. 9, 2014. |
U.S. Appl. No. 14/301,175, filed Jun. 10, 2014. |
U.S. Appl. No. 14/088,312, filed Nov. 22, 2013. |
“RCS X10 Thermostat Plug-in for HomeSeer Beta Version 2.0.105,” 25 pages, prior to Sep. 7, 2011. |
“CorAccess Systems/In Home,” http://web.archive.org/web20011212084427/www.coraccess.com/home.html, 1 page, copyright 2001, printed Aug. 19, 2004. |
“HAI Company Background,” http://www.homeauto.com/AboutHAI/abouthai—main.htm, 2 pages, printed Aug. 19, 2004. |
“High-tech options take hold in new homes—200-08-28—Dallas Business Journal,” http://bizjournals.com/dallas/stories/2000/08/28/focus4, 3 pages, dated Aug. 28, 2000, printed Aug. 19, 2004. |
“Home Toys Review—TouchLinc”, http://www.hometoys.com/htinews/aug99/reviews/touchlinc/touchlinc.htm, 3 pages, dated Aug. 1999, printed Aug. 20, 2004. |
“HTI News Release,” http://www.hometoys.com/htinews/apr99/releases/ha101.htm, 3 pages, Apr. 1999. |
“Mark of Excellence Award Finalist Announced,” http://64.233.167.104/search?Q=cache:ciOA2YtYaBIJ:www.hometoys.com/releases/mar. . . , 6 pages, Leopard Touchscreen on p. 2, dated prior to Mar. 4, 2000, printed Aug. 20, 2004. |
“Product Review—Philips Pronto Remote Control,” http://hometheaterhifi.com/volume—6—2/philipsprontoremotecontrol.html, 5 pages, dated May 1999, printed Aug. 20, 2004. |
“RC X10 Automation Forum: Control your Heating and Cooling System with Pronto(1/1),” http://www.remotecentral.com/cgi-bin/mboard/rc-x10/thread.cgi?12, 2 pages, dated Apr. 23, 1999, printed Aug. 20, 2004. |
“Spotlight on integrated systems,” Custom Builder, vol. 8, No. 2, p. 66(6), Mar.-Apr. 1993. |
“Vantage Expands Controls for Audio/Video, HVAC and Security,” http://www.hometoys.com/htinews/aug99/releases/vantage03.htm, 2 pages, dated Aug. 3, 1999, printed Aug. 20, 2004. |
ADI, “Leopard User Manual,” 93 pages, 2001. |
Adicon 2500, “The Automator,” 4 pages, Oct.-Dec. 2000. |
ADT Security Services, “iCenter Advanced User Interface 8142ADT,” Installation and Setup Guide, 4 pages, May 2001; First Sale Feb. 2001. |
AED Electronics, Inc., “Presenting Climatouch the Most Innovative Thermostat in the World!,” 2 pages, prior to Nov. 30, 2007. |
Andrews et al., “Clicky: User-Centric Input for Active Spaces,” 17 pages, Aug. 2004. |
Aprilaire Electronic Thermostats Models 8344, 8346, 8348, 8363, 8365, 8366 Operating Instructions, 8 pages, 2003. |
Aube Technologies, Electronic Thermostat for Heating System Model TH135-01, 5 pages, Aug. 14, 2001. |
Aube Technologies, TH140-28 Electronic Programmable Thermostat, Installation Instructions and User Guide, pp. 1-4, Jan. 22, 2004. |
AutomatedBuildings.com Article—“Thin Client” Solutions, “Pressure, Air Flow, Temperature, Humidity & Valves,” Dwyer Instruments, Inc., 5 pages, printed Sep. 20, 2004. |
Blake et al., “Seng 310 Final Project Demo Program” Illustration, 3 pages, Apr. 6, 2001. |
Blake et al., “Seng 310 Final Project” Report, dated Apr. 6, 2001. |
Blister Pack Insert from a Ritetemp 8082 Touch Screen Thermostat Product, 2 pages, 2002. |
Braeburn Model 3000 Owner's Manual, pp. 1-13, 2001. |
Braeburn Model 5000 Owner's Manual, pp. 1-17, 2001. |
BRK Electronics Maximum Protection Plus Ultimate Convenience Smoke Alarm, 24 pages, Sep. 2000. |
BRK First Alert, User's Manual, Smoke and Fire Alarms, pp. 1-7, Nov. 2002. |
Business Wire, “MicroTouch Specialty Products Group to Capitalize on Growing Market for Low-Cost Digital Matrix Touchscreens,” p. 1174 (2 pages), Jan. 6, 1999. |
Cardio Manual, available at http://www.secant.ca/En/Documentation/Cardio2é-Manual.pdf, Cardio Home Automation Inc., 55 pages, printed Sep. 28, 2004. |
Cardio, by Secant; http://www.hometoys.com/htinews/apr98/reviews/cardio.htm, “HTINews Review,” Feb. 1998, 5 pages, printed Sep. 14, 2004. |
Carrier Microelectronic Programmable Thermostat Owner's Manual, pp. 1-24, May 1994. |
Carrier TSTATCCRF01 Programmable Digital Thermostat, pp. 1-21, prior to Apr. 21, 2005. |
Carrier, “Edge Performance Programmable Owner's Manual,” 64 pages, 2007. |
Carrier, “Programmable Dual Fuel Thermostats,” Installation, Start-Up & Operating Instructions, pp. 1-12, Oct. 1998. |
Carrier, “Programmable Thermostats,” Installation, Start-Up & Operating Instructions, pp. 1-16, Sep. 1998. |
Carrier, “Standard Programmable Thermostat,” Homeowner's Manual, pp. 1-8 pages, 1998. |
Carrier, “Thermidistat Control, Installation, Start-Up, and Operating Instructions,” pp. 1-12, Aug. 1999. |
Carrier, “Comfort Programmable Owner's Manual,” Carrier Touch-N-Go, Catalog No. 0M-TCPHP-4CA 60 pages, 2010. |
Cirrus Logic, Inc., “CS1501 Digital Power Factor Correction Control IC,” 16 pages, 2012. |
Climatouch, User Manual, Climatouch CT03TSB Thermostat, Climatouch CT03TSHB Thermostat with Humidity Control, Outdoor UHF Temperature Transmitter 217S31, 19 pages, Printed Sep. 15, 2004. |
International Search Report for Corresponding Application No. PCT/US2014/044229, dated Oct. 13, 2014. |
CorAccess, “Companion 6,” User Guide, pp. 1-20, Jun. 17, 2002. |
Danfoss RT51/51RF & RT52/52RF User Instructions, 2 pages, Jun. 2004. |
DeKoven et al., “Designing Collaboration in Consumer Products,” 2 pages, 2001. |
DeKoven et al., “Measuring Task Models in Designing Intelligent Products,” 2 pages, Jan. 13-16, 2002. |
DESA Heating Products, “Wireless Hand-Held Remote Control Sets Models (C) GHRCB and (C)GHRCTB, Operating Instructions,” 4 pages, May 2003. |
Domotique Secant Home Automation—Web Page, available at http://www.secant.ca/En/Company/Default.asp, 1 page, printed Sep. 28, 2004. |
Emme Core User Guide, Version 1.1, 47 pages, Jan. 2011. |
Firex Smoke Alarm, Ionization Models AD, ADC Photoelectric Model Pad, 4 pages, prior to Apr. 21, 2005. |
Fluke, “561 HVAC Pro” Infrared Thermometer User's Manual, 22 pages, Downloaded May 24, 2012. |
Freudenthal et al., “Communicating Extensive Smart Home Functionality to Users of All Ages: the Design of a Mixed-Initiative Multimodal Thermostat-Interface,” pp. 34-39, Mar. 12-13, 2001. |
Gentex Corporation, HD135, 135° Fixed Temperature Heat Detector AC Pwered, 120V, 60Hz With Battery Backup, Installation Instructions—Owner's Information, pp. 1-5, Jun. 1, 1998. |
Gentex Corporation, 9000 Series, Photoelectric Type Single Station/Multi-Station Smoke Alarms AC Powered With Battery Backup, Installation Instructions—Owner's Information, pp. 9-1 to 9-6, Jan. 1, 1993. |
Harris et al., “Optimizing Memory Transactions,” Microsoft Research Havard University, 12 pages, May 25, 2012. |
Hendon Semiconductors, “OM1894 Dual Sensing Precision Triac Control,” Product Specification, Rev. 2.0, 21 pages, Apr. 19, 2007. |
Honeywell Brivis Deluxe Programmable Thermostat, pp. 1-20, 2002. |
Honeywell Brivis T8602C Chronotherm IV Deluxe Programmable Thermostats, Installation Instructions, pp. 1-12, 2002. |
Honeywell CT8602C Professional Fuel Saver Thermostat, pp. 1-6, 1995. |
Honeywell Electronic Programmable Thermostat, Owner's Guide, pp. 1-20, 2003. |
Honeywell Electronic Programmable Thermostats, Installation Instructions, pp. 1-8, 2003. |
Honeywell News Release, “Honeywell's New Sysnet Facilities Integration System for Boiler Plant and Combustion Safety Processes,” 4 pages, Dec. 15, 1995. |
Honeywell T8002 Programmable Thermostat, Installation Instructions, pp. 1-8, 2002. |
Honeywell T8602A,B,C,D and TS8602A,C Chronotherm III Fuel Saver Thermostats, Installation Instructions, pp. 1-12, 1995. |
Honeywell T8602D Chronotherm IV Deluxe Programmable Thermostats, Installation Instructions, pp. 1-12, 2002. |
Honeywell TH8000 Series Programmable Thermostats, Owner's Guide, pp. 1-44, 2004. |
Honeywell, “Excel Building Supervisor-Integrated R7044 and FS90 Ver. 2.0,” Operator Manual, 70 pages, Apr. 1995. |
Honeywell, “Installation Guide: Wireless Entry/Exit Remote,” 12 pages, 2011. |
Honeywell, “Introduction of the S7350A Honeywell WebPAD Information Appliance,” Home and Building Control Bulletin, 2 pages, Aug. 29, 2000; Picture of WebPad Device with touch screen, 1 page; and screen shots of WebPad Device, 4 pages. |
Honeywell, “RedLINK™ Wireless Comfort Systems,” RedLINK Wireless Technology, 8 pages, Aug. 2011. |
Honeywell, “System Installation Guide: Important Instructions,” Honeywell International Inc., 25 pages, 2011. |
Honeywell, “Total Connect Online Help Guide,” Revision A, 800-02577-TC, Mar. 2010. |
Honeywell, “Total Connect User Guide,” Revision B, 34 pages, May 15, 2012. |
Honeywell, “VisionPRO® 8000 Thermostats,” downloaded from http://yourhome.honeywell.com, 2 pages, May 24, 2012. |
Honeywell, “W7006A Home Controller Gateway User Guide,” 31 pages, Jul. 2001. |
Honeywell, MagicStat® CT3200 Programmable Thermostat, Installation and Programming Instructions, pp. 1-24, 2001. |
Honeywell, Wireless Entry/Exit Remote, Operating Manual, 9 pages, 2011. |
http://hunter-thermostats.com/hunter—programmable—thermostats.html, Hunter Thermostat 44668 Specifications, and 44758 Specifications, 2 pages, Printed Jul. 13, 2011. |
http://www.cc.gatech.edu/computing/classes/cs6751—94—fall/groupc/climate-2/node1.html, “Contents,” 53 pages, printed Sep. 20, 2004. |
http://www.dimplex.com/en/home—heating/linear—convector—baseboards/products/lpc—series/linear—proportional—convector, Dimplex Coporation, “Linear Convector LPC Series,” 2 pages, May 2011. |
http://www.enernetcorp.com/, Enernet Corporation, “Wireless Temperature Control” 1 page, 2011. |
http://www.enernetcorp.com/t9000-wireless-thermostat.html, Enernet Corporation, “T9000 Series Wireless Fan Coil Thermostat,” Product Brochure, 2 pages, 2011. |
http://www.enocean-alliance.org/en/products/regulvar—rw-ssr347-15a/, Regulvar Corporation, “RW-SSR347-15A, Relais sans fil à semi-conducteurs” 3 pages, Aug. 8, 2009. |
http://www.enocean-alliance.org/en/products/regulvar—rw-tp01/, Regulvar Corporation, “RW-TP01, Capteur de température sans fir” 3 pages, Aug. 9, 2009. |
http://www.forwardthinking.honeywell.com/products/wireless/focus—pro/focus—pro—feature.html, Honeywell Corporation, “Wireless FocusPRO® pages”, 2 pages, 2011. |
http://www.ritetemp.info/rtMenu—13.html, Rite Temp 8082, 6 pages, printed Jun. 20, 2003. |
http://www.thermostatsales.com, Robertshaw, “9610 Digital Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robertshaw, “9700 Deluxe Programmable Thermostat” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robertshaw, “9710 Deluxe Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robertshaw, “9720 Deluxe Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
Hunter, “44200/44250,” Owner's Manual, 32 pages, prior to Jul. 7, 2004. |
Hunter, “44300/44350,” Owner's Manual, 35 pages, prior to Jul. 7, 2004. |
Hunter, “Auto Saver 550”, Owner's Manual Model 44550, 44 pages, prior to Jul. 7, 2004. |
Hunter, “Model 44758 Remote Sensor,” Owner's Manual, 2 pages, Revision Sep. 4, 2008. |
Install Guide for Ritetemp Thermostat 8082, 6 pages, 2002. |
Invensys™, “9700i 9701i 9715i 9720i Deluxe Programmable Thermostats,” User's Manual, pp. 1-28, prior to Jul. 7, 2004. |
Inventek, “Inventek Systems, ISM4319-M3X-L44-X Embedded Serial-to-Wi-Fi Module eS-WiFi 802.11 b/g/n Data Sheet”, Inventek, “Inventek Systems, ISM4319-M3X-L44-X Embedded Serial-to-Wi-Fi Module eS-WiFi 802.11 b/g/n Data Sheet”, accessed from http://www.inventeksys.com/wp-content/uplo . . . Feb. 6, 2012. |
Larsson, “Battery Supervision in Telephone Exchanges,” Ericsson Components AB Sweden, 5 pages, Downloaded May 5, 2012. |
Lennox, “Network Control Panel (NCP),” User's Manual, 18 pages, Nov. 1999. |
Lennox, “Prodigy Control System,” Lennox Industries, 4 pages, May 25, 2012. |
Logitech, “Harmony 880 Remote User Manual,” v. 1, pp. 1-15, prior to Nov. 30, 2007. |
Lux ELV1 Programmable Line Voltage Thermostat, Installation Instructions, 3 pages, prior to Jul. 7, 2004. |
Lux TX500 Series Smart Temp Electronic Thermostat, 3 pages, prior to Jul. 7, 2004. |
Lux TX9000 Installation, 3 pages, prior to Apr. 21, 2005. |
Lux, “9000RF Remote Instructions,” 2 pages, prior to Nov. 30, 2007. |
Lux, “511 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
Lux, “600 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
Lux, “602 Series Multi-Stage Programmable Thermostat,” Owner's Manual, 2 pages, prior to Jul. 7, 2004. |
Lux, “605/2110 Series Programmable Heat Pump Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
Lux, “700/9000 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
Lux, “PSPH521 Series Programmable Heat Pump Thermostat,” Owner's Manual, 3 pages, prior to Jul. 7, 2004. |
Lux, “TX1500 Series Smart Temp Electronic Thermostat,” Owner's Manual, 6 pages, prior to Jul. 7, 2004. |
METASYS, “HVAC PRO for Windows User's Manual,” 308 pages, 1998. |
Mounting Template for Ritetemp Thermostat 8082, 1 page, 2002. |
OMRON Electronic Components, LLC, “Micro Tilt Sensor D6B,” Cat. No. B02WAD1, 2 pages, Jun. 2002. |
OMRON Electronic Components, LLC, “Micro Tilt Sensor D6B,” Cat. No. JB301-E3-01, 6 pages, Mar. 2005. |
Operation Manual for Ritetemp Touch Screen Thermostat 8082, 8 pages, 2002. |
PG&E, “SmartAC Thermostat Programming Web Site Guide,” 2 pages, prior to Sep. 7, 2011. |
Proliphix, “Web Enabled IP Thermostats, Intelligent HVAC Control,” Proliphix Inc., 2 pages, on or before Aug. 28, 2004. |
Proliphix, “Web Enabled IP Thermostats, Ultimate in Energy Efficiency!,” Proliphix Inc., 2 pages, on or before Aug. 28, 2004. |
Proliphix, Inc., “NT10e & NT20e,” 54 pages, on or before Aug. 30, 2005. |
Quick Start Guide for Ritetemp Thermostat 8082, 1 page, 2002. |
Remote Control Power Requirement for Ritetemp Thermostat 8082, 1 page, 2002. |
Ritetemp Operation 8029, 3 pages, Jun. 19, 2002. |
Ritetemp Operation 8050, 5 pages, Jun. 26, 2002. |
Ritetemp Operation 8085, pp. 1-6, prior to Apr. 21, 2005. |
Saravanan et al, “Reconfigurable Wireless Interface for Networking Sensors,” IJCSNS International Journal of Computer Science and Network Security, vol. 8 No. 7, pp. 270-276. Revised Jul. 20, 2008. |
Screenshot of http://lagotek.com/index.html?currentSection=TouchIt, Lagotek, 1 page, prior to Mar. 29, 2012. |
Sealed Unit Parts Co., Inc., Supco & CTC Thermostats . . . loaded with features, designed for value!, 6 pages, prior to Apr. 21, 2005. |
Sharp Corporation, “GP1S036HEZ Phototransistor Output, Transmissive Photointerrupter with Tilt Direction (4-Direction) Detecting,” pp. 1-11, Oct. 3, 2005. |
Signetics Linear Products, “TDA1024 Zero Crossing Triac Trigger,” Product Specification, 14 pages, Sep. 1985. |
Totaline Model P474-1035 Owner's Manual Programmable 5-2 Day Digital Thermostat, pp. 1-21, Apr. 2003. |
Totaline Star CPE230RF, Commercial Programmable Thermostat Wireless Transmitter, Owner's Manual, pp. 1-16, Oct. 1998. |
Totaline Star P/N P474-0130 Non-Programmable Digital Thermostat Owner's Manual, pp. 1-22, prior to Apr. 21, 2005. |
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P374-1100, 24 pages, Apr. 2001. |
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P374-1100FM, 23 pages, Nov. 1998. |
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P474-1050, 21 pages, Nov. 1998. |
Totaline, “Intellistat Combination Temperature and Humidity Control,” Owner's Manual P/N P374-1600, 25 pages, Jun. 2001. |
Totaline, “P/N P374-0431 Thermostat Remote Control and Receiver,” Owner's Manual, 11 pages, prior to Nov. 30, 2007. |
Totaline, “P474-1100RF, P474-1100REC Wireless Thermostat,” 1 page, prior to Nov. 30, 2007. |
Totaline, “Programmable Thermostat Configurable for Advanced Heat Pump or Dual Fuel Operation,” Owner's Manual P/N P374-1500, 24 pages, Jun. 1999. |
Totaline, “Wireless Remote Sensor, Model P474-0401-1RF/REC,” 2 pages, prior to Nov. 30, 2007. |
Totaline, “Instructions P/N P474-1010”, Manual, 2 pages, Dec. 1998. |
Totaline, “Programmable Thermostat”, Homeowner's Guide, 27 pages, Dec. 1998. |
Totaline, “Wireless Programmable Digital Thermostat,” Owner's Manual 474-1100RF, 22 pages, 2000. |
Trane, “System Programming, Tracer Summit Version 14, BMTW-SVP01D-EN,” 623 pages, 2002. |
Trane, “Wireless Zone Sensor. Where Will Wireless Technology Take You?,” 4 pages, Feb. 2006. |
Travis Industries, Remote Fireplace Thermostat, Part #99300651, 6 pages, printed Feb. 3, 2003. |
Trouble Shooting Guide for Ritetemp Thermostat 8082, 1 page, 2002. |
Visor Handheld User Guide, 280 pages, Copyright 1999-2000. |
Warmly Yours, “Model TH111GFCI-P (120 VAC),” Manual, pp. 1-4, prior to Jul. 7, 2004. |
White-Rodgers 1F80-224 Programmable Electronic Digital Thermostat, Installation and Operation Instructions, 8 pages, prior to Apr. 21, 2005. |
White-Rodgers Comfort-Set III Thermostat, pp. 1-44, prior to Jul. 7, 2004. |
White-Rodgers Installation Instructions for Heating & Air Conditioning IF78 5/2 Day Programmable Thermostat, 7 pages, prior to Jul. 7, 2004. |
White-Rodgers Installation Instructions for Heating & Air Conditioning IF78 Non-Programmable Thermostat, 6 pages, prior to Apr. 21, 2005. |
White-Rodgers, “Installation Instructions for Heating & Air Conditioning IF72 5/2 Day Programmable Heat Pump Thermostat,” 8 pages, prior to Jul. 7, 2004. |
White-Rodgers, “Comfort-Set 90 Series Thermostat,” Manual, pp. 1-24, prior to Jul. 7, 2004. |
White-Rodgers, 1F80-240 “(for Heating Only systems) Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004. |
White-Rodgers, 1F80-241 “Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 6 pages, prior to Jul. 7, 2004. |
White-Rodgers, 1F80-261 “Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004. |
White-Rodgers, 1F81-261 “Programmable Electronic Digital Multi-Stage Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004. |
White-Rodgers, 1F82-261 “Programmable Electronic Digital Heat Pump Thermostat,” Installation and Operation Instructions, 8 pages, prior to Jul. 7, 2004. |
White-Rodgers, Comfort-Set 90 Series Premium, 4 pages, prior to Apr. 21, 2005. |
www.icmcontrols.com, Simplecomfort, SC3000 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004. |
www.icmcontrols.com, Simplecomfort, SC3001 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004. |
www.icmcontrols.com, Simplecomfort, SC3006 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, prior to Jul. 7, 2004. |
www.icmcontrols.com, Simplecomfort, SC3201 2 Stage Heat Pump Manual Changeover, 1 page, prior to Jul. 7, 2004. |
www.icmcontrols.com, Simplecomfort, SC3801 2 Stage Heat/2 Stage Cool 2 Stage Heat Pump/Audio Changeover, 1 page, prior to Jul. 7, 2004. |
Number | Date | Country | |
---|---|---|---|
20150145347 A1 | May 2015 | US |