Low power dual processor architecture for multi mode devices

Information

  • Patent Grant
  • 8351985
  • Patent Number
    8,351,985
  • Date Filed
    Friday, January 20, 2012
    13 years ago
  • Date Issued
    Tuesday, January 8, 2013
    12 years ago
Abstract
A mobile computing device with multiple modes, for example, wireless communication and personal computing, has an application processor and a communication processor. In the computing mode, the application processor is the master processor. In the communication mode, the application processor is deenergized to conserve battery power, with the communication processor functioning as the master processor by accessing the device's peripheral bus using the memory interface of the communication processor.
Description
BACKGROUND

1. Field


The present invention relates generally to multi mode devices such as wireless telephones that can also undertake ancillary computer functions.


2. Background


Multi mode mobile computing devices have been proposed which have multiple capabilities. For example, mobile telephones might be expected to undertake personal computing tasks now undertaken by notebook computers, in addition to their communication functions.


As recognized herein, multiple processors might be required to support multiple modes of operation. As also recognized herein, using the same internal operation independent of the operational mode means that a main processor typically functions as a master device that controls peripheral devices and that treats the other device processors (e.g., a telephone modem processor) as peripherals. Such a design requires that the main processor be active in all modes, including, e.g., the main processor needs to be active in the telephone mode, in which the modem processor is active, simply to provide the modem processor access to device hardware (e.g., a data display, non volatile storage, audio input/output) that is controlled by the main processor. In other words the main processor is here simply mediating on behalf of the modem processor, because the hardware architecture does not allow the modem processor direct access to some of the hardware resources in the device.


As understood herein, it would be advantageous to minimize when possible, the use of hardware intermediaries (such as the main processor in the example above) to allow power efficient execution of tasks, to conserve the battery. Moreover by use of methods described in this invention it may be possible to power off processors that don't need to serve such intermediary role further extending device battery life. Furthermore, requiring a single main processor to always function as a device master means that software and software changes that might apply only to a modem processor must be coordinated or otherwise integrated with the main processor as well, complicating software management. In particular the large base of software presently available for cellular phone type devices, which functions on the modem processor cannot be used unchanged in a device in which the modem processor is a peripheral to a main application processor. The present invention can allow the reuse of this large base legacy of application software by architecting the hardware so that it appears to the legacy software as it would in current single processor devices.


SUMMARY

In one of aspect, a multi mode mobile device is configured to switch between a communication mode and a computing mode. The multi mode mobile device includes a communication processor configured to facilitate wireless voice and data communication when the multi mode mobile device is in the communication mode; an application processor configured to execute at least one computing application when the multi mode mobile device is in the computing mode; and a configuration module configured to switch the multi mode mobile device from the computing mode to the communication mode in response to user input of at least part of a telephone number.


In another aspect, a multi mode mobile device is configured to switch between a communication mode and a computing mode. The multi mode mobile device includes an application processing means for executing at least one computing application when the multi mode mobile device is in the computing mode; communication processing means for facilitating wireless voice and data communication when the multi mode mobile device is in the communication mode; and means for switching the multi mode mobile device from the computing mode to the communication mode in response to user input of at least part of telephone number.


In still another aspect, a method for operating a multi mode mobile device in a computing mode and a communication mode is disclosed. The method includes executing at least one computing application by an application processor in the computing mode; switching the multi mode mobile device from the computing mode to the communication mode in response to user input including at least a part of a telephone number; and facilitating wireless voice and data communication using a communication processor in the communication mode.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is schematic diagram of a preferred non-limiting multi mode mobile computing device;



FIG. 2 is a block diagram of a preferred non-limiting implementation of the present multi mode mobile device architecture; and



FIG. 3 is a flow chart illustrating the logic of the invention.





DETAILED DESCRIPTION

Referring initially to FIG. 1, a mobile multi mode computing device is shown, generally designated 10. In an exemplary non-limiting embodiment, the device 10 can be used to undertake wireless voice and/or data communication as well as personal computing application-based functions, such as but not limited to word processing. In any case, the device 10 includes a preferably lightweight portable housing 12 that holds the components discussed herein. A battery 14 can be engaged with the housing 12 to provide a source of power to the components disclosed below. The battery 14 preferably is rechargeable in accordance with portable computing principles known in the art, but when the device 10 is not connected to an electrical outlet, the battery 14 is the sole source of power to the components of the device 10.


A mode selector 16 can be provided on the housing 12. The mode selector 16 can be a user-manipulable input device to select the operational mode of the device 10, e.g., communication or computing. The mode selector 16 can be implemented in any number of ways, e.g., it can be a switch, or a portion of a touchscreen display that is used in conjunction with appropriate software to select the mode, or other equivalent input structure. Or, the mode selector 16 can be automatically implemented by software responsive to the user's activities, e.g., if the user starts to dial a number the mode selector can be software that automatically configures the device 10 in the communication mode.


Now referring to FIG. 2, the device 10 includes a communication processor 18, preferably a type of processor referred to as a mobile system modem (MSM) that can access synchronous dynamic random access memory (SDRAM) 20 over, e.g., a 16/32 bit bus 22 and that can be implemented in a communication processor module. Also, the communication processor 18 can access, using, for instance, a 16 bit memory interface bus 24, MSM flash memory 26 and MSM static random access memory (SRAM) 28. Communication-related applications, such as the present assignee's “BREW” applications, can be stored in one or more of the memories 20, 26, 28 for execution thereof by the communication processor 18.


As also shown in FIG. 2, the communication processor 18 accesses wireless communication circuitry 30 to effect wireless communication in accordance with means known in the art. In other words, the communication processor 18, associated memories 20, 26, and 28, and circuitry 30 establish a wireless voice and/or data communication portion, generally designated 32.


In one non-limiting embodiment, the communication portion 32, also referred to as a “mobile station (“MS”), is a mobile telephone-type device made by Kyocera, Samsung, or other manufacturer that uses Code Division Multiple Access (CDMA) principles and CDMA over-the-air (OTA) communication air interface protocols such as defined in but not limited to IS-95A, IS-95B, WCDMA, IS-2000, and others to communicate with wireless infrastructure, although the present invention applies to any wireless communication device.


For instance, the wireless communication systems to which the present invention can apply, in amplification to those noted above, include GSM, Personal Communications Service (PCS) and cellular systems, such as Analog Advanced Mobile Phone System (AMPS) and the following digital systems: CDMA, Time Division Multiple Access (TDMA), and hybrid systems that use both TDMA and CDMA technologies. A CDMA cellular system is described in the Telecommunications Industry Association/Electronic Industries Association (TIA/EIA) Standard IS-95. Combined AMPS and CDMA systems are described in TIA/EIA Standard IS-98. Other communications systems are described in the International Mobile Telecommunications System 2000/Universal Mobile Telecommunications Systems (IMT-2000/UM), standards covering what are referred to as wideband CDMA (WCDMA), cdma2000 (such as cdma2000 1x or 3x standards, for example) or TD-SCDMA.


Still referring to FIG. 2, a main processor 34 that can be embodied in a module holds an application processor core 36, which in one non-limiting illustrative embodiment can be an IBM 405 LP processor or equivalent. While FIG. 2 shows that the processors 18, 36 can be on separate chips from each other, it is to be appreciated that they can also be disposed on the same chip.


The application processor core 36 accesses one or more software applications that can be stored in various memories to execute the applications. For example, the application processor core 36 can access an SRAM/Flash memory 38 over, e.g., a 16-bit memory bus 40, and it can also access an SDRAM memory 42 (where software applications typically will be preferentially stored) over a preferably 32-bit bus 44.



FIG. 2 also shows that the application processor core 36 accesses a processor local bus (PLB) 46. In one non-limiting embodiment, the PLB bus 46 can be a 64-bit bus. Various supporting devices and peripherals are accessed by the application processor core 36 using the PLB 46 in accordance with principles known in the art. For example, the PLB 46 (and, hence, application processor core 36) can be connected to a SDRAM controller 48 for controlling the SDRAM memory 42. Also, the PLB 46 can communicate with a personal computer memory card interface architecture (PCMCIA) interface or other storage interface 50. Moreover, the PLB 46 (and, hence, application processor core 36) can be connected to a liquid crystal display (LCD) controller 52, which drives an LCD display that can be provided on the housing of the device 10.


In addition to the components discussed above, the application processor 34 which bears the application processor core 36 can also hold an on-chip peripheral bus (OPB) 54 which in one non-limiting embodiment can be a 32 bit bus. The OPB 54 is connected to the PLB 46 through a PLB/OPB bridge device 56. The bridge device 56 can translate 32 bit data to 64 bit data and vice versa. Various peripheral devices can communicate with the OPB 54. By way of non-limiting examples, a touch panel interface 58 can be connected to the OPB 54. Also, other storage interfaces 60 can be connected to the OPB 54. Further non-limiting examples of peripheral devices that can be connected to the OPB 54 include a USB, a UART, an interrupt (UC), and an AC97 device.


In accordance with the present invention, the communication processor 18 can also communicate with the PLB 46 over its memory interface 24. Specifically, as shown in FIG. 2, in one exemplary embodiment the memory interface 24 of the communication processor 18 is connected to the PLB 46 by a PLB bridge processor 62. In one implementation, the PLB bridge processor 62 is implemented in hardware by a logic device, such as, e.g., a processor. In this way, the communication processor 18 can access the devices connected to the PLB 46. If desired, the functions of the PLB bridge processor 62 can be implemented by, e.g., a dedicated portion of the communication processor 18.



FIG. 3 shows the logic that is executed by the PLB bridge processor 62 to negotiate which processor 18, 36 controls the peripherals shown in FIG. 2. At decision diamond 64 it is determined whether the device 10 is in the communication mode as indicated by, e.g., the mode selector 16 or other user activity discussed above. If not, meaning that the device 10 is in the computing mode, the logic flows to block 66, wherein the PLB bridge processor 62 designates the application processor core 36 to be the master processor in control of the PLB 46 and OPB 54. In this mode, the communication processor 18 can be treated by the application processor core 36 as a peripheral device.


On the other hand, if the device 10 is in the communication mode, the logic moves from decision diamond 64 to block 68, wherein at least the application processor core 36 of the application processor 34 is deenergized. That is, in the communication mode, according to present principles the application processor core 36 is deenergized. Consequently, the communication processor 18 is assigned (by, e.g., the PLB bridge processor 62) the role of master processor at block 70, controlling the peripheral devices connected to the PLB 46 and OPB 54.


While the particular LOW POWER DUAL PROCESSOR ARCHITECTURE FOR MULTI MODE DEVICES as herein shown and described in detail is fully capable of attaining the above-described objects of the invention, it is to be understood that it is the presently preferred embodiment of the present invention and is thus representative of the subject matter which is broadly contemplated by the present invention, that the scope of the present invention fully encompasses other embodiments which may become obvious to those skilled in the art, and that the scope of the present invention is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more”. All structural and functional equivalents to the elements of the above-described preferred embodiment that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present invention, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. '112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited as a “step” instead of an “act”.

Claims
  • 1. A multi mode mobile device configured to switch between a communication mode and a computing mode, the multi mode mobile device comprising: a communication processor configured to facilitate wireless voice and data communication when the multi mode mobile device is in the communication mode;an application processor configured to execute at least one computing application when the multi mode mobile device is in the computing mode; anda configuration module configured to switch the multi mode mobile device from the computing mode to the communication mode in response to user input of at least part of a telephone number.
  • 2. The multi mode mobile device of claim 1, wherein the application processor functions as a master processor and the communication processor functions as a peripheral processor when the multi mode mobile device is in the computing mode.
  • 3. The multi mode mobile device of claim 2, wherein the application processor is deenergized when the multi mode mobile device is in the communication mode to enable the communication processor to function as the master processor.
  • 4. The multi mode mobile device of claim 2, wherein the application processor is associated with a processor local bus (PLB), the multi mode mobile device further comprising a PLB bridge processor configured to enable the communication processor to function as the master processor when the multi mode mobile device is in the communication mode and to enable the communication processor to function as a peripheral processor when the multi mode mobile device is in the computing mode.
  • 5. The multi mode mobile device of claim 4, wherein the communication processor is operative to control one or more peripheral devices coupled to the PLB when the multi mode mobile device is in the communication mode.
  • 6. The multi mode mobile device of claim 4, wherein the PLB bridge processor is a dedicated portion of the communication processor.
  • 7. The multi mode mobile device of claim 1, wherein the application processor is an application processor core of a main processor.
  • 8. A multi mode mobile device configured to switch between a communication mode and a computing mode, the multi mode mobile device comprising: application processing means for executing at least one computing application when the multi mode mobile device is in the computing mode;communication processing means for facilitating wireless voice and data communication when the multi mode mobile device is in the communication mode; andmeans for switching the multi mode mobile device from the computing mode to the communication mode in response to user input of at least part of telephone number.
  • 9. The multi mode mobile device of claim 8, wherein the application processing means functions as a master processor and the communication processing means functions as a peripheral processor when the multi mode mobile device is in the computing mode.
  • 10. The multi mode mobile device of claim 9, wherein the application processing means is deenergized when the multi mode mobile device is in the communication mode to enable the communication processing means to function as the master processor.
  • 11. The multi mode mobile device of claim 10, wherein the application processing means is associated with a processor local bus (PLB), the multi mode mobile device further comprising a PLB bridge processing means thr enabling the communication processing means to function as the master processor and the communication processing means to function as a peripheral processor when the multi mode mobile device is in the computing mode.
  • 12. The multi mode mobile device of claim 11, wherein the communication processing means is operative to control one or more peripheral devices coupled to the PLB when the multi mode mobile device is in the communication mode.
  • 13. The multi mode mobile device of claim 11, wherein the PLB bridge processing means is a dedicated portion of the communication processing means.
  • 14. A method for operating a multi mode mobile device in a computing mode and a communication mode, the method comprising: executing at least one computing application by an application processor in the computing mode;switching the multi mode mobile device from the computing mode to the communication mode in response to user input including at least a part of a telephone number; andfacilitating wireless voice and data communication using a communication processor in the communication mode.
  • 15. The method of claim 14, wherein the application processor functions as a master processor and the communication processor functions as a peripheral processor when the multi mode mobile device is in the computing mode.
  • 16. The method of claim 15, wherein the application processor is deenergized when the multi mode mobile device is in the communication mode to enable the communication processor to function as the master processor when the multi mode mobile device is in the communication mode.
  • 17. The method of claim 16, wherein the application processor is associated with a processor local bus (PLB), the method further comprising using a PLB bridge processor to enable the communication processor to function as the master processor and the communication processor to function as a peripheral processor when the multi mode mobile device is in the computing mode.
  • 18. The method of claim 17, wherein the PLB bridge processor is a dedicated portion of the communication processor.
  • 19. The method of claim 14, wherein the application processor is an application processor core of a main processor.
  • 20. The method of claim 14, further comprising controlling one or more peripheral devices coupled to the PLB at the communication processor when the multi mode mobile device is in the communication mode.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present Application for Patent is a continuation of patent application Ser. No. 11/946,901, filed on Nov. 29, 2007, pending, which is a continuation of application Ser. No. 10/229,507, filed Aug. 27, 2002 now U.S. Pat. No. 7,450,963 and assigned to the assignee hereof and hereby expressly incorporated by reference herein.

US Referenced Citations (22)
Number Name Date Kind
5487181 Dailey et al. Jan 1996 A
5870680 Guerlin et al. Feb 1999 A
5925092 Swan et al. Jul 1999 A
6731958 Shirai May 2004 B1
6816925 Watts, Jr. Nov 2004 B2
6941538 Hwang et al. Sep 2005 B2
7020487 Kimata Mar 2006 B2
7062303 Guterman Jun 2006 B2
7069456 Bormann et al. Jun 2006 B2
7401163 Nishimoto et al. Jul 2008 B2
7450963 Krishnan et al. Nov 2008 B2
20020032039 Kimata Mar 2002 A1
20020087898 Bormann et al. Jul 2002 A1
20020095609 Tokunaga Jul 2002 A1
20020103949 Watts, Jr. Aug 2002 A1
20020173344 Cupps et al. Nov 2002 A1
20030008690 Guterman Jan 2003 A1
20030017854 Avitan Jan 2003 A1
20030163798 Hwang et al. Aug 2003 A1
20040064746 Nishimoto et al. Apr 2004 A1
20080072014 Krishnan et al. Mar 2008 A1
20080305831 Krishnan et al. Dec 2008 A1
Foreign Referenced Citations (10)
Number Date Country
1200855 Dec 1998 CN
11215043 Aug 1999 JP
11341171 Dec 1999 JP
2001256205 Sep 2001 JP
2002032158 Jan 2002 JP
2002033851 Jan 2002 JP
2002215597 Aug 2002 JP
WO0221290 Mar 2002 WO
WO02054212 Jul 2002 WO
WO02061591 Aug 2002 WO
Related Publications (1)
Number Date Country
20120115456 A1 May 2012 US
Continuations (2)
Number Date Country
Parent 11946901 Nov 2007 US
Child 13354377 US
Parent 10229507 Aug 2002 US
Child 11946901 US