Low power multilevel driver

Information

  • Patent Grant
  • 10056903
  • Patent Number
    10,056,903
  • Date Filed
    Friday, April 28, 2017
    7 years ago
  • Date Issued
    Tuesday, August 21, 2018
    6 years ago
Abstract
A driver for transmitting multi-level signals on a multi-wire bus is described that includes at least one current source connected to a transmission line, each current source selectively enabled to source current to the transmission line to drive a line voltage above a termination voltage of a termination voltage source connected to the transmission line via a termination impedance element, wherein each of the at least one current sources has an output impedance different than a characteristic impedance of the transmission line, and at least one current sink connected to the transmission line, each current sink selectively enabled to sink current from the transmission line to drive a line voltage below the termination voltage, each of the at least one current sinks having an output impedance different than the characteristic impedance of the transmission line.
Description
BACKGROUND

In communication systems, information may be transmitted from one physical location to another. Furthermore, it is typically desirable that the transport of this information is reliable, is fast and consumes a minimal amount of resources. One of the most common information transfer media is the serial communications link, which may be based on a single wire circuit relative to ground or other common reference, multiple such circuits relative to ground or other common reference, or multiple circuits used in relation to each other.


In the general case, a serial communications link is used over multiple time periods. In each such time period, a signal or signals over the link represents, and thus conveys, some amount of information typically measured in bits. Thus, at a high level, a serial communications link connects a transmitter to a receiver and the transmitter transmits a signal or signals each time period, the receiver receives signal or signals approximating those transmitted (as the result of signal degradation over the link, noise, and other distortions.) The information being conveyed by the transmitter is “consumed” by the transmitter, and representative signals are generated. The receiver attempts to determine the conveyed information from the signals it receives. In the absence of overall errors, the receiver can output exactly the bits that were consumed by the transmitter.


The optimum design of a serial communications link often depends on the application for which it is used. In many cases, there are trade-offs between various performance metrics, such as bandwidth (number of bits that can be conveyed per unit time and/or per period), pin efficiency (number of bits or bit equivalents that can be conveyed at one time divided by the number of wires used for that conveyance), power consumption (units of energy consumed by the transmitter, signal logic, receiver, etc. per bit conveyed), SSO resilience and cross-talk resilience, and expected error rate.


An example of a serial communications link is a differential signaling (DS) link. Differential signaling operates by sending a signal on one wire and the opposite of that signal on a paired wire; the signal information is represented by the difference between the wires rather than their absolute values relative to ground or other fixed reference. Differential signaling enhances the recoverability of the original signal at the receiver over single ended signaling (SES), by cancelling crosstalk and other common-mode noise. There are a number of signaling methods that maintain the desirable properties of DS while increasing pin-efficiency over DS. Many of these attempts operate on more than two wires simultaneously, using binary signals on each wire, but mapping information in groups of bits.


Vector signaling is a method of signaling. With vector signaling, pluralities of signals on a plurality of wires are considered collectively although each of the plurality of signals may be independent. Each of the collective signals is referred to as a component and the number of plurality of wires is referred to as the “dimension” of the vector. In some embodiments, the signal on one wire is entirely dependent on the signal on another wire, as is the case with DS pairs, so in some cases the dimension of the vector may refer to the number of degrees of freedom of signals on the plurality of wires instead of the number of wires in the plurality of wires.


With binary vector signaling, each component takes on a coordinate value (or “coordinate”, for short) that is one of two possible values. As an example, eight SES wires may be considered collectively, with each component/wire taking on one of two values each signal period. A “code word” of this binary vector signaling is one of the possible states of that collective set of components/wires. A “vector signaling code” or “vector signaling vector set” is the collection of valid possible code words for a given vector signaling encoding scheme. A “binary vector signaling code” refers to a mapping and/or set of rules to map information bits to binary vectors. In the example of eight SES wires, where each component has a degree of freedom allowing it to be either of the two possible coordinates, the number of code words in the collection of code words is 2^8, or 256. As with SES or DS links, output drivers used with a binary vector signaling code need only emit two distinct voltage- or current-levels, corresponding to the two possible coordinate values for each vector element.


With non-binary vector signaling, each component has a coordinate value that is a selection from a set of more than two possible values. A “non-binary vector signaling code” refers to a mapping and/or set of rules to map information bits to non-binary vectors. The corresponding output driver for a non-binary vector signaling code may then be configured to emit multiple voltage- or current-levels corresponding to the selected coordinate values for each vector output. Examples of vector signaling methods are described in [Cronie I].


BRIEF DESCRIPTION

A transmitter and receiver can communicate using a serial communications link, wherein the serial communications link uses signaling based on a balanced vector signaling code. The vector signaling code transmits a vector of symbols using multiple wires of the communications link in each transmit unit interval. The number of components of the vector can be two, three, four, or more than four. The number of coordinate values for a component can be two, three, four, or more than four. For example, a link might use four components with four possible coordinate values: a high value, a low value, and inverses of the high and low values, such that a signal having the high value cancels out three signals having the inverse of the low value and a signal having the inverse of the high value cancels out three signals having the low value and, in this manner, the link can convey three bits in a signal period using those four components by mapping the eight possible three bit combinations onto the eight vector code words represented by the four permutations of one high value and three inverses of the low value plus the four permutations of the inverse of one high value and three low values. In a more specific embodiment, the high and low values are voltage values and relative to a reference, the high value and its inverse have the same magnitude but opposite signs, the low value and its inverse have the same magnitude but opposite signs, and the high value has a magnitude three times the low value. As another example, a different link might use three components chosen from three possible coordinate values: a positive value, a smaller positive value, and a smallest positive value or zero, such that the sum of all vector component values is a constant. Such a code is also balanced, albeit with an additional offset or DC component superimposed upon all possible coordinate values as is common practice in embodiments relying on single-ended power supplies.


In at least one embodiment, a driver for transmitting multi-level signals on a multi-wire bus is described that includes at least one current source connected to a transmission line, each current source selectively enabled to source current to the transmission line to drive a line voltage above a termination voltage of a termination voltage source connected to the transmission line via a termination impedance element, wherein each of the at least one current sources has an output impedance different than a characteristic impedance of the transmission line, and at least one current sink connected to the transmission line, each current sink selectively enabled to sink current from the transmission line to drive a line voltage below the termination voltage, each of the at least one current sinks having an output impedance different than the characteristic impedance of the transmission line.


In some embodiments, the termination impedance is matched to the characteristic impedance of the transmission line. In some embodiments, the apparatus further comprising at least one transmit impedance element connecting at least one current source or at least one current sink to the transmission line. In some embodiments, at least one transmit impedance connects both a current source and a current sink to the transmission line.


In some embodiments, each current source and current sink includes a corresponding switch configured to selectively enable sourcing or sinking of the current to the transmission line. In some embodiments, at least one of the current sources is an active current source connected to the transmission line via the corresponding switch. In some embodiments, at least one current sink is a resistive element connected to the transmission line.


In some embodiments, the transmission line corresponds to a single wire of a multi-wire bus, each wire of the multi-wire bus connected to the termination voltage node by a corresponding termination impedance. In some embodiments, the apparatus further includes a switching circuit connected to a single current source or a current sink, the switching circuit configured to connect the single current source or current sink to one or more of the wires of the multi-wire bus. In some embodiments, the at least one current source and the at least one current sink are configured to collectively form at least three possible line voltage values.


In accordance with at least one embodiment, processes and apparatuses provide for transmitting data over physical channels to provide a high speed, low latency interface providing high total bandwidth at low power utilization, such as to interconnect integrated circuit chips in a multi-chip system. In some embodiments, different voltage, current, etc. levels are used for signaling and more than two levels may be used, such as a quaternary signaling system wherein each wire signal has one of four values.


This Brief Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Brief Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.





BRIEF DESCRIPTION OF FIGURES


FIG. 1 is a schematic diagram of one embodiment of a multilevel line driver.



FIG. 2 is a schematic diagram of another embodiment of a multilevel line driver.



FIG. 3 is a schematic diagram of one embodiment of a multilevel line driver comprising both current source and resistive sink elements.



FIG. 4 is a switching circuit, in accordance with some embodiments.



FIG. 5 is a block diagram of a multi-transmission line communication system, in accordance with some embodiments.



FIG. 6 is a flowchart of a method, in accordance with some embodiments.





DETAILED DESCRIPTION

Despite the increasing technological ability to integrate entire systems into a single integrated circuit, multiple chip systems and subsystems retain significant advantages. For purposes of description and without limitation, example embodiments described herein assume a systems environment of at least one point-to-point communications interface connecting two integrated circuit chips representing a transmitter and a receiver, wherein the communications interface is supported by at least one interconnection group of more than two high-speed transmission line signal wires providing medium loss connectivity at high speed, a vector signaling code carries information from the transmitter to the receiver as simultaneously transmitted values on each wire of a group with individual values being selected from three or more levels and, the overall group is constrained by the vector signaling code to a fixed sum of levels.


Thus in one embodiment, symbol coordinate values of the H4 vector signaling code first described in [Cronie I] are transmitted as offset voltage levels from a fixed reference, as one example a +200 mV offset representing a “+1”, a −66 mV offset representing a “−⅓”, etc.


Physical Channel Characteristics


As one example of a high speed communication system, communication elements may be interconnected via a communications channel composed of at least one group of microstripline wires separated by a dielectric layer from a ground plane, providing a controlled impedance multiwire transport suitable for use with a vector signaling code. The multiple wires of the group are routed together with homogenous fabrication characteristics, to minimize variations in attenuation and propagation velocity. Further, each wire in this channel is terminated at each end in its characteristic transmission line impedance. Thus, following conventional good practice for a typical transmission line impedance of 50 ohms, signals are issued by a transmitter having a source impedance of 50 ohms, and are detected at the receiver as voltages across or current through a 50 ohm termination resistance. Current practice supports communication over such channels at rates up to tens of Gigabits per second, over distances ranging from several centimeters to a meter or more.


[Ulrich I] describes line driver embodiments compatible with these conventional channels, providing multiple signal output levels with matched output impedance, and optional Finite Impulse Response waveform shaping. [Shokrollahi I] similarly describes transmitters and receivers capable of communicating at 25 Gigabits per second per communications channel wire, over distances of up to 25 millimeters.


However, applying these practices to shorter channels may result in unnecessary power consumption and system complexity. The short propagation times and minimal transmission line variations seen in an interconnection within a single integrated circuit device may not use perfectly matched terminating impedances to permit error-free communication to occur. Thus, the embodiments described herein offer reduced line driver power consumption in those environments where matched line terminations are not implemented.


For purposes of illustration and without implying limitation, channels associated with subsequent embodiments described herein may be composed of 50 ohm impedance interconnections routed as wire groups of six to eight wires of equal length not exceeding two millimeters (e.g. between to subsystems on a single integrated circuit device, or between two integrated circuits within a multi-chip module,) operating at data rates of up to 25 Gigabits per second per wire using the receivers and vector signaling code described in [Shokrollahi I.]


Low Power Line Driver


A first embodiment of a line driver suitable for generation of up to four discrete output signal levels on a single wire is shown in the schematic of FIG. 1. Output drivers 110 and 120 are conventional CMOS tri-state output devices, e.g. capable of both sourcing and sinking current using a stacked PMOS/NMOS output structure, or presenting a high-impedance output in which neither output transistor is enabled.


Each output level is produced by enabling one output driver and setting its input to either a logic “1” or a logic “0”. Series resistors R1 and R2 form a voltage divider with termination resistor Rterm, thus the output levels seen at 130 will be a fraction of the Vdd-to-Vss output voltage swing produced by driver 110 or driver 120 at their outputs. Four output levels are possible: R1 driven high, R2 driven high, R2 driven low, and R1 driven low.


In one embodiment, R1=50 ohms, R2=250 ohms, and Rterm=50 ohms, With Vdd=0.9 volts, output levels of 675, 525, 375, and 225 mV were obtained in that particular embodiment.


Termination voltage VT represents the mid-point of the transmit output levels and thus the midpoint or bias level for Receiver 190 as well. As the example Glasswing code of [Shokrollahi I] is a balanced six wire code (i.e. all elements of that code summing to a constant value for all codewords,) the six instances of FIG. 1 needed to drive the six wires may be interconnected at node VT, with the termination voltage produced by the passive summation of the currents flowing through each wire's Rterm to the common connection at node VT, with no need for a separate termination voltage source. At least one embodiment provides a bypass capacitor between that common connection node for all termination resistors and ground. FIG. 5 illustrates an exemplary embodiment in which n drivers 510, 515, . . . , 520 are connected to the termination voltage node via corresponding termination impedance elements Rterm1, Rterm2, . . . , Rtermn.


This circuit provides significant power savings over the multilevel output driver of [Ulrich I] but does not provide a constant source impedance facing 130. Thus, there is more risk of signal reflections causing inter-symbol interference, especially if the transmission path round trip time is an appreciable fraction of a transmission unit interval. However, this will rarely be the case for extremely short channels, while the potential power savings will be of significant importance.


Illustrating that this technique is extensible, a further embodiment is shown in the schematic diagram of FIG. 2, with five tri-stateable CMOS buffers 210, 220, 230, 240, 250 with source resistors R1, R2, R3, R4, R5 producing up to ten discrete signal levels at 260 and receiver 290. As will be apparent from the two examples given, additional embodiments may be designed which support different signaling levels, different numbers of signaling levels, and different numbers of wires.


Hybrid Line Driver


The line driver embodiment illustrated in the schematic of FIG. 3 may be configured to provide even lower power operation, again provided that the transmit impedance facing the output is not constrained. As with the previous examples, termination voltage VT represents the mid-point of the multiple transmit signal levels, as well as typically also the receiver bias point. Output voltage levels greater than termination voltage VT are produced by injecting current into node 370 by asserting InC or InD which in turn closes switch 330 or 340, thus connecting current source Idd1 or Idd2 to 370, with the additional current across Rterm raising the voltage at 370. Output voltage levels less than VT are produced by removing current from node 370 by asserting InA or InB which in turn closes switch 350 or 360, thus connecting transmit impedance resistors R1 or R2 to 370 and lowering the voltage seen across Rterm and thus by receiver 390. Although active current sinks can be used for current removal, practical design considerations favor the simpler approach of resistive current sinking. While it may be feasible to obtain 16 various voltage levels by selectively enabling and disabling inputs In A/B/C/D, some embodiments may utilize a subset. For example, for the Glasswing encoding scheme referenced below, only 1 input In A/B/C/D may be enabled at a time, producing the 4 possible voltage levels corresponding to symbol values ±1, ±⅓.


In one embodiment, switches 330, 340, 350, 360 are MOS transistors, and termination voltage VT at the termination voltage node is produced as previously described, by interconnecting each wire instance of FIG. 3 at VT with an optional bypass capacitor from that interconnection node to ground. In one particular embodiment, R1=100 ohms, R2=0 ohms, and Rterm=50 ohms, with current sources of 3 mA and 1.5 mA. With Vdd=0.9 V, output levels of 450, 300, 150, and 0 mV were obtained in that particular embodiment.


Switched circuit elements are used to pass current from current sources Idd1 and Idd2, because in practice directly enabling/disabling of a current source has been found to be too slow. Such switching also suggests a further optimization. Just as the termination voltage VT appears as a consensus or aggregate result of the interconnection of all termination resistors from wires carrying a balanced vector signaling code, the characteristics of the code may be used to optimize the design and usage of the current sources Idd1 and Idd2. As one example, [Shokrollahi I] teaches that every Glasswing or 5b6w codeword contains exactly one “+1” symbol, and exactly two “+⅓” symbols. Thus, of the six instances of FIG. 3 (one instance for each of six wires) needed to output that code, only one will use the current source producing the “+1” output level, and exactly two will use the current source producing the “+⅓” level. Because of this consistent usage pattern, another embodiment uses a single “+1” current source across all six instances, and configures the associated selection switches as a “1 of 6” switching circuit, directing that current to the wire requiring that symbol value for the code word being output. Similarly, two current sources may be shared among six wires for the “+⅓” output level. (As an alternative embodiment, a single current source providing twice the current could potentially be shared between the two wires requiring a “+⅓” output, at the risk of uneven current sharing.) With the resistor and current values previously described for the particular embodiment, a total current consumption of 6 mA (one 3 mA current source shared among six wires, and two 1.5 mA current sources shared among six wires) will support an entire 5b6w interface. Similar optimizations may be obtained for other vector signaling codes.



FIG. 4 is a schematic of a switching circuit configured to direct the current of Idd1 to one of a plurality wires of the multi-wire bus. As shown, current source Idd1 is connect to n switches, each switch connected to a respective wire of the multi-wire bus. In the embodiment above where Idd1 corresponds to a “+1” symbol, only one of the switches 410/420/430 may be enabled at a given time. A similar circuit may be used for the current source corresponding to the “+⅓” symbol, as well as the current sinks corresponding to the “−1” and “−⅓” symbols. Alternatively, current source Idd1 may correspond to a value of “+⅔”, and may be simultaneously connected to two wires, providing each wire with a level of “+⅓”.



FIG. 6 is a flowchart of a method 600, in accordance with some embodiments. As shown, FIG. 6 includes obtaining 602 at least one control bit identifying a symbol of a codeword of a vector signaling code. In response to obtaining the at least one control bit, the method sets 604 a line voltage on a transmission line. As shown, setting the line voltage may include selectively sourcing current 606 via at least one current source to the transmission line to drive a line voltage above a termination voltage VT of a termination voltage source connected to the transmission line via a termination impedance element Rterm, wherein each current source of the at least one current sources has an output impedance different than a characteristic impedance of the transmission line. In order to drive the line voltage below the termination voltage, the method may selectively sink 608 current via at least one current sink from the transmission line to drive a line voltage below the termination voltage VT, each of the at least one current sinks having an output impedance different than the characteristic impedance of the transmission line.


In some embodiments, the termination impedance element Rterm is matched to the characteristic impedance of the transmission line. In some embodiments, at least one current source or at least one current sink is coupled to the transmission line via a transmit impedance, such as resistors R1 and R2 in FIGS. 1-3. In some embodiments, a current source and a current sink are coupled to the transmission line via a common transmit impedance, as shown in FIGS. 1 and 2, where a tri-state driver 110 is coupled to the transmission line 130 via transmit impedance R1. In some embodiments, selectively sourcing or sinking current comprises enabling one or more switches according to the at least one control bit. Such an embodiment is illustrated by FIG. 3 utilizing switches 330, 340, 350, and 360. In some embodiments, at least one of the current sources is an active current source, such as Idd1 and Idd2 in FIG. 3. In some embodiments, at least one current sink is a passive current sink, illustrated by resistive current sinks R1 and R2 in FIG. 3.


In some embodiments, the method further includes selectively sourcing current to and sinking current from at least a second transmission line connected to the termination voltage source via a second termination impedance element, the current selectively sourced and sunk according to control bits identifying a second symbol of the codeword of the vector signaling code. In such an embodiment, multiple instances of a driver as shown in FIGS. 1-3 may have corresponding transmission lines connected to the termination voltage source providing VT via a respective termination impedance element Rterm. Such an embodiment utilizing a multi-transmission line system is shown in FIG. 5. In some embodiments, the method further includes switching a single current source or current sink between the transmission line and the second transmission line. A switching circuit as illustrated by FIG. 4 may provide such a switching function, in which a reduced number of current sources are used and switched between each transmission line of the plurality of transmission lines. In some embodiments, the line voltage is set to one of at least three possible values.


Example signal levels, signal frequencies, and physical dimensions described herein are provided for purposes of explanation, and are not limiting. Different vector signaling codes may be used, communicated using more or fewer wires per group, fewer or greater numbers of signal levels per wire, and/or with different code word constraints. For convenience, signal levels are described herein as voltages, rather than their equivalent current values.


Other embodiments may utilize different signaling levels, connection topology, termination methods, and/or other physical interfaces, including optical, inductive, capacitive, or electrical interconnection. Similarly, examples based on unidirectional communication from transmitter to receiver are presented for clarity of description; combined transmitter-receiver embodiments and bidirectional communication embodiments are also explicitly in accordance with some embodiments.


The examples presented herein illustrate the use of vector signaling codes carried by parallel transmission line interconnections for intra-chip and chip-to-chip communication. However, those exemplary details should not been seen as limiting the scope of the described embodiments. The methods disclosed in this application are equally applicable to other interconnection topologies and other communication media including optical, capacitive, inductive, and wireless communications which may rely on any of the characteristics of the described embodiments, including but not limited to communications protocol, signaling methods, and physical interface characteristics. Thus, descriptive terms such as “voltage” or “signal level” should be considered to include equivalents in other measurement systems, such as “current”, “optical intensity”, “RF modulation”, etc. As used herein, the term “signal” includes any suitable behavior and/or attribute of a physical phenomenon capable of conveying information. The information conveyed by such signals may be tangible and non-transitory.

Claims
  • 1. An apparatus comprising: a voltage termination node connected to a plurality of transmission lines via a plurality of termination impedance elements, the voltage termination node having a termination voltage corresponding to a summation of a plurality of currents flowing through the plurality of termination impedance elements, each current of the plurality of currents corresponding to a respective symbol of a plurality of symbols of a balanced codeword of a vector signaling code, each symbol of the plurality of symbols of the balanced codeword having a symbol value selected from a set of at least three symbol values;a plurality of multi-level drivers, each multi-level driver connected to a respective transmission line of the plurality of transmission lines and to the voltage termination node via a respective termination impedance element of the plurality of termination impedance elements, each multi-level driver configured to generate a corresponding current of the plurality of currents, each multi-level driver comprising: at least one current source connected to the respective transmission line, each current source selectively enabled to source current to the respective transmission line to drive a line voltage above the termination voltage of the termination voltage node connected to the transmission line via the respective termination impedance element of the plurality of termination impedance elements, wherein each of the at least one current sources has an output impedance different than a characteristic impedance of the transmission line; andat least one current sink connected to the respective transmission line, each current sink selectively enabled to sink current from the transmission line to drive a line voltage below the termination voltage, each of the at least one current sinks having an output impedance different than the characteristic impedance of the transmission line.
  • 2. The apparatus of claim 1, wherein the termination impedance is matched to the characteristic impedance of the respective transmission line.
  • 3. The apparatus of claim 1, wherein each multi-level driver further comprises at least one transmit impedance element connecting at least one current source or at least one current sink to the respective transmission line.
  • 4. The apparatus of claim 1, wherein each current source and current sink comprises a corresponding switch configured to selectively enable sourcing or sinking of the current to the respective transmission line.
  • 5. The apparatus of claim 4, wherein at least one of the current sources is an active current source connected to the respective transmission line via the corresponding switch.
  • 6. The apparatus of claim 1, wherein at least one current sink is a resistive element connected to the respective transmission line.
  • 7. The apparatus of claim 1, further comprising a switching circuit connected to a single current source or a current sink, the switching circuit configured to connect the single current source or current sink to one or more transmission lines of the plurality of transmission lines.
  • 8. The apparatus of claim 1, wherein the voltage termination node comprises a capacitor configured to maintain the termination voltage.
  • 9. A method comprising: obtaining a plurality of control bits identifying a plurality of symbols of a balanced codeword of a vector signaling code, each symbol of the plurality of symbols of the balanced codeword having a symbol value selected from a set of at least three symbol values;in response to obtaining the plurality of control bits, setting a line voltage on a plurality of transmission lines connected to a voltage termination node via a plurality of termination impedance elements, the voltage termination node having a termination voltage corresponding to a summation of a plurality of currents flowing through the plurality of termination impedance elements, each current of the plurality of currents corresponding to a respective symbol of the plurality of symbols of the balanced codeword, wherein setting the line voltage on each respective transmission line of the plurality of transmission lines comprises: selectively sourcing current via at least one current source to the respective transmission line to drive the line voltage above the termination voltage of the termination voltage node connected to the respective transmission line via a respective termination impedance element of the plurality of termination impedance elements, wherein each of the at least one current sources has an output impedance different than a characteristic impedance of the transmission line; andselectively sinking current via at least one current sink from the respective transmission line to drive the line voltage below the termination voltage, each of the at least one current sinks having an output impedance different than the characteristic impedance of the respective transmission line.
  • 10. The method of claim 9, wherein the termination impedance element is matched to the characteristic impedance of the respective transmission line.
  • 11. The method of claim 9, wherein at least one current source or at least one current sink is coupled to the respective transmission line via a transmit impedance.
  • 12. The method of claim 9, wherein selectively sourcing or sinking current comprises enabling one or more switches according to the plurality of control bits.
  • 13. The method of claim 9, wherein at least one of the current sources is an active current source.
  • 14. The method of claim 9, wherein at least one current sink is a passive current sink.
  • 15. The method of claim 9 further comprising switching a single current source or current sink between one or more transmission lines of the plurality of transmission lines.
  • 16. The method of claim 9, wherein the termination voltage is maintained by charging and discharging a capacitor connected to the voltage termination node according to the plurality of currents.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/328,722, filed Apr. 28, 2016, entitled “Low Power Multilevel Driver,” reference of which is hereby incorporated in its entirety. The following prior applications are herein incorporated by reference in their entirety for all purposes: U.S. Patent Publication No. 2011/0268225 of U.S. patent application Ser. No. 12/784,414, filed May 20, 2010, naming Harm Cronie and Amin Shokrollahi, entitled “Orthogonal Differential Vector Signaling” (hereinafter identified as [Cronie I]). U.S. Pat. No. 9,100,232, issued Aug. 4, 2015, naming Amin Shokrollahi, Ali Hormati, and Roger Ulrich, entitled “Method and Apparatus for Low Power Chip-to-Chip Communications with Constrained ISI Ratio” (hereinafter identified as [Shokrollahi I]); U.S. patent application Ser. No. 14/315,306, filed Jun. 25, 2014, naming Roger Ulrich, entitled “Multilevel Driver for High Speed Chip-to-Chip Communications” (hereinafter identified as [Ulrich I]).

US Referenced Citations (401)
Number Name Date Kind
668687 Mayer Feb 1901 A
780883 Hinchman Jan 1905 A
3196351 Slepian Jul 1965 A
3636463 Ongkiehong Jan 1972 A
3939468 Mastin Feb 1976 A
4163258 Ebihara Jul 1979 A
4181967 Nash Jan 1980 A
4206316 Burnsweig Jun 1980 A
4276543 Miller Jun 1981 A
4486739 Franaszek Dec 1984 A
4499550 Ray, III Feb 1985 A
4722084 Morton Jan 1988 A
4772845 Scott Sep 1988 A
4774498 Traa Sep 1988 A
4864303 Ofek Sep 1989 A
4897657 Brubaker Jan 1990 A
4974211 Corl Nov 1990 A
5017924 Guiberteau May 1991 A
5053974 Penz Oct 1991 A
5166956 Baltus Nov 1992 A
5168509 Nakamura Dec 1992 A
5266907 Dacus Nov 1993 A
5283761 Gillingham Feb 1994 A
5287305 Yoshida Feb 1994 A
5311516 Kuznicki May 1994 A
5331320 Cideciyan Jul 1994 A
5412689 Chan May 1995 A
5449895 Hecht Sep 1995 A
5459465 Kagey Oct 1995 A
5461379 Weinman Oct 1995 A
5511119 Lechleider Apr 1996 A
5553097 Dagher Sep 1996 A
5566193 Cloonan Oct 1996 A
5599550 Kohlruss Feb 1997 A
5626651 Dullien May 1997 A
5629651 Mizuno May 1997 A
5659353 Kostreski Aug 1997 A
5727006 Dreyer Mar 1998 A
5748948 Yu May 1998 A
5802356 Gaskins Sep 1998 A
5825808 Hershey Oct 1998 A
5856935 Moy Jan 1999 A
5875202 Venters Feb 1999 A
5945935 Kusumoto Aug 1999 A
5949060 Schattschneider Sep 1999 A
5982954 Delen Nov 1999 A
5995016 Perino Nov 1999 A
5999016 McClintock Dec 1999 A
6005895 Perino Dec 1999 A
6084883 Norrell Jul 2000 A
6119263 Mowbray Sep 2000 A
6172634 Leonowich Jan 2001 B1
6175230 Hamblin Jan 2001 B1
6232908 Nakaigawa May 2001 B1
6278740 Nordyke Aug 2001 B1
6316987 Dally Nov 2001 B1
6346907 Dacy Feb 2002 B1
6359931 Perino Mar 2002 B1
6378073 Davis Apr 2002 B1
6398359 Silverbrook Jun 2002 B1
6404820 Postol Jun 2002 B1
6417737 Moloudi Jul 2002 B1
6433800 Holtz Aug 2002 B1
6452420 Wong Sep 2002 B1
6473877 Sharma Oct 2002 B1
6483828 Balachandran Nov 2002 B1
6504875 Perino Jan 2003 B2
6509773 Buchwald Jan 2003 B2
6522699 Anderson Feb 2003 B1
6556628 Poulton Apr 2003 B1
6563382 Yang May 2003 B1
6621427 Greenstreet Sep 2003 B2
6624699 Yin Sep 2003 B2
6650638 Walker Nov 2003 B1
6661355 Cornelius Dec 2003 B2
6664355 Kim Dec 2003 B2
6686879 Shattil Feb 2004 B2
6690739 Mui Feb 2004 B1
6766342 Kechriotis Jul 2004 B2
6772351 Werner Aug 2004 B1
6839429 Gaikwad Jan 2005 B1
6839587 Yonce Jan 2005 B2
6854030 Perino Feb 2005 B2
6865234 Agazzi Mar 2005 B1
6865236 Terry Mar 2005 B1
6876317 Sankaran Apr 2005 B2
6898724 Chang May 2005 B2
6927709 Kiehl Aug 2005 B2
6954492 Williams Oct 2005 B1
6963622 Eroz Nov 2005 B2
6972701 Jansson Dec 2005 B2
6973613 Cypher Dec 2005 B2
6976194 Cypher Dec 2005 B2
6982954 Dhong Jan 2006 B2
6990138 Bejjani Jan 2006 B2
6991038 Guesnon Jan 2006 B2
6993311 Li Jan 2006 B2
6999516 Rajan Feb 2006 B1
7023817 Kuffner Apr 2006 B2
7039136 Olson May 2006 B2
7053802 Cornelius May 2006 B2
7075996 Simon Jul 2006 B2
7080288 Ferraiolo Jul 2006 B2
7082557 Schauer Jul 2006 B2
7085153 Ferrant Aug 2006 B2
7085336 Lee Aug 2006 B2
7127003 Rajan Oct 2006 B2
7130944 Perino Oct 2006 B2
7142612 Horowitz Nov 2006 B2
7142865 Tsai Nov 2006 B2
7164631 Tateishi Jan 2007 B2
7167019 Broyde Jan 2007 B2
7176823 Zabroda Feb 2007 B2
7180949 Kleveland Feb 2007 B2
7184483 Rajan Feb 2007 B2
7199728 Dally Apr 2007 B2
7231558 Gentieu Jun 2007 B2
7269130 Pitio Sep 2007 B2
7269212 Chau Sep 2007 B1
7335976 Chen Feb 2008 B2
7336112 Sha Feb 2008 B1
7339990 Hidaka Mar 2008 B2
7346819 Bansal Mar 2008 B2
7348989 Stevens Mar 2008 B2
7349484 Stojanovic Mar 2008 B2
7356213 Cunningham Apr 2008 B1
7358869 Chiarulli Apr 2008 B1
7362130 Broyde Apr 2008 B2
7362697 Becker Apr 2008 B2
7366942 Lee Apr 2008 B2
7370264 Worley May 2008 B2
7372390 Yamada May 2008 B2
7389333 Moore Jun 2008 B2
7397302 Bardsley Jul 2008 B2
7400276 Sotiriadis Jul 2008 B1
7428273 Foster Sep 2008 B2
7456778 Werner Nov 2008 B2
7462956 Lan Dec 2008 B2
7496162 Srebranig Feb 2009 B2
7570704 Nagarajan Apr 2009 B2
7535957 Ozawa May 2009 B2
7539532 Tran May 2009 B2
7599390 Pamarti Oct 2009 B2
7613234 Raghavan Nov 2009 B2
7616075 Kushiyama Nov 2009 B2
7620116 Bessios Nov 2009 B2
7633850 Nagarajan Dec 2009 B2
7639596 Cioffi Dec 2009 B2
7643588 Visalli Jan 2010 B2
7650525 Chang Jan 2010 B1
7656321 Wang Feb 2010 B2
7694204 Schmidt Apr 2010 B2
7697915 Behzad Apr 2010 B2
7698088 Sul Apr 2010 B2
7706456 Laroia Apr 2010 B2
7706524 Zerbe Apr 2010 B2
7746764 Rawlins Jun 2010 B2
7768312 Hirose Aug 2010 B2
7787572 Scharf Aug 2010 B2
7804361 Lim Sep 2010 B2
7808456 Chen Oct 2010 B2
7808883 Green Oct 2010 B2
7841909 Murray Nov 2010 B2
7869497 Benvenuto Jan 2011 B2
7869546 Tsai Jan 2011 B2
7882413 Chen Feb 2011 B2
7899653 Hollis Mar 2011 B2
7907676 Stojanovic Mar 2011 B2
7933770 Kruger Apr 2011 B2
8000664 Khorram Aug 2011 B2
8030999 Chatterjee Oct 2011 B2
8036300 Evans Oct 2011 B2
8050332 Chung Nov 2011 B2
8055095 Palotai Nov 2011 B2
8064535 Wiley Nov 2011 B2
8085172 Li Dec 2011 B2
8091006 Prasad Jan 2012 B2
8106806 Toyomura Jan 2012 B2
8149906 Saito Apr 2012 B2
8159375 Abbasfar Apr 2012 B2
8159376 Abbasfar Apr 2012 B2
8180931 Lee May 2012 B2
8185807 Oh May 2012 B2
8199849 Oh Jun 2012 B2
8199863 Chen Jun 2012 B2
8218670 AbouRjeily Jul 2012 B2
8233544 Bao Jul 2012 B2
8245094 Jiang Aug 2012 B2
8253454 Lin Aug 2012 B2
8279094 Abbasfar Oct 2012 B2
8279745 Dent Oct 2012 B2
8289914 Li Oct 2012 B2
8295250 Gorokhov Oct 2012 B2
8295336 Lutz Oct 2012 B2
8310389 Chui Nov 2012 B1
8341492 Shen Dec 2012 B2
8359445 Ware Jan 2013 B2
8365035 Hara Jan 2013 B2
8406315 Tsai Mar 2013 B2
8406316 Sugita Mar 2013 B2
8429492 Yoon Apr 2013 B2
8429495 Przybylski Apr 2013 B2
8437440 Zhang May 2013 B1
8442099 Sederat May 2013 B1
8442210 Zerbe May 2013 B2
8443223 Abbasfar May 2013 B2
8451913 Oh May 2013 B2
8462891 Kizer Jun 2013 B2
8472513 Malipatil Jun 2013 B2
8620166 Dong Jun 2013 B2
8498344 Wilson Jul 2013 B2
8498368 Husted Jul 2013 B1
8520348 Dong Aug 2013 B2
8520493 Goulahsen Aug 2013 B2
8539318 Cronie Sep 2013 B2
8547272 Nestler Oct 2013 B2
8577284 Seo Nov 2013 B2
8578246 Mittelholzer Nov 2013 B2
8588254 Diab Nov 2013 B2
8588280 Oh Nov 2013 B2
8593305 Tajalli Nov 2013 B1
8602643 Gardiner Dec 2013 B2
8604879 Mourant Dec 2013 B2
8638241 Sudhakaran Jan 2014 B2
8643437 Chiu Feb 2014 B2
8649445 Cronie Feb 2014 B2
8649460 Ware Feb 2014 B2
8649556 Wedge Feb 2014 B2
8649840 Sheppard, Jr. Feb 2014 B2
8674861 Matsuno Mar 2014 B2
8687968 Nosaka Apr 2014 B2
8711919 Kumar Apr 2014 B2
8718184 Cronie May 2014 B1
8755426 Cronie Jun 2014 B1
8773964 Hsueh Jul 2014 B2
8780687 Clausen Jul 2014 B2
8782578 Tell Jul 2014 B2
8831440 Yu Sep 2014 B2
8879660 Peng Nov 2014 B1
8897134 Kern Nov 2014 B2
8898504 Baumgartner Nov 2014 B2
8938171 Tang Jan 2015 B2
8949693 Ordentlich Feb 2015 B2
8951072 Hashim Feb 2015 B2
8975948 GonzalezDiaz Mar 2015 B2
8989317 Holden Mar 2015 B1
9015566 Cronie Apr 2015 B2
9020049 Schwager Apr 2015 B2
9036764 Hossain May 2015 B1
9059816 Simpson Jun 2015 B1
9069995 Cronie Jun 2015 B1
9077386 Holden Jul 2015 B1
9083576 Hormati Jul 2015 B1
9093791 Liang Jul 2015 B2
9100232 Hormati Aug 2015 B1
9106465 Walter Aug 2015 B2
9124557 Fox Sep 2015 B2
9148087 Tajalli Sep 2015 B1
9152495 Losh Oct 2015 B2
9165615 Amirkhany Oct 2015 B2
9172412 Kim Oct 2015 B2
9178503 Hsieh Nov 2015 B2
9183085 Northcott Nov 2015 B1
9197470 Okunev Nov 2015 B2
9281785 Sjoland Mar 2016 B2
9288082 Ulrich Mar 2016 B1
9288089 Cronie Mar 2016 B2
9292716 Winoto Mar 2016 B2
9300503 Holden Mar 2016 B1
9306621 Zhang Apr 2016 B2
9331962 Lida May 2016 B2
9362974 Fox Jun 2016 B2
9363114 Shokrollahi Jun 2016 B2
9374250 Musah Jun 2016 B1
9401828 Cronie Jul 2016 B2
9432082 Ulrich Aug 2016 B2
9432298 Smith Aug 2016 B1
9444654 Hormati Sep 2016 B2
9455744 George Sep 2016 B2
9455765 Schumacher Sep 2016 B2
9461862 Holden Oct 2016 B2
9509437 Shokrollahi Nov 2016 B2
9544015 Ulrich Jan 2017 B2
9634797 Benammar Apr 2017 B2
9667379 Cronie May 2017 B2
20010006538 Simon Jul 2001 A1
20010055344 Lee Dec 2001 A1
20020034191 Shattil Mar 2002 A1
20020044316 Myers Apr 2002 A1
20020057592 Robb May 2002 A1
20020154633 Shin Oct 2002 A1
20020163881 Dhong Nov 2002 A1
20020167339 Chang Nov 2002 A1
20020174373 Chang Nov 2002 A1
20020181607 Izumi Dec 2002 A1
20030016770 Trans Jan 2003 A1
20030046618 Collins Mar 2003 A1
20030085763 Schrodinger May 2003 A1
20030146783 Bandy Aug 2003 A1
20030174023 Miyasita Sep 2003 A1
20030185310 Ketchum Oct 2003 A1
20030218558 Mulder Nov 2003 A1
20040027185 Fiedler Feb 2004 A1
20040146117 Subramaniam Jul 2004 A1
20040155802 Lamy Aug 2004 A1
20040161019 Raghavan Aug 2004 A1
20040169529 Afghahi Sep 2004 A1
20050063493 Foster Mar 2005 A1
20050134380 Nairn Jun 2005 A1
20050174841 Ho Aug 2005 A1
20050195000 Parker Sep 2005 A1
20050201491 Wei Sep 2005 A1
20050213686 Love Sep 2005 A1
20050220182 Kuwata Oct 2005 A1
20060036668 Jaussi Feb 2006 A1
20060097786 Su May 2006 A1
20060103463 Lee May 2006 A1
20060120486 Visalli Jun 2006 A1
20060126751 Bessios Jun 2006 A1
20060133538 Stojanovic Jun 2006 A1
20060140324 Casper Jun 2006 A1
20060159005 Rawlins Jul 2006 A1
20060233291 Garlepp Oct 2006 A1
20070001723 Lin Jan 2007 A1
20070002954 Cornelius Jan 2007 A1
20070030796 Green Feb 2007 A1
20070103338 Teo May 2007 A1
20070121716 Nagarajan May 2007 A1
20070204205 Niu Aug 2007 A1
20070263711 Kramer Nov 2007 A1
20070283210 Prasad Dec 2007 A1
20080007367 Kim Jan 2008 A1
20080012598 Mayer Jan 2008 A1
20080104374 Mohamed May 2008 A1
20080159448 Anim-Appiah Jul 2008 A1
20080192621 Suehiro Aug 2008 A1
20080317188 Staszewski Dec 2008 A1
20090059782 Cole Mar 2009 A1
20090115523 Akizuki May 2009 A1
20090154604 Lee Jun 2009 A1
20090195281 Tamura Aug 2009 A1
20090262876 Arima Oct 2009 A1
20090316730 Feng Dec 2009 A1
20090323864 Tired Dec 2009 A1
20100046644 Mazet Feb 2010 A1
20100081451 Mueck Apr 2010 A1
20100148819 Bae Jun 2010 A1
20100180143 Ware Jul 2010 A1
20100215087 Tsai Aug 2010 A1
20100215112 Tsai Aug 2010 A1
20100235673 Abbasfar Sep 2010 A1
20100296556 Rave Nov 2010 A1
20100309964 Oh Dec 2010 A1
20110014865 Seo Jan 2011 A1
20110051854 Kizer Mar 2011 A1
20110072330 Kolze Mar 2011 A1
20110084737 Oh Apr 2011 A1
20110103508 Mu May 2011 A1
20110127990 Wilson Jun 2011 A1
20110228864 Aryanfar Sep 2011 A1
20110235501 Goulahsen Sep 2011 A1
20110268225 Cronie Nov 2011 A1
20110299555 Cronie Dec 2011 A1
20110302478 Cronie Dec 2011 A1
20110317559 Kern Dec 2011 A1
20120082203 Zerbe Apr 2012 A1
20120152901 Nagorny Jun 2012 A1
20120161945 Single Jun 2012 A1
20120213299 Cronie Aug 2012 A1
20120257683 Schwager Oct 2012 A1
20130010892 Cronie Jan 2013 A1
20130013870 Cronie Jan 2013 A1
20130114519 Gaal May 2013 A1
20130129019 Sorrells May 2013 A1
20130147553 Iwamoto Jun 2013 A1
20130188656 Ferraiolo Jul 2013 A1
20130195155 Pan Aug 2013 A1
20130202065 Chmelar Aug 2013 A1
20130259113 Kumar Oct 2013 A1
20130271194 Pellerano Oct 2013 A1
20130314142 Tamura Nov 2013 A1
20130315501 Atanassov Nov 2013 A1
20130346830 Ordentlich Dec 2013 A1
20140159769 Hong Jun 2014 A1
20140177645 Cronie Jun 2014 A1
20150070201 Dedic Mar 2015 A1
20150078479 Whitby-Strevens Mar 2015 A1
20150146771 Walter May 2015 A1
20150222458 Hormati Aug 2015 A1
20150249559 Shokrollahi Sep 2015 A1
20150333940 Shokrollahi Nov 2015 A1
20150349835 Fox Dec 2015 A1
20150380087 Mittelholzer Dec 2015 A1
20150381232 Ulrich Dec 2015 A1
20160020796 Hormati Jan 2016 A1
20160020824 Ulrich Jan 2016 A1
20160036616 Holden Feb 2016 A1
20160261435 Musah Sep 2016 A1
20170310456 Tajalli Oct 2017 A1
20170317449 Shokrollahi Nov 2017 A1
20170317855 Shokrollahi Nov 2017 A1
Foreign Referenced Citations (9)
Number Date Country
1864346 Nov 2006 CN
101478286 Jul 2009 CN
1926267 May 2008 EP
2039221 Feb 2013 EP
2003163612 Jun 2003 JP
2005002162 Jan 2005 WO
2009084121 Jul 2009 WO
2010031824 Mar 2010 WO
2011119359 Sep 2011 WO
Non-Patent Literature Citations (49)
Entry
“Introduction to: Analog Computers and the DSPACE System,” Course Material ECE 5230 Spring 2008, Utah State University, www.coursehero.com, 12 pages.
Abbasfar, A., “Generalized Differential Vector Signaling”, IEEE International Conference on Communications, ICC '09, (Jun. 14, 2009), pp. 1-5.
Brown, L., et al., “V.92: The Last Dial-Up Modem?”, IEEE Transactions on Communications, IEEE Service Center, Piscataway, NJ., USA, vol. 52, No. 1, Jan. 1, 2004, pp. 54-61. XP011106836, ISSN: 0090-6779, DOI: 10.1109/tcomm.2003.822168, pp. 55-59.
Burr, “Spherical Codes for M-ARY Code Shift Keying”, University of York, Apr. 2, 1989, pp. 67-72, United Kingdom.
Cheng, W., “Memory Bus Encoding for Low Power: A Tutorial”, Quality Electronic Design, IEEE, International Symposium on Mar. 26-28, 2001, pp. 199-204, Piscataway, NJ.
Clayton, P., “Introduction to Electromagnetic Compatibility”, Wiley-Interscience, 2006.
Counts, L., et al., “One-Chip Slide Rule Works with Logs, Antilogs for Real-Time Processing,” Analog Devices Computational Products 6, Reprinted from Electronic Design, May 2, 1985, 7 pages.
Dasilva et al., “Multicarrier Orthogonal CDMA Signals for Quasi-Synchronous Communication Systems”, IEEE Journal on Selected Areas in Communications, vol. 12, No. 5 (Jun. 1, 1994), pp. 842-852.
Design Brief 208 Using the Anadigm Multiplier CAM, Copyright 2002 Anadigm, 6 pages.
Ericson, T., et al., “Spherical Codes Generated by Binary Partitions of Symmetric Pointsets”, IEEE Transactions on Information Theory, vol. 41, No. 1, Jan. 1995, pp. 107-129.
Farzan, K., et al., “Coding Schemes for Chip-to-Chip Interconnect Applications”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, No. 4, Apr. 2006, pp. 393-406.
Grahame, J., “Vintage Analog Computer Kits,” posted on Aug. 25, 2006 in Classic Computing, 2 pages, http.//www.retrothing.com/2006/08/classic_analog_.html.
Healey, A., et al., “A Comparison of 25 Gbps NRZ & PAM-4 Modulation used in Legacy & Premium Backplane Channels”, DesignCon 2012, 16 pages.
International Search Report and Written Opinion for PCT/EP2011/059279 dated Sep. 22, 2011.
International Search Report and Written Opinion for PCT/EP2011/074219 dated Jul. 4, 2012.
International Search Report and Written Opinion for PCT/EP2012/052767 dated May 11, 2012.
International Search Report and Written Opinion for PCT/US14/052986 dated Nov. 24, 2014.
International Search Report and Written Opinion from PCT/US2014/034220 dated Aug. 21, 2014.
International Search Report and Written Opinion of the International Searching Authority, dated Jul. 14, 2011 in International Patent Application S.N. PCT/EP2011/002170, 10 pages.
International Search Report and Written Opinion of the International Searching Authority, dated Nov. 5, 2012, in International Patent Application S.N. PCT/EP2012/052767, 7 pages.
International Search Report for PCT/US2014/053563, dated Nov. 11, 2014, 2 pages.
Jiang, A., et al., “Rank Modulation for Flash Memories”, IEEE Transactions of Information Theory, Jun. 2006, vol. 55, No. 6, pp. 2659-2673.
Loh, M., et al., “A 3×9 Gb/s Shared, All-Digital CDR for High-Speed, High-Density I/O”, Matthew Loh, IEEE Journal of Solid-State Circuits, Vo. 47, No. 3, Mar. 2012.
Notification of Transmittal of International Search Report and the Written Opinion of the International Searching Authority, for PCT/US2015/018363, dated Jun. 18, 2015, 13 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/EP2013/002681, dated Feb. 25, 2014, 15 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Mar. 3, 2015, for PCT/US2014/066893, 9 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2014/015840, dated May 20, 2014. 11 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2014/043965, dated Oct. 22, 2014, 10 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/037466, dated Nov. 19, 2015.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/039952, dated Sep. 23, 2015, 8 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/041161, dated Oct. 7, 2015, 8 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/043463, dated Oct. 16, 2015, 8 pages.
Oh, et al., Pseudo-Differential Vector Signaling for Noise Reduction in Single-Ended Signaling, DesignCon 2009.
Poulton, et al., “Multiwire Differential Signaling”, UNC-CH Department of Computer Science Version 1.1, Aug. 6, 2003.
Schneider, J., et al., “ELEC301 Project: Building an Analog Computer,” Dec. 19, 1999, 8 pages, http://www.clear.rice.edu/elec301/Projects99/anlgcomp/.
She et al., “A Framework of Cross-Layer Superposition Coded Multicast for Robust IPTV Services over WiMAX,” IEEE Communications Society subject matter experts for publication in the WCNC 2008 proceedings, Mar. 31, 2008-Apr. 3, 2008, pp. 3139-3144.
Skliar et al., A Method for the Analysis of Signals: the Square-Wave Method, Mar. 2008, Revista de Matematica: Teoria y Aplicationes, pp. 109-129.
Slepian, D., “Premutation Modulation”, IEEE, vol. 52, No. 3, Mar. 1965, pp. 228-236.
Stan, M., et al., “Bus-Invert Coding for Low-Power I/O, IEEE Transactions on Very Large Scale Integration (VLSI) Systems”, vol. 3, No. 1, Mar. 1995, pp. 49-58.
Tallini, L., et al., “Transmission Time Analysis for the Parallel Asynchronous Communication Scheme”, IEEE Transactions on Computers, vol. 52, No. 5, May 2003, pp. 558-571.
Tierney, J., et al., “A digital frequency synthesizer,” Audio and Electroacoustics, IEEE Transactions, Mar. 1971, pp. 48-57, vol. 19, Issue 1, 1 page Abstract from http://ieeexplore.
Wang et al., “Applying CDMA Technique to Network-on-Chip, IEEE Transactions on Very Large Scale Integration (VLSI) Systems”, vol. 15, No. 10 (Oct. 1, 2007), pp. 1091-1100.
Zouhair Ben-Neticha et al, “The streTched—Golay and other codes for high-SNR fnite-delay quantization of the Gaussian source at 1/2 Bit per sample”, IEEE Transactions on Communications, vol. 38, No. 12 Dec. 1, 1990, pp. 2089-2093, XP000203339, ISSN: 0090-6678, DOI: 10.1109/26.64647.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Feb. 15, 2017, 10 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration., for PCT/US17/14997, dated Apr. 7, 2017.
Holden, B., “Simulation results for NRZ, ENRZ & PAM-4 on 16-wire full-sized 400GE backplanes”, IEEE 802.3 400GE Study Group, Sep. 2, 2013, 19 pages, www.ieee802.0rg/3/400GSG/publiv/13_09/holden_400_01_0913.pdf.
Holden, B., “An exploration of the technical feasibility of the major technology options for 400GE backplanes”, IEEE 802.3 400GE Study Group, Jul. 16, 2013, 18 pages, http://ieee802.org/3/400GSG/public/13_07/holden_400_01_0713.pdf.
Holden, B., “Using Ensemble NRZ Coding for 400GE Electrical Interfaces”, IEEE 802.3 400GE Study Group, May 17, 2013, 24 pages, http://www.ieee802.org/3/400GSG/public/13_05/holden_400_01_0513.pdf.
Giovaneli, et al., “Space-frequency coded OFDM system for multi-wire power line communications”, Power Line Communications and Its Applications, 20015 International Symposium on Vancouver, BC, Canada, Apr. 6-8, 2005, Piscataway, NJ, pp. 191-195.
Related Publications (1)
Number Date Country
20170317675 A1 Nov 2017 US
Provisional Applications (1)
Number Date Country
62328722 Apr 2016 US