1. Field of Art
This invention generally relates to detecting touch events in a touch-sensitive device, especially low power approaches capable of detecting multitouch events.
2. Description of the Related Art
Touch-sensitive displays for interacting with computing devices are becoming more common. A number of different technologies exist for implementing touch-sensitive displays and other touch-sensitive devices. Examples of these techniques include, for example, resistive touch screens, surface acoustic wave touch screens, capacitive touch screens and certain types of optical touch screens.
However, many of these approaches currently suffer from drawbacks. For example, some technologies may function well for small sized displays, as used in many modern mobile phones, but do not scale well to larger screen sizes as in displays used with laptop or even desktop computers. Another drawback for some technologies is their inability or difficulty in handling multitouch events. A multitouch event occurs when multiple touch events occur simultaneously. Another drawback is that technologies may not be able to meet increasing resolution demands.
Another drawback is power consumption. Many touch-sensitive devices are mobile devices, such as mobile phones, laptop computers and tablet computers, where power consumption is an important factor. Furthermore, larger screen size, faster device operation, higher device resolution and multitouch detection are device requirements that can increase power consumption. Power consumption may be a determining factor as to whether a touch-sensitive device is commercially viable.
Thus, there is a need for lower power touch-sensitive systems.
An optical touch-sensitive device is able to detect and determine the locations of multiple simultaneous touch events. This may also be referred to as touch event resolution. The optical touch-sensitive device includes multiple emitters and detectors. The emitters produce optical beams which are received by the detectors. The optical beams preferably are multiplexed in a manner so that many optical beams can be received by a detector simultaneously. Touch events disturb the optical beams.
The device is operated in a manner that conserves power. For example, the device may have different operating modes (active, standby, high-resolution, high-speed, software-driven, etc.), which consume different amounts of power. By switching between different operating modes, overall power consumption can be reduced.
Even within an operating mode, a device may have multiple detection schemes available, which consume different amounts of power. For example, detection schemes may differ in the amount of power or energy applied to beams; the scan rate; the resolution; the selection of which beams, emitters or detectors to activate; the scan area; the density of beams; the multiplexing scheme and/or the type of processing used to determine touch events. By combining different detection schemes, overall power consumption can be reduced.
Other aspects include methods, devices, systems and software related to the above.
Embodiments of the present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
I. Introduction
A. Device Overview
The emitter/detector drive circuits 120 serve as an interface between the controller 110 and the emitters Ej and detectors Dk. The emitters produce optical “beams” which are received by the detectors. Preferably, the light produced by one emitter is received by more than one detector, and each detector receives light from more than one emitter. For convenience, “beam” will refer to the light from one emitter to one detector, even though it may be part of a large fan of light that goes to many detectors rather than a separate beam. The beam from emitter Ej to detector Dk will be referred to as beam jk.
B. Process Overview
The transmission coefficient Tjk is the transmittance of the optical beam from emitter j to detector k, compared to what would have been transmitted if there was no touch event interacting with the optical beam. The use of this specific measure is purely an example. Other measures can be used. In addition, although
Returning to
For example, the physical phase 210 produces transmission coefficients Tjk. Many different physical designs for the touch-sensitive surface assembly 130 are possible, and different design tradeoffs will be considered depending on the end application. For example, the emitters and detectors may be narrower or wider, narrower angle or wider angle, various wavelengths, various powers, coherent or not, etc. As another example, different types of multiplexing may be used to allow beams from multiple emitters to be received by each detector. Several of these physical setups and manners of operation are described below, primarily in Section C below.
The interior of block 210 shows one possible implementation of process 210. In this example, emitters transmit 212 beams to multiple detectors. Some of the beams travelling across the touch-sensitive surface are disturbed by touch events. The detectors receive 214 the beams from the emitters in a multiplexed optical form. The received beams are de-multiplexed 216 to distinguish individual beams jk from each other. Transmission coefficients Tjk for each individual beam jk are then determined 218.
The processing phase 220 can also be implemented in many different ways. Candidate touch points, line imaging, location interpolation, touch event templates and multi-pass approaches are all examples of techniques that may be used as part of the processing phase 220. Several of these are described below, primarily in Section D below.
C. Physical Set-Up
The touch-sensitive device may be implemented in a number of different ways. The following are some examples of design variations.
Electronics. With respect to electronic aspects, note that
Touch Interactions. Different mechanisms for a touch interaction with an optical beam can be used. One example is frustrated total internal reflection (TIR). In frustrated TIR, an optical beam is confined to a waveguide by total internal reflection and the touch interaction disturbs the total internal reflection in some manner. Another example is beam blockage, where the touch interaction partially or fully blocks the optical beam. Other touch interactions can be based on changes in polarization, scattering, or in propagation direction or propagation angle (either vertically or horizontally).
The touch interactions can also be direct or indirect. In a direct interaction, the touching object (e.g., a finger or stylus) is the object that interacts with the optical beam. For example, a finger may have a higher index of refraction than air, thus frustrating TIR when the finger comes into direct contact with a waveguide. In an indirect interaction, the touching object interacts with an intermediate object, which interacts with the optical beam. For example, the finger may cause a high index object to come into contact with the waveguide, or may cause a change in the index of refraction of the waveguide or surrounding materials.
Note that some types of touch interactions can be used to measure contact pressure or touch velocity, in addition to the presence of touches. Also note that some touch mechanisms may enhance transmission, instead of or in addition to reducing transmission. For simplicity, in the remainder of this description, the touch mechanism will be assumed to be primarily of a blocking nature, meaning that a beam from an emitter to a detector will be partially or fully blocked by an intervening touch event. This is not required, but it is convenient to illustrate various concepts.
For convenience, the touch interaction mechanism may sometimes be classified as either binary or analog. A binary interaction is one that basically has two possible responses as a function of the touch. Examples includes non-blocking and fully blocking, or non-blocking and 10%+ attenuation, or not frustrated and frustrated TIR. An analog interaction is one that has a “grayscale” response to the touch: non-blocking passing through gradations of partially blocking to blocking
Emitters, Detectors and Couplers. Each emitter transmits light to a number of detectors. Usually, each emitter outputs light to more than one detector simultaneously. Similarly, each detector receives light from a number of different emitters. The optical beams may be visible, infrared and/or ultraviolet light. The term “light” is meant to include all of these wavelengths and terms such as “optical” are to be interpreted accordingly.
Examples of the optical sources for the emitters include light emitting diodes (LEDs) and semiconductor lasers. IR sources can also be used. Modulation of the optical beams can be external or internal. Examples of sensor elements for the detector include charge coupled devices, photodiodes, photoresistors, phototransistors, and nonlinear all-optical detectors. The emitters and detectors may also include optics and/or electronics in addition to the main optical source and sensor element. In this disclosure, the optical paths will be shown unfolded for clarity. Various coupling approaches can be used, including waveguides, optical fibers and/or free space coupling.
Optical Beam Paths. Another aspect of a touch-sensitive system is the shape and location of the optical beams and beam paths. In
Depending on the width of the footprint, the transmission coefficient Tjk behaves as a binary or as an analog quantity. It is binary if the transmission coefficient transitions fairly abruptly from one extreme value to the other extreme value as a touch point passes through the beam. For example, if the beam is very narrow, it will either be fully block or fully unblocked. If the beam is wide, it may be partially blocked as the touch point passes through the beam, leading to a more analog behavior.
In most implementations, each emitter and each detector will support multiple beam paths, although there may not be a beam from each emitter to every detector. The aggregate of the footprints from all beams from one emitter will be referred to as that emitter's coverage area. The coverage areas for all emitters can be aggregated to obtain the overall coverage for the system.
The footprints of individual beams can be described using different quantities: spatial extent (i.e., width), angular extent (i.e., radiant angle for emitters, acceptance angle for detectors) and footprint shape. An individual beam path from one emitter to one detector can be described by the emitter's width, the detector's width and/or the angles and shape defining the beam path between the two. An emitter's coverage area can be described by the emitter's width, the aggregate width of the relevant detectors and/or the angles and shape defining the aggregate of the beam paths from the emitter. Note that the individual footprints may overlap. The ratio of (the sum of an emitter's footprints)/(emitter's cover area) is one measure of the amount of overlap.
The overall coverage area for all emitters should cover the entirety of the active area 131. However, not all points within the active area 131 will be covered equally. Some points may be traversed by many beam paths while other points traversed by far fewer. The distribution of beam paths over the active area 131 may be characterized by calculating how many beam paths traverse different (x, y) points within the active area. The orientation of beam paths is another aspect of the distribution. An (x, y) point that is derived from three beam paths that are all running roughly in the same direction usually will be a weaker distribution than a point that is traversed by three beam paths that all run at 60 degree angles to each other.
The concepts described above for emitters also applies to detectors. A detector's coverage area is the aggregate of all footprints for beams received by the detector.
Active Area Coverage. The coverage of the active area 131 depends on the shapes of the beam paths, but also depends on the arrangement of emitters and detectors. In most applications, the active area is rectangular in shape, and the emitters and detectors are located along the four edges of the rectangle. In a preferred approach, rather than having only emitters along certain edges and only detectors along the other edges, emitters and detectors are interleaved along the edges.
Multiplexing. Since multiple emitters transmit multiple optical beams to multiple detectors, and since the behavior of individual beams is generally desired, a multiplexing/demultiplexing scheme is used, including for example code division multiplexing, frequency division multiplexing and time division multiplexing. Several multiplexing techniques may be used together.
D. Processing Phase
In the processing phase 220 of
Candidate Touch Points. One approach to determine the location of touch points is based on identifying beams that have been affected by a touch event (based on the transmission coefficients Tjk) and then identifying intersections of these interrupted beams as candidate touch points. The list of candidate touch points can be refined by considering other beams that are in proximity to the candidate touch points or by considering other candidate touch points.
Line imaging. Line imaging is based on the concept that the set of beams received by a detector form a line image of the touch points, where the viewpoint is the detector's location. The detector functions as a one-dimensional camera that is looking at the collection of emitters. Due to reciprocity, the same is also true for emitters. The set of beams transmitted by an emitter form a line image of the touch points, where the viewpoint is the emitter's location. For convenience, the term “beam terminal” will be used to refer to emitters and detectors. Thus, the set of beams from a beam terminal (which could be either an emitter or a detector) form a line image of the touch points, where the viewpoint is the beam terminal's location. These line images are processed to determine the locations of the touch events. For example, processing based on correlation, computerized tomography and shadow casting can be used.
Location Interpolation. Applications typically will require a certain level of accuracy in locating touch points. One approach to increase accuracy is to increase the density of emitters, detectors and beam paths so that a small change in the location of the touch point will interrupt different beams. Another approach is to interpolate between beams, particularly beams that are wide enough to have an analog response.
Touch Event Templates. If the locations and shapes of the beam paths are known, which is typically the case for systems with fixed emitters, detectors and optics, it is possible to predict in advance the transmission coefficients for a given touch event. Templates can be generated a priori for expected touch events. The determination of touch events then becomes a template matching problem.
For templates, there is generally a tradeoff between selectivity and the number of templates. If very selective templates are used, a slight change in the touch contact area will no longer match a very selective template and therefore a larger number of templates is required to cover the expected possible touches. This increases the computational burden, although it produces more precise results. Less selective templates are more tolerant of changes in the contact area and usually are faster to match, but they produce less precise results. One approach uses series of templates, varying in selectivity.
Other templates will be apparent and templates can be processed in a number of ways. In a straightforward approach, the disturbances for the beams in a template are simply summed or averaged. This can increase the overall SNR for such a measurement, because each beam adds additional signal while the noise from each beam is presumably independent. In another approach, the sum or other combination could be a weighted process, where not all beams in the template are given equal weight. For example, the beams which pass close to the center of the touch event being modeled could be weighted more heavily than those that are further away. Alternately, the angular diversity of beams in the template could also be expressed by weighting. Angular diverse beams are more heavily weighted than beams that are not as diverse.
In a case where there is a series of N beams, the analysis can begin with a relatively small number of beams. Additional beams can be added to the processing as needed until a certain confidence level (or SNR) is reached. The selection of which beams should be added next could proceed according to a predetermined schedule. Alternately, it could proceed depending on the processing results up to that time. For example, if beams with a certain orientation are giving low confidence results, more beams along that orientation may be added (at the expense of beams along other orientations) in order to increase the overall confidence.
Beam Weighting. In processing the transmission coefficients, it is common to weight or to prioritize the transmission coefficients. Weighting effectively means that some beams are more important than others. Weightings may be determined during processing as needed, or they may be predetermined and retrieved from lookup tables or lists. Weighting can be based on different factors, including signal to noise ratio, angular diversity (i.e., beams traveling in different directions), spatial diversity (i.e., beams from diverse emitters/detectors) and the density of beams (i.e., whether many or few beams traverse a particular area). The weightings, however determined, can be used in the calculation of a figure of merit (confidence) of a given template associated with a possible touch location.
II. Power Saving
Especially for mobile devices, power consumption is an important factor. Touch-sensitive devices can be designed to operate in different modes and/or to use different schemes for detecting touches, which consume different amounts of power. The design of these modes and detection schemes, and the switching between them are important factors in determining the overall power consumption of a device.
A. Device Modes
Devices often can be operated in a number of different modes.
The transitions between modes depend on the device design. The following are some examples. The device may transition from active mode 310 to standby mode 320 in response to input from a user to enter standby mode or in response to the touch-sensitive device (or at least the touch-sensitive capability) being idle for a period of time (e.g., 5 minutes). Conversely, the device may transition from standby mode 320 to active mode 310 in response to input from a user to enter the active mode, in response to the sensing of touch activity, or in response to other triggers that indicate there may be touch activity soon (e.g., from software applications or from other user controls for the device).
The touch-sensitive assembly operates differently in different modes, thus conserving overall power. Typically, different detection scheme(s) will be used for different operating modes. When the touch-sensitive device transitions between two operating modes, the touch-sensitive device also transitions between detection schemes to use the detection scheme appropriate for the device's current operating mode. The detection scheme used for each operating mode balances the performance requirements of an operating mode with power consumption considerations. For example, the detection scheme(s) used in standby mode 320 may use less power but have lower accuracy/resolution and lower scan rate compared to the detection scheme(s) used in active mode 310, because the purpose of the standby mode detection schemes is to detect the presence of touch activity whereas the purpose of the active mode detection schemes is to locate the positions of touch events.
In one approach, the standby detection scheme is designed to detect a special gesture by the user indicating that the device should transition to active mode. For example, the special gesture may be a swipe from left to right across the touch sensitive surface within a certain area of the touch-sensitive surface. This swipe may include a number of individual touch events, starting with a touch event on the left side of the touch-sensitive surface and concluding with a touch event on the right side of the touch-sensitive surface. To detect the swipe, the detection scheme may periodically activate a limited set of beam terminals in a pattern designed to detect the presence (but not necessarily the exact location) of the left touch event. Once detected, the detection scheme may then change the beam pattern to detect a sequence of touch events moving to the right. This is a more limited detection scheme than one which is attempting to locate all touch events anywhere in the active area with good accuracy. Thus, it can be designed to consume less power.
One such special gesture at least one of begins in, ends in, and passes through a corner of the touch-sensitive surface. Generally, optical beams are shortest in length near the corners of the touch-sensitive surface due to the decreased distance between the emitters and detectors corresponding to those optical beams. Further, power required to achieve a given signal to noise ratio on each optical beam is proportional to the length of a given optical beam. Thus, short optical beams such as those near the corners consume less power to achieve a given signal to noise ratio than other longer beams not as near to the corners. As a result, a special gesture incorporating corner optical beams can save power. This is particularly advantageous in the standby detection scheme, where a limited set of beams including corner beams are activated to detect a wakeup gesture while consuming at little power as possible and while also achieving a desired signal to noise ratio.
Probably, no detection schemes are used in off/inactive mode 330. The device may transition to the off/inactive mode when it is turned off or if it is inactive for a long period of time. It could be that the touch capability is in the off/inactive mode while the rest of the device is not, for example if the touch-sensitive surface is not accessible but some other user input device is being used.
Some operating modes may trade off power savings in favor of increased touch performance. For example, a high performance mode may be used when a software application requests high precision or high confidence touch location determination and/or a faster than normal sampling rate. The high performance detection scheme may activate most if not all beam terminals at a higher power and/or at a faster scan rate compared to the standard detection scheme used for active mode operation.
Software applications running on the touch-sensitive device may also make use of special detection schemes designed to take advantage of characteristics of the software application. These detection schemes may be based on additional information regarding the expected locations of touches. For example, a video game software application may expect touch events to be within certain predetermined areas on the touch sensitive surface. The detection scheme may activate beam terminals focused primarily on these areas, thus saving power. As another example, the application may expect touch events to be within a certain radius of the last touch event, as when a user is tracing a curve with his finger. Again, the detection scheme may use this additional information to selectively activate beam terminals.
As described above, different modes may use different detection schemes. Thus, power may be conserved by changing the detection scheme based on the operating mode.
B. Detection Schemes
Power may also be conserved by using different detection schemes within an operating mode. In
There are a number of different parameters regarding the operation of the touch-sensitive device that can be changed to implement different detection schemes. These parameters include
Different detection schemes typically consume different amounts of power. Each detection scheme may be intended for a different purpose, and therefore may have a different expected range of power consumption. For example a low power detection scheme may save power at the expense of speed, error rate or resolution. A high power detection scheme may have increased performance, but at the expense of power consumption. Even within an operating mode, the touch-sensitive device may implement one or more detection schemes and the detection schemes themselves may be adjustable or adaptive. Different detection schemes may also be used for different modes.
1. Beam Power/Energy
Beam power/beam energy affects overall power consumption. First, note that there are many measures of power/energy that can be used. Power/energy can be measured per beam (i.e., for each beam path between one emitter and one detector), per beam terminal (i.e., for all the beam paths in the coverage area of one beam terminal), or per touch event sample (i.e., for all beam paths required to make one sampling of touch events, which might include the same beam transmitted multiple times).
In addition, power is a good measure for actual power consumption by the device. For example, how long will the battery last may be determined based on actual power consumption, which in turn may be determined based on beam power. Energy is a good measure for efficiency. For example, the amount of energy is required per touch event sample and the number of touch event samples per second may be combined to determine efficiency. A particular detection scheme may have low energy consumption per touch event sample, but high power consumption because it is sampling touch events at a fast rate.
Beam power/energy can be varied in different ways. One approach is to increase the voltage or current supplied to the emitter to increase the optical power of the beam. If the beam is on for a constant amount of time (i.e., constant duration pulse), the increase in power will also increase the beam energy. Beam energy can also be changed by varying the duration of the beam. A shorter duration beam (i.e., shorter pulse) will have lower energy, all things being equal.
Generally speaking, reducing the power/energy of a beam also reduces the corresponding signal-to-noise ratio at the detector. This increases the uncertainty in determining the corresponding transmission coefficient, which in turn increases the error rate in determining touch events. To achieve the same error rate using weaker beams, more beams generally are required. Conversely, increasing the strength of the beams increases the signal-to-noise ratio which generally means less beams are required, but there is a point of diminishing returns. Increasing the beam strength beyond a certain point produces excess signal-to-noise ratio that is only marginally beneficial. There often is an optimal tradeoff between the number of beams and the strength of the beams.
The touch-sensitive device adjusts the beam power/energy. This may include selecting different beam power/energy levels and/or pulse durations, determining when to make adjustments, and determining the amount of adjustment. The power/energy levels may be fixed, variable between discrete levels or continuously adjustable over a range of levels.
2. Beam Scan Rate
The scan rate of the beams also affects the overall power consumption. Different measures of scan rate can also be used: the scan rate per beam (e.g., how often each beam is used), the scan rate per beam terminal (e.g., how often each emitter/detector is used), the scan rate for all beams (e.g., the average number of beams scanned per unit time, or the average number of beams scanned per touch event sample).
Assuming constant energy consumption per scan, lower scan rates typically mean lower power consumption. If each scan consumes an energy of E0, then doubling the scan rate will roughly double the power consumption. Conversely, if power consumption is constant, then lower scan rates typically mean higher energy per scan and therefore more reliable results. If scans consume power at a rate P0, then doubling the scan rate will roughly halve the amount of energy available per scan. This assumes constant duty cycle. Varying the duty cycle will also vary the relation between power and energy.
3. Beam Angular Spread
The angular spread of beams can also be adjusted to affect overall power consumption and signal to noise ratio. For example, narrowing an emitter's radiant coverage (or angular spread) generally results in increased beam intensity within that radiant coverage for a given emitter power level. Increased intensity generally translates into a higher signal to noise ratio for the detector measuring that beam. Similarly, widening an emitter's radiant coverage generally results in decreased beam intensity within that radiant coverage for a given emitter power level. The same is true when instead considered from a detector's perspective. While reducing radiant coverage generally increases the beam's signal to noise ratio without consuming more power, a beam with reduced radiant coverage is typically less effective at unambiguously determining touch events. This is a result of the reduced surface area covered by the beam.
A number of different mechanisms may be used to adjust angular beam spread. For example, optical lenses, waveguides, and other optical manipulations of beams may be used to adjust the beams after emission and prior to reception by detectors. Alternatively, any given emitter or detector may be constructed using more than device, for example, an emitter may be constructed using more than one light emitting diode (LED). The LEDs may be oriented so that when narrower radiant coverage is to be used, fewer of the LEDs (e.g., 1) are activated. Conversely, where wider radiant coverage is to be used, additional LEDs (e.g., 3) are activated. The power levels of the activated LEDs in each case may sum to the same amount of total power consumed, though this may vary in practice.
A number of different mechanisms may be used to adjust angular beam spread. For example, optical lenses, waveguides, and other optical manipulations of beams may be used to adjust the beams after emission and prior to reception by detectors. Alternatively, any given emitter or detector may be constructed using more than device, for example, an emitter may be constructed of using than one light emitting diode (LED). The LEDs may be oriented so that when narrower radiant coverage is to be used, fewer of the LEDs (e.g., 1) are activated at higher power levels. Conversely, where wider radiant coverage is to be used, additional LEDs (e.g., 3) are activated at lower power levels. In this example, the power levels of the activated LEDs in each case sum to the same amount of total power consumed, though this may vary in practice.
Reducing radiant coverage is advantageous at least in part because the effect is multiplicative. For example, for a fourfold reduction in radiant coverage at the emitter and detector results in a sixteen fold increase in intensity in the detected signal within that reduced coverage, greatly improving the signal to noise ratio at little to no cost of additional power cost.
4. Activation of Beam Terminals
Which beam terminals (and how many beam terminals) are activated also affects power consumption. Beam terminals can have different levels of activation: active, standby and inactive, for example. A beam terminal is “active” when the beam terminal is transmitting or receiving a beam. A beam terminal is in “standby” when the beam terminal is drawing electrical power (e.g., the beam terminal is powered and is in the “on” state) but is not transmitting or receiving a beam. A beam terminal is “inactive” if it has been powered down.
Beam terminal states may correspond to the device's operating mode. When the device is inactive, the beam terminals can also be inactive. When the device is in standby mode, it is not actively taking touch event samples, but it may be polling periodically to determine when touch activity begins. In this case, most of the beam terminals may be in inactive or standby status, with a few beam terminals changing periodically to active status to poll for touch activity.
If touch activity is detected, the device transitions to active mode. Even when in active mode, beam terminals do not all have to be in active status all the time. Some may be in standby (or even inactive, depending on the startup time) in order to conserve power. For example, if time division multiplexing is used in active mode, different beams terminals are active during different time slots. When they are not active, they may be placed in standby or inactive status.
As another example, not all beam terminals need be active if touch event detection is focused on a subset of the entire active area. Alternately, it may be determined that only a subset of all beam terminals should be active in order to achieve a particular resolution for touch event detection. This is illustrated in
In one approach, the low resolution scan of
Another factor affecting power consumption is that beam terminals typically have startup and shutdown power costs associated with switching beam terminals between active and inactive states. Deactivating and reactivating a beam terminal may consume more power than leaving a beam terminal temporarily in the passively “on” state (e.g., standby state) for a certain period of time. Additionally, keeping current consumption relatively constant reduces power consumption relative to a case where current consumption varies more strongly, all other things being equal. For example, switching between having only a few beam terminals active to having a comparatively large numbers of beam terminals active consumes more power than activating and deactivating comparatively few beam terminals at a time.
In addition to saving power, selectively activating beam terminals can also decrease the processing time between when a touch occurs on the touch sensitive surface, and when the touch event is determined by the device. This is at least in part because reducing the number of beam terminals that are active for any given scan in turn reduces the complexity of any calculations performed to determine a touch event, which in some cases reduces the amount of time used to complete those calculations.
5. Multiplexing
As described above, different types of multiplexing may be used to allow beams from multiple emitters to be received by each detector. The type and configuration of the multiplexing scheme can affect overall power consumption.
Code division multiplexing and time division multiplexing are two schemes that may be used. Code division multiplexing requires the use of encoders and decoders, which consume electrical power. However, the encoding may increase noise rejection, so that the same signal-to-noise ratio may be achieved at lower beam strengths. Fast time division multiplexing may also increase power consumption by requiring fast switching of components. Thus, depending on the specific implementation, one or the other may be preferred from a power standpoint. In a hybrid approach, time division multiplexing and code division multiplexing may be used together. For example, less demanding detection schemes may use time division multiplexing, with code division multiplexing layered on top of that when more multiplexing is required.
Even within one type of multiplexing, the specific configuration may affect power consumption. For code division multiplexing, simpler codes may be used in less demanding situations, thus reducing the power required to encode and decode, for example.
6. Processing Techniques
The processing technique that is used to resolve touch events also affects power consumption. As described above, various processing techniques can be used. Power consumption will depend on which processing technique (or combination of processing techniques) is used, as well as the configuration for that processing technique. That is, the choice of using line imaging versus touch event templates will affect power consumption, as will the choice of what complexity template, how many templates, etc.
7. Touch Event Sampling
Many of the factors discussed above with respect to beams or processing also applies to touch event sampling. A touch event sample is one sampling of touch events. A single touch event sample may include multiple touch events. Device specifications often specify a minimum sample rate for touch event sampling. To produce a touch event sample, various beam patterns are transmitted over the active area. The detected beams are processed to determine a touch event sample. Thus, multiple beams are used to create a touch event sample.
Overall power consumption is affected by the sampling rate. If the sampling rate is doubled, then roughly twice as much power will be consumed (assuming that the process of beam generation, detection and processing is roughly independent of the sampling rate). Other factors affecting power consumption are the number of beams per touch event sample, the aggregate beam energy/beam power per touch event sample, and the aggregate processing energy/power per touch event sample.
C. Power Saving Using Multiple Detection Schemes
As described above, power can be conserved by changing detection schemes according to the operating mode of the device. Low power detection schemes can be used when the device is in standby mode, and no power detection schemes when the device is in inactive mode. Power consumption can also be reduced by switching between different detection schemes within an operating mode. The following description is for active mode. Similar techniques can also be used in other operating modes.
1. Power-Variant Detection Schemes
In
Various factors may cause the low power detection scheme to be inadequate. An increase in ambient light may reduce the signal-to-noise ratio. The presence of oils, gloves or other materials on the touch-sensitive surface may degrade the performance. Certain types of touches may be more difficult to detect. Temperature variations and aging of components may also affect the performance of the touch-sensitive device.
In
Various signal-to-noise measures may be used. It may be the signal-to-noise of individual beams, or it may be the signal-to-noise aggregated over multiple beams (e.g., all the beams used to determine a specific touch event). Signal-to-noise may be measured using transmission coefficients. For example, if the transmission coefficient of a fully blocked beam is not measurably different from the transmission coefficient of a fully or partially blocked beam, it may be determined that the signal to noise ratio is not sufficiently high.
Uncertainty in touch event location may be measured by the estimated area of the touch event. If a touch event location is determined based on measurements that are conflicting or ambiguous, it may be represented by an unusually large area since the area partially accounts for the uncertainty in the underlying measurements. The estimated area may be compared to the expected size of the touch event (e.g., relative to the expected contact area of a fingertip).
Confidence in the estimate of the touch event depends in part upon the processing technique used to resolve touch events. The processing technique may produce a confidence level, in addition to the estimate of the touch event. The confidence level may be expressed as a numerical value. For example, after processing, the touch-sensitive device may have determined that it is 70% confident that there is a touch event present at a given location. If the confidence is below a threshold, the high power detection scheme re-scans for the touch event. Confidence with respect to the presence of a touch event (as opposed to the location of a touch event) may also be used to disambiguate between multiple touches.
In the simple approach shown in
Eave=Elow+Pr Ehigh (1)
where Elow is the energy consumed by the low power detection scheme, Ehigh is the energy consumed by the high power detection scheme, and Pr is the probability that the low power detection scheme will be inadequate (i.e., the percentage of samples where the high power detection scheme is used). In one approach, Ehigh is selected as the minimum energy required to resolve a significant majority if not all touch events. Energy above this minimum is just wasted. Elow is then selected as the energy that minimizes Eave. There is a tradeoff between Elow and Pr. As Elow approaches zero, Pr will approach 1 and Eave will approach Ehigh. As Elow approaches Ehigh, Pr will approach 0 and Eave will approach Ehigh. Typically, some intermediate value of Elow will minimize Eave. As a numerical example, assume Ehigh=2 mJ and Pr is approximated as Pr=0.1/Elow where Elow is measured in mJ. Solving Eqn. 1 to minimize Eave yields Elow=0.45 mJ, Pr=22% meaning that the high power scan is used 22% of the time and Eave=0.9 mJ.
The value of Elow could be set at the factory, it could be set by a calibration process run by the user or run automatically by the device, or it could be set as part of the device's operation, for example based on a model of the overall process or adaptively based on the device's operation. In one approach, Elow is changed slightly during normal operation. That is, Elow is dithered. Changes which lead to better performance (e.g., lower Eave) are accepted, thus adjusting Elow over time. In another approach, an internal software model of the energy cost of each detection scheme and of Pr is used to select the value of Elow. The software model may be parameterized, with parameter values determined from measurements taken during device operation. Similar approaches can also be used to adjust Ehigh.
2. Multi Pass Detection
In one implementation, the touch-sensitive device resolves touch events using multiple scan passes where each pass uses a different detection scheme. Multi pass detection can save power if the sum total of the energy consumed used to perform the multiple passes is less than would be needed to resolve touch events in a single pass.
Once the location of the touch event has been approximately determined using the lower resolution detection scheme 810, a higher resolution detection scheme 820 is performed using the touch location information from the first pass 810. The higher resolution detection scheme 820 may also make use of a small number of the beam terminals. The beam terminals activated by this detection scheme may be concentrated to provide a high resolution for the portion of the touch screen where the touch event was detected in the first scan, for example as described previously in
Another multi pass example involves varying beam radiant coverage between passes in order to conserve power while improving the measured signal to noise ratio. In one embodiment, for a first pass of initial touch detection, a set of activated beams are adjusted to have a narrow radiant coverage. Upon detection of one or more touch events, this first pass generally will provide a set of possible touch locations. This set of possible touch locations may include ambiguities to be resolved. Subsequently, a second pass is performed where the same or a different set of activated beams are adjusted to have a wider radiant coverage compared to the first pass. Ideally the activated beams are chosen to correspond at least approximately with the set of possible touch locations from the first pass. After the second pass, the touch events are determined and any ambiguities are resolved. Alternative embodiments may use additional passes with wider or narrower radiant coverages, as well as different sets of activated beams in each pass.
3. Non-Homogeneous Detection Schemes
As another power-saving approach, knowledge about the distribution of touch events may be used to design detection schemes. For example, it may be known that most touch events occur near the center of a touch-sensitive device. For example, it may be known that more than 25% percent of touches occur within the center 25% of the active area. A corresponding detection scheme(s) emphasizes the center area at the expense of the periphery.
One detection scheme may scan the center hotspot with higher power, higher scan rate and/or higher resolution. A second detection scheme scans the periphery with lower power, lower scan rate and/or lower resolution. The two detection schemes may be implemented sequentially or simultaneously (if possible). A detection scheme may also use a graded approach, where the power, scan rate or resolution varies in a continuous fashion from the center hotspot outwards to the other areas.
The hotspot can be areas other than the center of the active area. The location of frequently used user controls is one example. This may vary depending on what applications are being used. The hotspots may also change over time. For example, if a user is typing, hotspots may be located based on which letters are likely to be typed next. By using a detection scheme that concentrates where touches are more likely to occur, overall power/energy consumption can be reduced.
D. Power Saving with Adaptation
In another aspect, the touch-sensitive device receives feedback regarding the success or failure of touch event resolution. The feedback can be used to adjust both the detection schemes and/or their relative usage. As a result, the touch-sensitive device is able to reduce the occurrence of errors in touch event resolution while still also reducing overall power consumption.
Using
For example, if a large number of errors are occurring with the low power detection scheme, this will result in a large number of higher power scans, resulting in higher total power consumption. Increasing the power of the low power detection scheme may reduce the number of errors and the number of higher power scans, thereby lowering total power consumed.
In contrast, if relatively few errors are occurring with the low power detection scheme, this may indicate that the low power detection scheme is consuming more power than necessary. In this case, the power of the low power detection scheme may be reduced. Subsequent feedback may indicate whether or not this reduction has reduced total power consumption. The high power detection scheme may be similarly adjusted upward or downward in power.
The determination of whether to adjust a detection scheme, and to what extent, may be based on a number of factors. The determination may be made based on the number of high power and low power scans (e.g., the ratio between the two). For example, it may be determined that if the ratio of high power to low power scans exceed 0.5:1, the power of the low power scan should be increased. The determination to adjust a detection scheme may also be made when a fixed number of errors or high power scans occur.
The scans under consideration for use in determining whether to adjust a detection scheme may vary depending upon the implementation. In one implementation, all scans that have occurred since the last change to a detection scheme are considered. In another implementation, the scans under consideration are those within a moving time window, so that older scans of possibly lower relevance are not considered. In one embodiment, only a fixed number of the most recent scans are considered.
Additionally, errors in the resolution of a touch event are not necessarily binary. The adjustment determination for a power level may take into account confidence levels. For example, if a touch event has been determined with 40% certainty, the percent certainty may be incorporated into the determination of whether or not an error occurred. The confidence may be used as a weighting factor for a scan's contribution to the adjustment determination.
As above, detection schemes may be adjusted by changing a number of different mechanisms, including the power level of beam terminals, which beam terminals are active, the scan rate, and the processing technique. In the case of the power level of beam terminals, the power level may be adjusted at a fixed incremental amount, a predetermined amount, or a dynamic amount based on the feedback received.
The adjustment approaches described above may also be applied to the other power-saving approaches described herein, and are not limited to the example of
V. Applications.
The touch-sensitive devices described above can be used in various applications. Touch-sensitive displays are one class of application. This includes displays for tablets, laptops, desktops, gaming consoles, smart phones and other types of compute devices. It also includes displays for TVs, digital signage, public information, whiteboards, e-readers and other types of good resolution displays. However, they can also be used on smaller or lower resolution displays: simpler cell phones, user controls (photocopier controls, printer controls, control of appliances, etc.). These touch-sensitive devices can also be used in applications other than displays. The “surface” over which the touches are detected could be a passive element, such as a printed image or simply some hard surface. This application could be used as a user interface, similar to a trackball or mouse.
VI. Additional Considerations
The figures depict embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.
Upon reading this disclosure, those of skill in the art will appreciate still additional alternative structural and functional designs through the disclosed principles herein. Thus, while particular embodiments and applications have been illustrated and described, it is to be understood that the disclosed embodiments are not limited to the precise construction and components disclosed herein. Various modifications, changes and variations, which will be apparent to those skilled in the art, may be made in the arrangement, operation and details of the method and apparatus disclosed herein without departing from the spirit and scope defined in the appended claims.
This application claims priority under 35 U.S.C. §119(e) from Provisional Application Ser. No. 61/671,225, filed Jul. 13, 2012, which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4067925 | Zahner | Jan 1978 | A |
4097732 | Krause et al. | Jun 1978 | A |
4198623 | Misek et al. | Apr 1980 | A |
4243879 | Carroll et al. | Jan 1981 | A |
4247767 | O'Brien et al. | Jan 1981 | A |
4267443 | Carroll et al. | May 1981 | A |
4301447 | Funk et al. | Nov 1981 | A |
4305071 | Bell et al. | Dec 1981 | A |
4313109 | Funk et al. | Jan 1982 | A |
4374381 | Ng et al. | Feb 1983 | A |
4384201 | Carroll et al. | May 1983 | A |
4387367 | Fisher | Jun 1983 | A |
4459476 | Weissmueller et al. | Jul 1984 | A |
4467193 | Carroll | Aug 1984 | A |
4635032 | Virtanen | Jan 1987 | A |
4636632 | Ando | Jan 1987 | A |
4645920 | Carroll et al. | Feb 1987 | A |
4672364 | Lucas | Jun 1987 | A |
4684801 | Carroll et al. | Aug 1987 | A |
4703316 | Sherbeck | Oct 1987 | A |
4710759 | Fitzgibbon | Dec 1987 | A |
4713534 | Masters et al. | Dec 1987 | A |
4746770 | McAvinney | May 1988 | A |
4761637 | Lucas et al. | Aug 1988 | A |
4782327 | Kley et al. | Nov 1988 | A |
4794248 | Gray | Dec 1988 | A |
4799044 | Masters et al. | Jan 1989 | A |
4818859 | Hough | Apr 1989 | A |
4847606 | Beiswenger | Jul 1989 | A |
4855590 | Bures et al. | Aug 1989 | A |
4893120 | Doering et al. | Jan 1990 | A |
4899138 | Araki et al. | Feb 1990 | A |
4904857 | Ando et al. | Feb 1990 | A |
4912316 | Yamakawa | Mar 1990 | A |
4943806 | Masters et al. | Jul 1990 | A |
4988983 | Wehrer | Jan 1991 | A |
4990901 | Beiswenger | Feb 1991 | A |
5136156 | Nounen et al. | Aug 1992 | A |
5146081 | Heikkinen et al. | Sep 1992 | A |
5355149 | Casebolt | Oct 1994 | A |
5414413 | Tamaru et al. | May 1995 | A |
5635724 | Higgins | Jun 1997 | A |
6429857 | Masters et al. | Aug 2002 | B1 |
6690363 | Newton | Feb 2004 | B2 |
6972753 | Kimura et al. | Dec 2005 | B1 |
7295329 | Gruhlke et al. | Nov 2007 | B2 |
7310090 | Ho et al. | Dec 2007 | B2 |
7435940 | Eliasson et al. | Oct 2008 | B2 |
7442914 | Eliasson et al. | Oct 2008 | B2 |
7465914 | Eliasson et al. | Dec 2008 | B2 |
8218154 | Østergaard et al. | Jul 2012 | B2 |
8654100 | Nakajoh | Feb 2014 | B2 |
20010037186 | Kida et al. | Nov 2001 | A1 |
20040252091 | Ma et al. | Dec 2004 | A1 |
20050162398 | Eliasson et al. | Jul 2005 | A1 |
20060114237 | Crockett et al. | Jun 2006 | A1 |
20060227120 | Eikman | Oct 2006 | A1 |
20060255248 | Eliasson | Nov 2006 | A1 |
20070052693 | Watari | Mar 2007 | A1 |
20070125937 | Eliasson et al. | Jun 2007 | A1 |
20070152985 | Østergaard et al. | Jul 2007 | A1 |
20070165008 | Crockett | Jul 2007 | A1 |
20070201042 | Eliasson et al. | Aug 2007 | A1 |
20080007540 | Østergaard | Jan 2008 | A1 |
20080007542 | Eliasson et al. | Jan 2008 | A1 |
20080088603 | Eliasson et al. | Apr 2008 | A1 |
20080189046 | Eliasson et al. | Aug 2008 | A1 |
20090122020 | Eliasson et al. | May 2009 | A1 |
20090273794 | Østergaard et al. | Nov 2009 | A1 |
20100134447 | Nakajoh | Jun 2010 | A1 |
20100193259 | Wassvik | Aug 2010 | A1 |
20110074734 | Wassvik et al. | Mar 2011 | A1 |
20110074735 | Wassvik et al. | Mar 2011 | A1 |
20110090176 | Christiansson et al. | Apr 2011 | A1 |
20110102374 | Wassvik et al. | May 2011 | A1 |
20110216042 | Wassvik et al. | Sep 2011 | A1 |
20110227874 | Fähraeus et al. | Sep 2011 | A1 |
20110279412 | Chen et al. | Nov 2011 | A1 |
20120068973 | Christiansson et al. | Mar 2012 | A1 |
20120153134 | Bergström et al. | Jun 2012 | A1 |
20120154338 | Bergström et al. | Jun 2012 | A1 |
20120162142 | Christiansson et al. | Jun 2012 | A1 |
20120162144 | Fåhraeus et al. | Jun 2012 | A1 |
20120169672 | Christiansson | Jul 2012 | A1 |
20120176343 | Holmgren et al. | Jul 2012 | A1 |
20120200537 | Okano | Aug 2012 | A1 |
20120200538 | Christiansson et al. | Aug 2012 | A1 |
20120212441 | Christiansson et al. | Aug 2012 | A1 |
20120256882 | Christiansson et al. | Oct 2012 | A1 |
20120262408 | Pasquero | Oct 2012 | A1 |
20120268403 | Christiansson | Oct 2012 | A1 |
20130021300 | Wassvik | Jan 2013 | A1 |
20130044073 | Christiansson et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
101598995 | Dec 2009 | CN |
201600672 | Oct 2010 | CN |
102043546 | May 2011 | CN |
102411457 | Apr 2012 | CN |
102455826 | May 2012 | CN |
102541364 | Jul 2012 | CN |
0304820 | Mar 1989 | EP |
0601651 | Jun 1994 | EP |
2133537 | Jul 1984 | GB |
2171195 | Aug 1986 | GB |
201140400 | Nov 2011 | TW |
WO 0140922 | Jun 2001 | WO |
WO 02095668 | Nov 2002 | WO |
WO 2007003196 | Jan 2007 | WO |
WO 2008004103 | Jan 2008 | WO |
WO 2011048655 | Apr 2011 | WO |
Entry |
---|
Cummings, T.F., “Transparent Keyless Keyboard for Variable Terminal Applications,” IBM Technical Disclosure Bulletin, Sep. 1977, pp. 1609-1611, vol. 20, No. 4. |
Baumann, D.D., “Optical Data Input Device,” IBM Technical Disclosure Bulletin, Mar. 1969, pp. 1281-1282, vol. 11, No. 10. |
Thompson, D.R., “Finger Position Detect Method,” IBM Technical Disclosure Bulletin, Dec. 1980, p. 3289, vol. 23, No. 7B. |
Callens, P., “Optical Keyboard Device and Technique,” IBM Technical Disclosure Bulletin, Nov. 1983, pp. 2763-2764, vol. 26, No. 6. |
“Enhanced Optical Touch Input Panel,” IBM Technical Disclosure Bulletin, Sep. 1985, pp. 1760-1762, vol. 28, No. 4. |
PCT International Search Report and Written Opinion, PCT Application No. PCT/IB2013/002010, Jan. 29, 2014, 10 pages. |
Chinese First Office Action, Chinese Application No. 201380047608.3, Aug. 22, 2016, 24 pages. |
Number | Date | Country | |
---|---|---|---|
20140015803 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61671225 | Jul 2012 | US |