The present invention relates generally to an electrophysiological device comprising an electrical impedance detector, and more particularly to an electrophysiological device comprising a Zero-Power Lead-off Detector.
In electrophysiological measurement applications, such as ECG recording, electrodes have to be connected to the patient by means of fastening them to the patient's skin. In long-time monitoring it is indispensable to have an automatic “lead-off” alarm as soon as one of these electrodes detaches. The electronic circuitry, which accomplishes this task, is called a lead-off detector.
Lead-off detectors are also applied in battery powered portable/wearable devices, e.g. for short-time ECG monitoring, in order to have an “automatic on” functionality rather than an “on/off switch”. As long as a lead-off condition is detected at the measuring electrodes, which is typically the case as long as the patient does not use or wear the device, the system is powered down, so as to save battery lifetime. Only the lead-off detector is active in this state. For a long stand-by time, the lead-off detector should consume as little power as possible, especially during periods, in which a lead-off condition is true. As soon as all of the measuring electrodes have contact with the patient's skin, the lead-off detector will detect this and turn on the power for the rest of the system.
In medical applications, and in electrophysiological measurement applications in particular, the lead-off detector must not interfere with the measured signal. Some prior art systems for lead-off detection take advantage of the fact that the frequency range of an electrophysiological signal is usually limited depending upon the type of the electrophysiological signal. In ECG monitoring for example, a 3 dB frequency range extending from 0.67 Hz to 150 Hz is recommended by the American Heart Association. Choosing the operating frequency of a lead-off detector outside this bandwidth reduces or even eliminates interference with the ECG signal to be measured. Accordingly, the lead-off detector may be operated at relatively high frequencies or at relatively low frequencies, i.e. basically direct current (DC). In either case, a testing current of a frequency outside the frequency of the measurement signal is applied to the electrodes to determine if a closed circuit between the electrodes exists. However, the magnitude of the testing current that is drawn from a current source remains relatively constant, regardless of the electrical impedance formed by the electrodes attached to the patient's skin. Indeed, the known lead-off detection circuits are responsive to a difference of the voltage drop generated by the testing current at the electrical impedance between the electrodes. A changing impedance will change the voltage drop proportionally. Whenever the electrodes are detached from the patient's skin, at least a portion of the testing current is taken over by the lead-off detection circuit. This means that a current source that provides the testing current of the chosen frequency will be charged with a certain amount of current regardless of the lead-off condition being true or false. Moreover, due to a required signal-to-noise ratio, the testing current can not be arbitrarily small, but needs to have a certain minimum magnitude so that a lead-off detection circuit can reliably distinguish between a lead-off condition and a lead-on condition.
It is common to all battery-powered devices that the battery-lifetime is directly related to the device's power consumption, in operating mode as well as in standby mode. While power consumption in operating mode basically depends on the application, such as ECG recording, the power consumption in standby mode is mainly influenced by the lead-off detection circuit. Lead-off detectors presented in the past apply one or more active parts, be it an oscillator or at least an operational amplifier, which draw current continuously, also in standby mode. This has to be recognized as a shortcoming of all lead-off detector designs known so far. While this shortcoming may be acceptable for electrophysiological devices that are connected to the power grid, it becomes basically unsustainable in the case of battery-powered devices.
Lead-off detection can be regarded as a special case of electrical conductivity detection between the electrodes of a medical lead. Accordingly, what is needed is a detector for electrical conductivity having a negligible stand-by mode power consumption, which does not influence an electrical signal representing a measured quantity.
According to one embodiment, the electrophysiological device comprises a lead-off detector in the form of an electrical impedance detector. Furthermore, it comprises a path from a supply voltage to a second voltage, the path comprising segments having electrical impedances, at least one of which is to be ascertained, and a measuring vertex. The electrical impedance detector further comprises a discriminator that is connected to the measuring vertex and arranged to evaluate an electrical measuring signal observed at the measuring vertex. The measuring signal could be an electrical voltage.
A lead-off detector may be intended to give an alert in the event one or more of the leads and the electrodes attached thereto have detached from the body of a patient. This results in a change of the impedance observed between the two electrodes, compared to the situation in which all electrodes are still in conducting contact with the body. The to be ascertained impedance is part of an electric path from a supply voltage to a second voltage. In particular, the to be ascertained impedance is situated in a segment of the path. The segments may be connected in series to form the path, so that none of the segments may have too high an impedance, if an electric current is to flow from supply voltage to second voltage. The segments of the path besides the one comprising the to be ascertained impedance may be any electrical component, such as other impedances, non-linear components, direct connections, etc. If the electrical impedance between the two input electrodes is very high, a standby mode is assumed. On the other hand, if an impedance smaller than a certain maximal impedance is present between the two electrodes, an operating mode is assumed. A transistion between the two enumerated cases causes the measuring signal, such as a voltage, at a measuring vertex to change. The discriminator evaluates the state of the measuring signal and conditions the measuring signal for further processing. In general, an impedance may also be a complex resistance, such as a capacitor or an inductor. In order to quantify an impedance, the magnitude of the impedance at a certain operating frequency may be used. The electrical impedance detector is particularly suited for integration with battery-powered electrophysiological devices, since it presents a low power consumption during standby mode. When the electrical conductivity detector according to the present invention is in standby mode, the connection between the two input ports presents an electrical impedance that is very high. Hence, practically no current flows from the supply voltage to the second voltage.
The impedance may be a conductivity. An electrical current can flow across the impedance/conductivity. Impedance and conductivity may designate the same physical component, such as e.g. a resistor.
The supply voltage and/or the second voltage may be a DC voltage or an AC voltage. Depending on the application and the power supply at hand, either a DC voltage or an AC voltage may be used. An AC supply voltage may be used in order to have the circuit operating at a certain frequency at which the circuit works in an optimal manner. In battery-powered applications, a DC voltage is likely to be used.
According to a related embodiment, the electrophysiological device further has a reference potential and the measuring voltage is evaluated relative to the reference potential. A reference potential allows to determine any voltage within the circuit as a difference of the electric potential.
The discriminator may be arranged to evaluate the measuring signal with respect to a threshold value. A threshold value is used to divide the range of the measuring signal in two sections. If the measuring signal falls into a first section, then a high impedance is assumed which means that at least one of the electrodes is detached. If the measuring signal falls into the other section, a lower impedance is assumed, which means that an electric current can flow from one of the electrodes to another.
The discriminator may be situated in a path between a further supply voltage and a third voltage. It is not necessary for the discriminator to be connected to the first supply voltage and the second voltage. The circuit only needs to ensure that the measured signal (or voltage) at the measuring vertex may be used by the discriminator. A galvanic i.e. electrically conducting connection between the measuring vertex and the discriminator is not necessary, though. For example, an optoelectronic coupler may be used. However, it may also be contemplated that the further supply voltage is identical to the supply voltage and/or that the third voltage is identical to the second voltage. In particular, the further supply voltage would then be connected to the supply voltage and/or the third voltage would then be connected to the second voltage.
In a further embodiment, the discriminator comprises a switch. A switch allows producing an output signal having a finite number of states, typically two. In the context of the impedance detector, a decision needs to be made, whether the impedance is very high or relatively low.
The switch may be held in a non-conducting state if the to be ascertained impedance remains above a threshold value. The impedance being above a threshold value indicates that one or more electrodes could be detached from the patient. Another reason could be a broken cable. Placing the switch in a non-conducting state saves energy, since no current can flow across the switch. In contrast to past solutions, the lead-off detector presented here is especially designed so that at least one switch (e.g. transistors, but not limited thereto) included in the circuit in each series connection between the two power lines will become non-conducting as soon as one of the electrodes detaches from the patient's skin. In this state the power consumption is given only by the leakage current of these transistors, which is up to several orders of magnitude smaller than the power consumption of any other lead-off detector presented in the past.
In a related embodiment, the threshold value is adjustable. This assures greater flexibility for a large range of applications. The threshold may for example depend on the number and type of electrodes, whether the patient is an adult or a child, the kind of measurement performed, and the like. This may be achieved by a variable pull-up or pull-down impedance, but also by adjusting a filter network between the measuring vertex and the switch.
The adjustable threshold may be realized by an adjustable resistor or an adjustable resistor in the form of a transistor. The adjustable resistor could be controlled by means of a control knob or a similar actuating element. The adjustable resistor in the form of a transistor may be controlled by a voltage to present a desired value of resistance.
The electrophysiological device may be arranged to relay a bipolar signal generated within the segment comprising the to be ascertained impedance. In electrophysiological and possibly other applications, an electric signal produced by the body of a patient (e.g. electrocardiogram) is measured. This signal may be bipolar. A bipolar signal may change its sign, i.e. it may become negative. Since also the negative sections of the signal may be of interest, care must be taken not to cut of those sections. The ability of relaying a bipolar signal may also be of interest in applications, where the user has to connect a sensor to the input ports by himself or has to place electrodes in a particular manner. This ability is of interest for ease of use and robustness of the device, since the user does not have to take care of a particular polarity. This is achieved by a circuit design that considers this condition. At the same time, the lead-off detector must not be disturbed by the signal to be relayed or measured. It is mentioned that in an electrocardiography application the signal presents a voltage between approximately 1 mV and 3 mV.
According to a further embodiment, the electrophysiological device further comprises:
In a first exemplary case, an impedance is provided between one of the two input ports and the supply voltage, thus acting as pull-up impedance. If no current is flowing through the pull-up impedance, the first input port is pulled up to the potential of the supply voltage by the action of the pull-up impedance (unless it is an open circuit). In other words, no voltage drop exists across the pull-up impedance. In a similar manner, the second input port would be pulled down to the circuit ground voltage by the action of the pull-down impedance so that no voltage drop exists across the pull-down impedance, either. The electrical impedance (or conductivity) detector being in standby mode means that no measurement signal is present at the two input ports, which in turn means that the two input ports can be pulled up or pulled down to the supply voltage or the circuit ground voltage, respectively. In operating mode, on the other hand, the two input ports must be able to assume whichever electrical potential is defined by the signals that are applied to the input ports. Since in operating mode an electrical conductivity different from zero is present between the two input ports, a current can flow through the pull-up impedance (if present), the electrical conductivity between the two input ports, and the pull-down impedance (if present) from the supply voltage to the circuit ground voltage. This current causes voltage drops across the pull-up and/or pull-down impedances, which are detectable by the discriminator. Ideally, the discriminator has a comparator-like characteristic, that is, it has two principal states (e.g. high and low), and changes from one state to the other, if a signal at the discriminator's input becomes greater than a predefined threshold or vice versa. Although the transition between the two states should ideally be as steep as possible, a smoother transition may also be acceptable. The output stage connected to the discriminator may further condition the output signal and adapt it to the requirements of any equipment that is hooked to the electrical conductivity detector in order to derive its own standby mode and operating mode, for example. The pull-up impedance (if present), the impedance between the two input ports, and the pull-down impedance (if present) are all connected in series. Hence, they form a voltage divider having two or three impedances, the pull-up impedance (if present), the reciprocal of the conductivity between the two input ports, and the pull-down impedance (if present). If both the pull-up impedance and the pull-down impedance are present, the voltage divider is capable of providing two intermediate voltages at the first and the second input port, respectively.
The pull-up or pull-down impedance may be one or a plurality of resistors, one or a plurality of capacitors, one or a plurality of inductors, one or a plurality of diodes, one or a plurality of zener diodes, one or a plurality of transistors, or combinations thereof. Depending on the desired properties of the impedance detector, the circuit may be designed using the above mentioned components. For example, in the AC case the use of capacitors and/or inductors may filter out undesired frequencies.
The switch and the pull-up and/or pull-down impedance(s) may be diodes. Diodes are easier to fabricate than transistors in large area electronics, making this embodiment potentially lower cost.
In a further embodiment, the electrophysiological device further comprises one or a plurality of additional paths from respective supply voltages to respective second voltages, each of the additional paths comprising segments having electrical impedances, at least one of which is to be ascertained. It further comprises two input ports for each of the to be ascertained impedances, arranged to be respectively connected to the ends of the segment of the to be ascertained impedance. Such an arrangement may be used if several electrode pairs are subject to supervision with respect to a lead-off condition. The different electrode pairs may be combined using a logical “AND” (electrophysiological device operates only if all electrode pairs are properly connected) or a logical “OR” (electrophysiological device operates if one of the electrode pairs is properly connected).
The electrophysiological device may further comprise an output stage connected to the discriminator and delivering an output voltage or a current in response to the state of the discriminator thus being indicative for the detected electrical impedance. The discriminator is responsive to a voltage drop across at least one of the pull-up or pull-down impedances by adopting one of a plurality of states representative of a magnitude of the voltage drop. The output stage connected to the discriminator may condition the output signal and adapt it to the requirements of any equipment that is hooked to the electrical conductivity detector in order to derive its own standby mode and operating mode, for example.
In a related embodiment, the discriminator and/or output stage of the impedance detector draws no significant current from the supply voltage or the further supply voltage, if the voltage drop is under a threshold value, and the discriminator and/or output stage draws current from the supply voltage or further supply voltage, if the voltage drop exceeds the threshold value. If the voltage drop across the pull-up impedance and/or the pull-down impedance is under the threshold value, then the standby mode is assumed to be active. In this case the discriminator and/or the output stage draws no or only a negligible current from the supply voltage. The power supply provides the difference of potential between the supply voltage and the circuit ground voltage. In operating mode the discriminator and/or the output stage is allowed to draw current from the supply voltage.
In one embodiment, the discriminator draws a current of less than 100 nA, preferably less than 1 nA, from said supply voltage if the to be ascertained impedance remains above the threshold value. This is much lower than the self-discharge current of a battery. The self-discharge current of a battery depends on the battery type and the charge status; a typical value would be 10 uA for a Lithium battery 24 h after charging. The leakage current of the impedance detector depends on the transistor type and the temperature. It could be as low as 100 pA at 25° C. (100 nA for the full range −55° C. . . . 125° C.), if the matched dual monolithic transistor MAT01 of Analog Devices or an equally suited transistor is used, the data sheet of which these values are taken from.
The discriminator may comprise a first stage and a second stage. A discriminator having two stages may have a steeper input-output-characteristic, thereby eliminating unwanted intermediate states of the discriminator. If the discriminator makes use of e.g. saturation effects of certain components, the first stage may not yet be saturated, but assists the second stage in saturating.
In a related embodiment, the first stage comprises switching means. Provision of switching means offers the possibility to change between two states of the discriminator without passing through unwanted intermediate states. Intermediate states are usually unfavorable in terms of power consumption of an electrical circuit. Since in the present case one is interested in distinguishing between a standby mode and an operating mode, switching means responding to a condition at the input of the discriminator provide for this functionality.
In a related embodiment, a control input of the first stage switching means is coupled to one of the two input ports. The potential at the control input of the first stage switching means therefore follows the potential of the respective input port. In the case of the first control input this means that its potential is pulled up to supply voltage during standby mode caused by the interaction of the pull-up impedance and the missing electrical conductivity between the two input ports. Similar considerations can be made for the second input port and the pull-down impedance.
In another embodiment, a control input of the first stage switching means is coupled to one of the two input ports via a low-pass filter. This low-pass filter prevents the discriminator from changing from one state to the other at random in a noisy environment.
The switching means may be selected from a group comprising bipolar transistors and MOSFET transistors, thin film transistors, diodes, and MIM (metal-insulator-metal) diodes. MOSFET transistors are controlled by means of a voltage instead of a current. Bipolar transistors, on the other hand, require a lower threshold voltage. Especially if the supply voltage is rather low, bipolar transistors may be used in the first stage for the proper operation of the circuit instead of MOSFET transistors. In a cascaded arrangement of two bipolar transistors (one attached to the high supply rail, the other supplied to the low supply rail) it should be possible to operate the circuit below 1.5V. In this case it would be necessary to have at least 1.2V supply voltage (two times 0.6V, the threshold voltage of the transistors). In embodiments with just a single transistor involved, it goes even below this value. Due to the fact that the threshold voltage of a bipolar transistor is usually around 0.5V . . . 0.6V it is possible (under the condition that the remainder of the circuit supports it, as well) to operate some of the proposed embodiments at operating voltages well below 1V.
Using a transistor or transistors as active components (as switch or other function) in an inventive device may render the inventive device cost-effective and still relatively small because it is possible to realize transistors on very small surface areas of, e.g., a semiconductor or glass substrate.
An alternative is to use a thin film transistor as the transistor or as the transistors of the active component of the device. This renders the device more cost-effective and it is possible to use lighter or flexible materials such as plastic or metal foils.
In a further embodiment of the invention the active element comprises a diode. Using a diode or diodes as active components in an inventive device renders the inventive device even more cost-effective and still relatively small because it is possible to realize diodes on very small surface areas of, e.g., a glass substrate in a technology which is lower cost than a transistor based technology.
The active element may also comprise a non-linear resistance element, specifically a metal-insulator-metal (MIM) diode. Using a MIM diode or MIM diodes as active components in an inventive device renders the inventive device even more cost-effective and still relatively small because it is possible to realize MIM diodes on very small surface areas of, e.g., a glass substrate in a technology which is lower cost than a transistor based technology.
In a further embodiment, the transistors are of only one polarity. This makes the circuit easier to manufacture in large area electronics.
The output stage may comprise a transistor and an output impedance, said output voltage being tapped at the output impedance. The transistor of the output stage is controlled by the discriminator and consequently determines if a current can flow through the output impedance, which is connected in series to the output transistor. Especially if the on-impedance of the output transistor is relatively low compared to the output impedance (in the form of a resistor), it can be expected that a large part of the supply voltage is present across the output resistor. This means that any equipment connected to the output stage can be supplied with an unambiguous output signal indicating either standby mode or operating mode.
The electrophysiological device may further comprise materials from the group of low temperature polycrystalline silicon, amorphous silicon, nanocrystalline silicon, microcrystalline silicon, or other organic or inorganic semiconducting material such as cadmium selenide, tin oxide, zinc oxide or organic semiconductors.
The thin film transistor may be fabricated from any of the well known active matrix technologies as known from manufacturing of active matrix liquid crystal displays and other active matrix displays. These technologies include the amorphous silicon (a-Si) technology, low temperature poly silicon technology (LTPS), nanocrystalline Si technology, microcrystalline Si technology, CdSe (cadmium selenide) technology, SnO (tin oxide) technology, polymer or organic semiconductor based technology etc. In some cases only transistors of one polarity are available (e.g. a-Si provides only N-type transistors), whilst in other cases transistors of both polarity are available (e.g. LTPS provides n-type and p-type transistors). However both types in one device is more expensive.
Using thin film diode technology, diode active matrix arrays (as have been used for e.g. active matrix LCDs) can be driven in several known ways, one of which is the double diode with reset (D2R) approach, see K. E. Kuijk, Proceedings of the 10th International Display Research Conference (1990, Amsterdam), p174.which is incorporated herein by reference.
The operation of the circuits according to the invention can be made very independent of the diode characteristics and both PIN or Schottky diodes can be chosen. A PIN (or Schottky-IN) diode can be formed using a simple 3-layer process. An amorphous semiconductor layer, a stack of p-doped, intrinsic, and n-doped regions, is sandwiched between top and bottom metal lines, which are for example oriented perpendicular. The electrical properties are hardly sensitive to the alignment.
Whilst offering somewhat less flexibility than using TFTs, it is also possible to realize the device using the technologically less demanding metal-insulator-metal (MIM) diode technology. The MIM diode can be introduced as a non-linear resistance element.
The MIM device (or MIM-Diode) is created by separating two metal layers by a thin insulating layer (examples are hydrogenated silicon nitride sandwiched between Cr or Mo metals, or Ta2O5 insulator between Ta metal electrodes, see e.g. A. G. Knapp and R. A. Hartman, Proc 14th Int Display Research Conf (1994) p. 14 as well as S. Aomori et al, SID 01 Digest (2001) p. 558. These disclosures are incorporated herein by reference.), and is conveniently realized in the form of a cross-over structure. Both metal layers and also the insulating layer are realized on the same substrate.
In a further embodiment, the electrophysiological device is battery-powered. The electrophysiological device is independent from the availability of a power grid, so that it can be used to perform measurements of electrophysiological activity of a patient or a subject even in situations outside a laboratory or a hospital. Actually in those cases, in which the electrophysiological device is intended to be worn over a longer period of time, power should not be unnecessarily wasted.
The electrophysiological device may further comprise an additional power supply. This additional power supply may be a battery, a DC/DC converter, a charge pump or something similar. The additional power supply is for example used during operational mode, but not during stand-by mode. Since the impedance detector can be designed to work with low supply voltages, it is not necessary to use the additional power supply during the stand-by mode. During operational mode the additional power supply may be used to power up those devices that are activated by the impedance detector. In a particular embodiment, the additional power supply powers a data analysis device. This is useful in those cases where the data analysis device requires a certain power supply, such as a sufficiently high supply voltage. Furthermore, the data processing device may be arranged to be turned off by the switch of the discriminator.
In a further embodiment, the lead-off detector is adapted to power on the electrophysiological device in response to a lead-on condition. Or, the electrical impedance detector provides an automatic-on function for the device. This eliminates the need for a dedicated on/off switch. Furthermore, the device is also easier to use. As soon as the electrodes both are in contact with the skin of the patient, the electrical impedance detector senses the conductivity defined by the human body and turns on the electrophysiological device. When it comes to turning the device off again, the following is proposed. Either the device is turned off when the impedance assumes a value greater than a given threshold. If the device measures a signal, the turn-off condition could be related to the signal being below a signal threshold. In these cases, it is a data acquisition and/or analysis device that measures the signal and determines when it vanishes, which causes the device to enter a standby mode. Either the device passes into standby mode directly after the condition has become true, i.e. the signal has vanished, or after some time, which is for example used in baby phones.
In a further embodiment, the electrophysiological device comprises a plurality of the electrical impedance detectors. Such a device could be used to implement control elements that are controlled by the user in the described manner by closing an electrical circuit via his or her body or parts thereof. An according device could for example be used in a remote control for consumer electronics or in mobile telephones. This avoids mechanical switches, so that the device could be easily sealed and/or feature a unique, rugged, and/or smooth design. The plurality of electrical impedance detectors could be connected to a keypad, so that the user can enter a numerical or alphanumerical code by successively touching different contact area, each contact area corresponding to a particular key and connected to one out of the plurality of electrical impedance detectors.
The electrophysiological device may further comprise additional input ports. The results as to whether an impedance between a pair of two arbitrary input ports exceeds the threshold value, are combined by a logical combination. The logical combination may be an AND operation, an OR operation, an XOR operation or another logical operation. For example, the AND operation may be used if all electrode pairs must be connected properly in order to obtain a meaningful signal.
The electrophysiological device may further comprise additional input ports, wherein a cyclic measurement is performed by cycling the pairing of two input ports. This allows the electrophysiological device to search for the best or strongest signal, which may be present between two arbitrary electrodes. If two or more impedance detectors and data analysis devices are provided, one impedance detector may be used to constantly look for a good or strong signal, while the other impedance detector performs the actual data acquisition. The roles of both may change, once it has been found that a better or stronger signal than the one currently acquired is available. Best signal in this context means: the signal which is the best according to a defined quality measure.
In an electrophysiological device comprising additional input ports, the device may be arranged to seek a pairing of two input ports presenting a signal which is the best according to a defined quality measure. This may be done in a cyclic manner, at random or based on a specific pattern. For example, the pattern could memorize which input ports presented strong or best signals in the (near) past, focusing the search on these input ports. Best signal in this context means: the signal which is the best according to a defined quality measure.
In the following description, a component is typically mentioned and explained when the Figure is described, in which the component appears for the first time. Similar or identical reference signs are used for similar or identical components.
Referring now to
The second stage of the discriminator comprises MOSFET transistor 163 (M4) and corresponding pull-up resistor 161 (R5), and MOSFET transistor 164 (M3) and corresponding pull-down resistor 162 (R6).
The output stage of the electrical impedance detector 100 comprises MOSFET transistor 172 (M5), corresponding pull-up resistor 171 (R7), output resistor 173 (R8), and output port 174. Between output port 174 and the circuit ground voltage an output voltage can be tapped representing presence or absence of an electrical conductivity between input ports 121 and 122.
The arrangement of MOSFET transistors M3, M4 and M5 may also be understood in the following way. MOSFET transistor M3 assumes the function of a logical inverter for the signal coming from MOSFET transistor M1. MOSFET transistors M4 and M5 can be regarded as a logical AND function for the signals that are present at the drain of MOSFET transistor M2 and the drain of MOSFET transistor M3.
Each of the five MOSFET transistors 151, 152, 163, 164 and 172 are of enhancement type, which means that the channel between drain (D) and source (S) is completely non-conducting, as long as the control voltage between gate (G) and source stays below a certain threshold of several volts.
As long as input ports 121 and 122 are not connected by a sufficiently large electrical conductivity (i.e. sufficiently small impedance), MOSFET transistor 151 will be open, because pull-up resistor 131 will drive its gate-source-voltage to zero. The reason is that no current path exists between the supply voltage +Vbat and circuit ground voltage 0V. For the same reason MOSFET transistor 152 will be open, since pull-down resistor 132 will drive its gate-source-voltage to zero. With both MOSFET transistors 151 and 152 open, there is no current flowing through the resistors 162 and 161 either, thereby leaving open those MOSFET transistors 163 and 164, because their gate-source-voltages are then driven to zero by resistors 161 and 162, respectively. With MOSFET transistor 163 open, there is no current feeding output resistor 173 so that the output voltage Vlead is zero.
As soon as the two input ports 121 and 122 are connected by means of an electrical conductivity between them, resistors 131, 132 and the electrical conductivity between the two input ports 121 and 122 will form a voltage divider, which will supply both MOSFET transistor 151 and MOSFET transistor 152 with sufficient gate-source-voltage, so as to switch them on. Resistor 141 and capacitor 143 represent a low-pass filter, which prevents the MOSFET transistor 151 from turning on and off at random in a noisy environment. The same holds for resistor 142 and capacitor 144 with respect to MOSFET transistor 152.
If the first discriminator stage MOSFET transistors 151 or 152 are conducting, this will propagate through the second stage of the discriminator and the output stage of electrical impedance detector 100.
If an electrical conductivity is present between the two input ports, their respective voltages act as input for electrophysiological data acquisition or analysis device 180, which evaluates, stores or processes in some other manner the electrophysiological signals picked up by electrodes that are connected to the input ports 121, 122. Data acquisition or analysis device 180 is designed for signal processing. It may perform amplification, filtering, level shifting, A/D conversion, memorization etc. Typically electrophysiological analysis devices present high input impedance due to the weak nature of the measured signals. As a consequence, the electrophysiological analysis device 180 does not interfere with the impedance detection performed by the present invention.
Besides electrocardiography (ECG), other electrophysiological applications may also benefit from the proposed device, such as electroencephalography (EEG). Another method is impedance cardiography (ICG), which is used to investigate cardiac output. Also the more general bio-impedance, which is similar to ICG, may employ a lead-off detector. The bio-impedance method is expected to be useful for detecting the accumulation of water in the limbs of a patient with chronic heart failure, and to monitor respiratory activity. Yet another method is the measurement of galvanic skin response, i.e. the conductivity of the skin, which is used to estimate the stress level of a person in e.g. lie detector, but also in a training device for relaxation exercises. All of the above measurements make use of electrodes attached to the patient's skin. Included here are those devices that do not use electrodes for measuring an electric signal of the body, but for the purpose of providing an automatic-on function for the medical device when the patient picks up the device or puts it on (like glasses or a hearing aid).
The present invention has been represented and described herein in what are considered to be the most practical embodiments. It is recognized, however, that departures may be made therefrom within the scope of the invention and that obvious modifications will occur to a person skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
05101579.0 | Mar 2005 | EP | regional |
PCT/IB06/50636 | Mar 2006 | IB | international |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB06/50636 | 3/1/2006 | WO | 00 | 8/28/2007 |