The invention relates to a voltage reference circuit consuming very low power, and more particularly, relates to a reference voltage generator that can operate under very low current supply and simultaneously keep its output voltage constant over variable temperatures.
Nowadays, many electronic devices are built by connecting together electrical components, ranging from a few electrical components in simple circuits to millions of them in complex circuits. Low power consumption has become one of the main issues in the electronics industry for many product areas such as cellular phones, biomedical implants, digital watches, calculators, tape players, portable computers, LCD driver circuits, in short, all types of portable and battery powered electronic devices.
For example, along with the recent increase in the popularity of portable equipment, the requests for large-scale integrated (LSI) devices performing battery operations are increasingly varied. Lowering the operating current (power supply current) to dramatically extend the operating time of battery operated systems is desirable.
Migrating to low operating voltages, denoted commonly as Vcc or Vdd, such as lower than 0.9 V is widely desired. Many traditional reference voltage circuits cannot meet this low voltage reference requirement. In some other reference circuits, such as the bandgap reference voltage generator shown in U.S. Pat. No. 4,628,248 by Birrittella et al, the current needed to activate the reference voltage generator results in high power consumption, due to use of bipolar transistors, e.g., IB and VBE. The quiescent current IQ may reach a very high value, i.e., the value of the current supply that is necessary to operate the shunt regulator may be too big. Typically, the value of the quiescent current used to correctly bias the reference voltage generator is at least several decades, such as 50-60 μA.
The bandgap reference voltage generator has the disadvantage of high power consumption. Thus, developing a type of shunt regulator other than the bandgap reference voltage generator is desired.
The present invention provides a reference voltage generator (shunt regulator) that is able to generate very low voltage on its output terminal with very low quiescent current, such as 1.5 μA or less. The output reference voltage equal to a bandgap voltage, thus enabling the circuit to consume little power. The magnitude of the quiescent current and reference voltage is only an example and those values can be modified by the designer of the reference voltage generator.
The present invention utilizes the work function difference between gate terminals of an input terminal transistor pair, to generate a predetermined reference voltage, which can be adjustable. The bulk of the reference circuit consists of a transconductance amplifier where its input offset is set to be the same as the magnitude of the reference voltage. This can be done, for example, by using a pair of MOS transistors as the input terminal transistor pair. The gate terminals are made of different types of polysilicon materials. In particular, one of the gate-terminals of the pair of MOS transistors is made of p+ polysilicon material, and the other gate-terminal of the pair of MOS transistors is made of n+ polysilicon material. Transistors with different kinds of gate materials with the same size (aspect ratio) will have different work function values. The circuit according to the present invention amplifies the work function difference between gate terminals of the input terminal transistor pair. Due to the characteristic of work function, the output reference voltage of the circuit in the present invention can maintain a very stable value.
The following figures illustrate embodiments of the invention. These figures and embodiments provide examples of the invention and they are non-limiting and non-exhaustive.
Embodiments of a system and method that uses a reference voltage generator as a shunt regulator are described in detail herein. In the following description, some specific details, such as example circuits are included to provide a thorough understanding of embodiments of the invention. One skilled in relevant art will recognize, however, that the invention can be practiced without one or more specific details, or with other methods, components, materials, etc.
The invention discloses the configuration of a circuit of a shunt regulator, which is a very low-power reference voltage generator mainly utilizing MOSFETs. The reference circuit includes a transconductance amplifier, where its input offset is set to be the same as the magnitude of the reference voltage. This is done by using a pair of MOS transistors with their gate terminals formed from different kinds of polysilicon materials. The gate-terminal of one transistor of the pair of MOS transistors is made of p+ poly, and the gate terminal of the other transistor of the pair of MOS transistors is made of n+ poly. Transistors with the same gate size, but different kinds of gate material, will have different work functions. Accordingly, this invention takes advantage of this configuration to generates a stable reference voltage by amplifying the work function difference to set Vref.
In
The transconductance amplifier is a part of the reference voltage generator 2 with transconductance value Gm. The output voltage of the transconductance amplifier is input to a gain stage Av, and the output voltage of the gain stage Av drives a power transistor QP. The power transistor QP regulates the shunt current and also sets the final output voltage Vref. The drain terminal of the power transistor is connected to the negative input terminal of the transconductance amplifier Gm through a resistor R2. Thus, a first terminal of the resistor R2 is connected to the drain terminal of the power transistor QP and a second terminal of the resistor R2 is connected to the negative input of the transconductance amplifier.
Accordingly, the desired reference voltage Vref can be obtained from the following equation:
Vref=VWFD[1+(R2/R1)] (2)
VGS=VT+(ID/K)(1/2) (3)
In equation (3), VT is the magnitude of threshold voltage, ID is the drain current, and K is the conduction factor of the device which can be written as K=(½)(W/L)μCox, where μ is the mobility of carrier in the device, Cox is equal to [(gate oxide capacitance)/(unit area)], W is the width of the device, and L is the length of the device. In view of equation (3), the gate-to-source voltage of MP1 and MP2 will be obtained and expressed as following equations:
VGSMP1=VTMP1+[(½)I0/(Kp)](1/2) (4)
VGSMP2=VTMP2+[(½)I0/(Kp)](1/2) (5)
By subtracting the gate-to-source voltage of transistor MP1 from transistor MP2, the result named as VGSMP1-MP2 can be derived from the following equation:
Equation (6) shows that the gate-to-source voltage difference between the input terminal transistor pair is the same as the threshold voltage difference between the transistors MP2 and MP1 if neglecting the secondary effects. In addition, if the foregoing transistors are made of identical transistors with the same gate material, then the resulted voltage from equation (6) would be equal to the difference of threshold voltages or threshold voltage matching, and in normal case will be in the millivolt range, which is called the input offset voltage of the input terminal transistor pair.
However, since the gate material of the transistor MP2 is different from that of the transistor MP1, the gate-to-source voltage difference between MP1 and MP2 is much higher than the millivolt range and will be determined by the work function difference of p+ gate terminal (of MP2) and n+ gate terminal (of MP1). The equation for the threshold voltage of a regular MOS transistor can be expressed as the following equation:
VT=ΦWF+(QB/Cox)−2ΦB+(Q′eff/Cox) (7)
In equation (7), ΦWF is the work function difference between gate and silicon material (body), QB is total bulk charge, ΦB is the body's potential, Qeff is the total charge in oxide-silicon and insulator interface. If only the gate material changes while all other parameters in equation (7) remain unchanged, threshold voltage VT varies by the amount of work function change of gate material. By definition, work function is the amount of energy needed to move an electron from its Fermi level to its free state level. For a p type material, work function is ΦP:
ΦP=4.59+(KT/q) [ln(Na/ni)] (8)
For a n type material, work function is ΦN:
ΦN=4.59−(KT/q)[ln(Nd/ni)] (9)
So the work function difference between a p and a n type material will be:
ΦPN=(KT/q)[ln(NaNd/ni2)] (10)
In equation (10), if both n and p become degenerated materials, i.e., doping density in the semiconductor material becomes very high, then the work function difference between p and n type material, i.e., ΦPN, becomes the bandgap voltage.
This voltage is fixed over a wide range of temperatures. In the present invention, it is desired to design a voltage reference by taking advantage of this concept, using a MOS transistor with its gate terminal made of p+ poly and the other MOS transistor with its gate terminal made of n+ poly. As previously described, if the two transistor are forced to have the same current and VDS voltage (drain-source voltage), then their gate-to-source voltage difference, denoted as ΔVgs, will be equal to the difference between their threshold voltage ΔVT which can be expressed in the following equation:
ΔVT=VTp+gate−VTn+gate (11)
From equation (11), if VTp+gate and VTn+gate are replaced with its expression according to equation (7), then ΔVT can also be expressed as the following equation:
Because the parameters are the same for both the p+ silicon or n+ silicon, equation (12) can be reduced to the following equation:
Turning back to equation (13), the parameter ΦWFp+Silicon is the work function difference between p+ poly and bulk silicon, and the parameter ΦWFn+Silicon is the work function difference between n+ poly and bulk silicon. Subsequently, from the previous explanation of equation (13) through equation (15), the threshold voltage difference is equal to the work function difference between the p+ poly and n+ poly, which are respectively used to form the gate terminals of the input terminal transistor pair 20 of the transconductance amplifier.
In
Vref=[1+(R2/R1)]VWFD (16)
In
Turning back to
The input terminal transistor pair applies a work function difference across the first resistor R1. The second end of the first resistor R1, being connected to the frist end of the second resistor R2, is electrically coupled to the negative input terminal of the transconductance amplifier, which is the gate terminal of the transistor MP2. According to one embodiment of this invention, the input terminal transistor pair at least includes a transistor MP1 and a transistor MP2, the transistor MP1 has the same size as the transistor MP2. The gate terminals of the transistor MP1 and the transistor MP2 are made of polysilicon materials heavily doped with n type dopant and p type dopant, respectively. In addition, the gate terminals of the transistor NP1 and the transistor MP2 are respectively coupled to both ends of the resistor R1, and the body of the transistor MP1 is electrically coupled to the body of the transistor MP2. The gate terminal of the transistor MP2 is the negative input terminal of the transconductance amplifier. Transistors MP4 and MP3 provide bias current to transistor pair MP1 and MP2 in the transconductance amplifier. The drain terminal of the transistor MP3 is coupled to the source terminal of the transistor MP1 and the source terminal of the transistor MP2, the source terminal of the transistor MP3 is coupled to the drain terminal of the transistor MP4, in addition, the body of the transistor MP3 is coupled to the body of the transistor MP4. The transconductance amplifier also includes a pair of loading transistors (including a first loading transistor MN1 and a second loading transistor MN2). The gate terminals of the transistor MN1 and the transistor MN2 are electrically coupled to the drain terminal of the transistor MN11.
According to one embodiment of this invention, the gain stage amplifies the output voltage of the transconductance amplifier. The gain stage comprises a third current source (including transistors MP5 and MP6) and a gain stage transistor MN3. The drain terminal of the transistor MP5 is coupled to the source terminal of the transistor MP6, the body of the transistor MP5 is coupled to the body of the transistor MP6. In addition, the gate terminal of the transistor MN3 is coupled to the drain terminal of the transistor MN2 and to the drain terminal of the transistor MP2, furthermore, the drain terminal of the transistor MN3 is coupled to the drain terminal of the transistor MP6. According to one embodiment of this invention, the reference voltage generator also includes a power transistor, MN4, which is used to send feedback from the drain terminal of the power transistor MN4 to the negative input terminal of the transconductance amplifier through the second resistor R2 connected in shunt with a compensating circuit. The compensating circuit (including a compensating capacitor C1 cascaded with a compensating resistor R4) is used to perform feed forward compensation. The gate terminal of the power transistor MN4 is electrically coupled to the drain terminal of the transistor MN3. Its drain terminal is connected to the second end of the second resistor. The source terminals of the transistors MN1, MN2, MN3, and the power transistor MN4 are all coupled to the first end of the first resistor R1 and R3.
The description of the invention and its applications as set forth herein is illustrative and is not intended to limit the scope of the invention. Variations and modifications of the embodiments disclosed herein are possible, and practical alternatives to and equivalents of the various elements of the embodiments are known to those of ordinary skill in the art. Other variations and modifications of the embodiments disclosed herein may be made without departing from the scope and spirit of the invention.