Spray tips are typically used in a variety of applications to break up, or atomize, a liquid material for delivery in a desired spray pattern. Some exemplary applications include, but are not limited to, applying a coating material such as paint, to a substrate, an agricultural application such as applying a fertilizer, insecticide, or herbicide to plants.
While embodiments described herein are in the context of applying paint to a surface, it is understood that the concepts are not limited to these particular applications. As used herein, paint includes substances composed of coloring matter, or pigments, suspended in a liquid medium as well as substances that are free of coloring matter or pigment. Paint may also include preparatory coatings, such as primers, and can be opaque, transparent, or semi-transparent. Some particular examples include, but are not limited to, latex paint, oil-based paint, stain, lacquers, varnishes, inks, etc.
A spray tip configuration for a low pressure fluid sprayer is presented. The spray tip configuration comprises an inlet orifice configured to receive a fluid and to produce a turbulent flow at a known operating point. The spray tip configuration also comprises an outlet orifice configured to emit the fluid in a spray pattern at a turbulence intensity. The spray tip configuration also comprises a passageway fluidically coupling the inlet orifice to the outlet orifice, with a plurality of portions configured to produce the turbulence intensity at the outlet orifice. The passageway comprises a first portion comprising an expansion chamber configured to provide an expanding cross-section from a first portion first end to a first portion second end. The passageway also comprises a second portion comprising a first hydraulic diameter, wherein the second portion is fluidically coupled, on a second portion first end, to the first portion second end. The passageway also comprises a third portion comprising a second hydraulic diameter, wherein the third portion fluidically couples to the second portion at a third portion second end. The passageway also comprises a fourth portion comprising a spray tip, wherein the fourth portion is fluidically coupled, on a fourth portion first end, to a third portion second end, and, on a fourth portion second end, to the outlet orifice.
In an exemplary fluid spraying system, a pump receives and pressurizes a fluid, delivers the pressurized fluid to an applicator, which applies the pressurized fluid to a desired surface using a spray tip configured with a geometry selected to emit a desired spray pattern (e.g., a round pattern, a flat pattern, or a fan pattern, etc.). The fluid may comprise any fluid applied to surfaces, including, but not limited, for example, paint, primer, lacquers, foams, textured materials, plural components, adhesive components, etc. For the sake of illustration, and not by limitation, the example of a paint spraying system will be described in detail. Paint sprayers function by atomizing a fluid flow prior to dispersal. An average droplet size is desired. If a fluid is atomized into droplets that are too small, overspray occurs. If droplets are too large, an uneven spray occurs. Atomization is achieved by developing instability within a fluid flow. Therefore, it is desired to achieve a desired turbulence intensity at an outlet of the spray gun, such that an even spray is achieved.
In order to apply an even coating, the spray pattern should be substantially uniform, with little or no “tailing effects.” Tails, or tailing effects, occur when a higher concentration of the material is delivered along edges, as opposed to a center, of a spray pattern. While existing pre-orifice configurations, and fine finishing tips, have been found to eliminate tails in low pressure applications for some paints, it has been found that these tips usually generate undesired, tapered spray patterns. For surfaces, a uniform spray pattern is desirable for an even and professional looking finish. Furthermore, it may be preferable that the spray pattern has a sharper edge instead of a larger width, because sharper edges can help spraying onto targets when spraying closer to the edges, such as the edges of a wall, for example.
In comparison, traditional high pressure airless spray patterns usually have substantially even coverage and well defined, sharper edges. To reduce tailing effects, conventional airless paint sprayers place the paint under high pressures (typically exceeding 3,000 pounds per square inch (PSI)), which requires the fluid, as well as other components of a liquid spraying system to have a suitable pressure rating. This may increase cost and potential risk to a user. One previous solution was to use an air-assisted spray gun, which comprises introduction of an air source to assist in atomization of fluid at the spray point.
Additionally, one problem associated with using a low pressure spraying system is the variation in viscosity of different paints, or other applied fluids. Paint viscosity differs between uses (e.g., primer, paint, or stain) and can also vary based on differences in manufacturing processes, additives, etc. These differences can result in tailing effects that can vary greatly based on the spray tip geometry and the paint used. A variety of spray tip configurations may allow for a single applicator to consistently apply fluid in a desired pattern, by allowing a user to select a specific tip for a specific application, for example from a spray tip kit comprising of some, or all, of the spray tip configurations disclosed herein.
In order to reduce, or minimize, tailing effects in fluids sprayed at low pressures, at least some embodiments described herein provide improved spray tip geometry, configured for use with fluids with known viscosities. Some embodiments described herein may be preferred for some applications, and not for others, for example based on the viscosity of the fluid to be applied. In at least one embodiment, a plurality of the spray tip configurations described herein are provided as a kit, and intended to be switched out of a spray gun in between different paint spraying jobs.
Embodiments of pre-orifice spray tip configurations are described herein that may achieve substantially uniform spray patterns at pressures lower than those required by typical high-pressure airless spray systems. Low pressure, in one embodiment, may be defined as spray pressure below 3,000 PSI. These embodiments may allow for systems to be designed with lower safety risks and reduced cost, making such systems more readily available for more consumers.
In one embodiment, a pre-orifice configuration for a spray tip is designed to provide a substantially uniform spray pattern, with significantly reduced tailing effects at low operating pressures, at or below 2,000 PSI, for example.
One way to eliminate tailing effects in systems operating at low spray pressures (around 1,000 PSI, for example), is to produce turbulence inside the spray nozzle which will accelerate spray sheet breakup. Current well-known, available tips utilize confined entrances to introduce large shearing forces, which may eventually lead to instability and turbulent fluid flow. One example of such a spray tip configuration is shown in U.S. Pat. No. 3,858,812, which describes a low pressure spraying nozzle. While the mechanism describes in U.S. Pat. No. 3,858,812 utilizes a confined entrance to introduce large shear, resulting in a spray pattern that may include a tapered distribution with high flow concentration in the center, and a gradually decreasing concentration away from the center. The pre-orifice disclosed in U.S. Pat. No. 3,858,812 may also introduce mixing effect on spray pattern edges, generating an undesirable fade width.
Spray tip configurations described herein comprise a series of engineered portions with geometric features configured to tune the fluid turbulence intensity. In one embodiment, different portions are manufactured separately, and later assembled to create a desired spray tip configuration. In another embodiment, spray tip configurations are manufactured as a single piece. In one embodiment, spray tip configurations are manufactured as part of an insert for a spray gun assembly. In one embodiment, connecting portions meet at an interface such that fluid flows from one portion to another. At some interfaces, fluid undergoes a rapid expansion or contraction, in embodiments where radii of connecting portions are different. At other interfaces, radii of corresponding portions may be substantially equal, such that expansion or contraction is gradual.
The terms “upstream” and “downstream,” as used herein, refer to the directions of paint flow through a spray tip configuration, for example spray tip configuration 100, as generally represented in
Spray tip configuration 100, in one embodiment, is formed of any suitable material, including, but not limited to, ceramic and/or carbide materials. Illustratively, a body 114 of spray tip configuration 100 comprises a base portion 116 and an outlet portion 118 that are integral, formed of a single unitary body of substantially uniform material consistency. In another embodiment, portions of body 114 and outlet portion 118 are formed separately and later joined. Portions of body 114 and base 116, in one embodiment, are composed of separate materials.
Portion 202, in one embodiment, receives fluid flow from an inlet orifice 104, and provides the paint flow through portions 206, 208 and 210, respectively, to portion 212, which provides paint flow to outlet orifice 108.
In accordance with one embodiment, portions 202, 206, 208, 210 and 212 comprise geometries configured to provide turbulence-producing and turbulence-dissipating features configured to tune the turbulence intensity in through channel 112. In one embodiment, turbulence-features may be configured to develop a fully-turbulent flow, and allow for some dissipation of turbulence in the fluid flow prior to a spray point. In one embodiment, turbulence intensity at the outlet is less than 25% of maximum turbulence. In one embodiment, turbulence intensity is less than 20% of maximum turbulence. In one embodiment, turbulence intensity is at least 5% of maximum turbulence. In one embodiment, turbulence intensity is between 5% and 15% of maximum turbulence. Turbulence tuning features may reduce tailing effects experienced by a user, thereby increasing spray pattern uniformity.
In one embodiment, channel 112 is at least partially defined by a portion 202. Portion 202 comprises a truncated cone with a first radius 12, a second radius 14 and an axial distance 16. In one embodiment, radius 12 is the same as a radius of inlet orifice 104. In one embodiment, radius 12 is smaller in than radius 14. In one embodiment, an exterior angle 18 of truncated cone portion 202 is substantially 30°. In another embodiment, exterior angle 18 is slightly greater than 30°. In another embodiment, exterior angle 18 is slightly less than 30°. In another embodiment, channel 112 is configured to provide a net expansion rate, despite any local contractions or other irregularities, for example such as those shown in
In one embodiment, when thin and/or medium viscosity paint exits an orifice of portion 202, the flow is less than fully turbulent, as at least some of portions 206, 208, and 212 are configured to tune the turbulence intensity to produce a uniform turbulent field with a desired intensity. The desired intensity may be selected in order to break up tails and increase pattern uniformity. When thicker paint exits cone 202, it forms a jet, in one embodiment, that is made unstable by one or more of portions 206, 208 and 2012, which may also be configured to tune the turbulence intensity to produce a uniform turbulent field with the desired intensity to break up tails and increase pattern uniformity In one embodiment, the desired intensity is between 5% and 15% of a fully turbulent flow.
In one embodiment, channel 112 is at least partially defined by a portion 206. Portion 206 comprises a cylinder with a radius 24 and an axial distance 26. In one embodiment, for example, that shown in
In one embodiment, channel 112 is at least partially defined by a portion 208. Portion 208 comprises a truncated cone with an axial distance 30, a first radius 28, and a second radius 32. In one embodiment, radius 32 is smaller than radius 28. In one embodiment, radius 28 is substantially equal to radius 24. In one embodiment, radius 28 is larger than radius 24. In one embodiment, radius 28 is smaller than radius 24.
In one embodiment, channel 112 is at least partially defined by a portion 210. Portion 210 comprises a cylinder with a radius 34 and an axial distance 36. In one embodiment, radius 34 is equal to radius 32. In one embodiment, radius 34 is larger than radius 32. In one embodiment, radius 34 is substantially smaller than radius 32. In one embodiment, portion 210 comprises a generalized geometry with a hydraulic diameter defined by an effective radius 34. However, in other embodiments, portion 210 comprises other appropriate configurations, for example a square cross-section, or an oval-cross section. In one embodiment, portion 210 is defined by two hydraulic diameters, on a first and second end, connected by a generalized surface.
In one embodiment, channel 112 is at least partially defined by a portion 212. Portion 212 comprises a section of a spheroid, defined by radius 38. In one embodiment, radius 38 is substantially equal to radius 34. In one embodiment, radius 38 is smaller than radius 34. In one embodiment, radius 38 is larger than radius 34. In one embodiment, the spheroid section comprising portion 212 is an oblate spheroid. In another embodiment, the spheroid section comprising portion 212 is a prolate spheroid. In another embodiment, the spheroid section comprising portion 212 is a perfect spheroid. In another embodiment, the spheroid section comprising portion 212 is made imperfect by creases or asymmetries. However, while
In one embodiment, all of axial distances 16, 26, 30, 36 and radius 38 are substantially equal. In another embodiment, at least some of axial distances 16, 26, 30, 36 and radius 38 are different. In another embodiment, all of axial distances 16, 26, 30, 36 and radius 38 are different.
In one embodiment, a length of the channel 112, comprising the combined lengths of axial distances 16, 26, 30, 36 and radius 38 is at least 0.19 inches. In another embodiment, the length of channel 112 is less than or equal to 0.26 inches. In another embodiment, the length of channel 112 is at least 0.2 inches, 0.21 inches, 0.22 inches, 0.23 inches, 0.24 inches or at least 0.25 inches.
In one embodiment, the radii of any two adjoining portions comprising channel 112 are the same at the interface where they join, for example where portion 202 and 206 intersect, or where portions 206 and 208 intersect, or where portions 208 and 210 intersect, or where portions 210 and 212 intersect. In another embodiment, the radii of two adjoining portions differ at the interface where they join, for example where portions 202 and 206 intersect, or where portions 206 and 208 intersect, or where portions 208 and 210 intersect, or where portions 210 and 212 intersect. In one embodiment, the radii of the adjoining portions comprising channel 112 belong to cylindrical geometries. In another embodiment, the radii of the adjoining portions comprising channel 112 are effective radii of a hydraulic diameter belonging to a generalized cross-sectional area, for example an oval, square, or other appropriate shapes.
Portion 202, in one embodiment, receives paint flow from inlet orifice 104, and is configured to provide the paint flow through portions 206 and 210, respectively, to portion 212, which provides paint flow to outlet orifice 108, in one embodiment.
In accordance with one embodiment, portions 202, 206, 210 and 212 comprise geometries configured to provide turbulence-tuning features configured to produce the desired turbulence profile through channel 112. Turbulence tuning features may reduce tailing effects experienced by a user, thereby increasing spray pattern uniformity. In one embodiment, turbulence-features may be configured to develop a fully-turbulent flow, and allow for some dissipation of turbulence in the fluid flow prior to a spray point. In one embodiment, turbulence intensity at the outlet is less than 25% of maximum turbulence. In one embodiment, turbulence intensity is less than 20% of maximum turbulence. In one embodiment, turbulence intensity is at least 5% of maximum turbulence. In one embodiment, turbulence intensity is between 5% and 15% of maximum turbulence.
In one embodiment, channel 112 is at least partially defined by a portion 202. Portion 202 comprises a cone-shaped portion with a first radius 12, a second radius 14, and an axial distance 16. In one embodiment, first radius 12 is equal to a radius at inlet orifice 104. In one embodiment, radius 12 is smaller than radius 14. However, while
In one embodiment, interior angle 18 is 30°. In another embodiment, interior angle 18 is slightly greater than 30°. In another embodiment, interior angle 18 is slightly less than 30°. In one embodiment, the turbulence increasing features functions such that when thin and/or medium viscosity paint exit through an orifice of truncated cone 202 it is a turbulent flow, producing a uniform turbulent field which may break up the tail and increase pattern uniformity. When thicker paint exits the orifice of truncated cone 202, it forms a jet that is made unstable by the downstream geometry of spray tip configuration 100.
In one embodiment, channel 112 is at least partially defined by a portion 206. Portion 206 comprises a cylinder with a radius 24 and axial distance 26. In one embodiment, radius 24 is substantially equal to radius 14. In one embodiment, radius 24 is smaller than radius 14. In one embodiment, radius 24 is larger than radius 14. However, while portion 206 is illustrated as a cylindrical portion, in one embodiment, portion 206 comprises a generalized geometry with a hydraulic diameter defined by an effective radius 24. However, in other embodiments, portion 206 comprises other appropriate configurations, for example a square cross-section, or an oval-cross section. In one embodiment, portion 206 is defined by two hydraulic diameters, on a first and second end, connected by a generalized surface.
In one embodiment, channel 112 is at least partially defined by a portion 210. Portion 210 comprises a cylinder with a radius 34 and axial distance 36. In one embodiment, radius 34 is smaller than radius 24. In one embodiment, radius 34 is substantially equal to radius 24. However, while portion 206 is illustrated as a cylindrical portion, in one embodiment, portion 210 comprises a generalized geometry with a hydraulic diameter defined by an effective radius 34. However, in other embodiments, portion 210 comprises other appropriate configurations, for example a square cross-section, or an oval-cross section. In one embodiment, portion 210 is defined by two hydraulic diameters, on a first and second end, connected by a generalized surface.
In one embodiment, channel 112 is at least partially defined by a portion 212. Portion 212 comprises a section of a spheroid, with radius 38. In one embodiment, radius 38 is substantially equal to radius 34. In one embodiment, radius 38 is smaller than radius 34. In one embodiment, radius 38 is larger than radius 34. In one embodiment, spheroid portion 212 is a section of an oblate spheroid. In another embodiment, spheroid portion 212 is a section of a prolate spheroid. In one embodiment, spheroid portion 212 is a section of a perfect sphere. In another embodiment, the spheroid section comprising portion 212 is made imperfect by creases or asymmetries. However, while
In one embodiment, all of axial distances 16, 26, 36 and radius 38 are substantially equal. In another embodiment, at least some of axial distances 16, 26, 36 and radius 38 are different. In another embodiment, all of axial distances 16, 26, 36 and radius 38 are different.
In one embodiment, the length of channel 112, comprising the combined lengths of axial distances 16, 26, 36 and radius 38 is at least 0.19 inches. In another embodiment, the length of channel 112 is less than, or equal to, 0.26 inches. In another embodiment, the length of the channel 112 is at least 0.2 inches, 0.21 inches, 0.22 inches, 0.23 inches, 0.24 inches or 0.25 inches.
In one embodiment, the radii of any two adjoining portions are the same at the interface where they adjoin, for example where portions 202 and 206 intersect, or where portions 210 and 212 intersect. In another embodiment, the radii of two adjoining portions differ at the interface where they join, for example where portions 206 and 210 intersect. In one embodiment, the radii of the adjoining portions comprising channel 112 belong to cylindrical geometries. In another embodiment, the radii of the adjoining portions comprising channel 112 are effective radii of a hydraulic diameter belonging to a generalized cross-sectional area, for example an oval, square, or other appropriate shapes.
In one embodiment, cross-sectional area increases as fluid flows through portion 318, and decreases through portions 302, 304, 306, and 308. In one embodiment, the first radii and second radii of portions 302, 304, 306, and 308, respectively, are all different as shown in
In one embodiment, channel 312 is at least partially defined by portions 318, 302, 304, 306, 308, 310, 313, 314, and 316. However, in another embodiment, channel 312 may comprise additional portions or only a subset of portions 318, 302, 304, 306, 308, 310, 313, 314, and/or 316.
Portion 318, in one embodiment, receives paint flow from inlet 305, and provides the paint flow through portions 318, 302, 304, 306, 308, 310, 313, and 314, respectively, to portion 316, which provides paint flow to outlet 307.
In accordance with one embodiment, portions 318, 302, 304, 306, 308, 310, 313, and 314 comprise geometries configured to provide turbulence-tuning capability to provide the desired turbulence intensity profile through channel 312. Turbulence tuning features may reduce tailing effects experienced by a user, thereby increasing spray pattern uniformity.
In one embodiment, channel 312 is at least partially defined by portion 318. Portion 318 comprises a truncated cone with a first radius 352, a second radius 350 and an axial distance 359. In one embodiment, first radius 352 is smaller than second radius 350. In one embodiment, channel 312 comprises inlet orifice 305. In one embodiment, first radius 352 is substantially equal to a radius of inlet orifice 305.
In one embodiment, channel 312 is at least partially defined by a portion 302. Portion 302 comprises a truncated cone portion with an axial distance 360, a first radius 348, and a second radius 346. In one embodiment, radius 346 is smaller than radius 348. In one embodiment, radius 348 is substantially equal to radius 350. In one embodiment, radius 348 is larger than radius 350.
In one embodiment, channel 312 is at least partially defined by a portion 304. Portion 304 comprises a truncated cone with a first radius 364, a second radius 368, and an axial distance 366. In one embodiment, radius 368 is smaller than radius 364. In one embodiment, radius 364 is larger than radius 346. In one embodiment, radius 364 is substantially equal to radius 346.
In one embodiment, channel 312 comprises at least a portion 306. Portion 306 comprises a first radius 370, a second radius 374, and an axial height 372. In one embodiment, radius 374 is smaller than radius 370. In one embodiment, radius 370 is larger than radius 368. In one embodiment, radius 370 is substantially equal to radius 368.
In one embodiment, channel 312 is at least partially defined by portion 308. Portion 308 comprises a truncated cone portion with a first radius 376, a second radius 380, and an axial distance 378. In one embodiment, radius 380 is smaller than radius 376. In one embodiment, radius 376 is larger than radius 374. In one embodiment, radius 376 is substantially equal to radius 374.
In one embodiment, channel 312 is at least partially defined by a portion 310. Portion 310 comprises a cylinder portion with a radius 381 and an axial distance 382. In one embodiment, radius 381 is substantially equal to radius 380. In one embodiment, radius 381 is larger than radius 380.
In one embodiment, channel 312 comprises at least a portion 313. Portion 313 comprises a truncated cone portion defined by a first radius 386, a second radius 390, and an axial height 388. In one embodiment, radius 390 is smaller than radius 386. In one embodiment, radius 386 is substantially equal to radius 381. In one embodiment, radius 386 is larger than radius 381. In one embodiment, radius 386 is smaller than radius 381.
In one embodiment, channel 312 is at least partially defined by a portion 314. Portion 314 comprises a cylinder defined by an axial height 392 and a radius 394. In one embodiment, radius 394 is substantially smaller than radius 386.
In one embodiment, channel 312 is at least partially defined by a portion 316. Portion 316 comprises a section of a spheroid with radius 396. In one embodiment, radius 316 is substantially equal to radius 394. In one embodiment, radius 316 is smaller than radius 394. In one embodiment, radius 316 is larger than radius 394. In one embodiment, the spheroid section comprising portion 316 is an oblate spheroid. In another embodiment, the spheroid section comprising portion 316 is a prolate spheroid. In another embodiment, the spheroid section comprising portion 316 is a perfect sphere.
In one embodiment, axial distances 359, 360, 366, 372 and 378 are substantially equal, and larger than axial distances 382 and 388. In another embodiment, at least some of axial distances 359, 360, 366, 372 and 378 are different.
In at least one embodiment, some low pressure spray tip configurations presented herein achieve a turbulent flow field with a desired turbulence intensity without local high mass flux at its center. In one embodiment, spray tip configurations comprise a turbulent decaying zone downstream from a point of maximum turbulent flow, configured to produce a uniform turbulence across the spray pattern, thereby breaking up any produced tails, and producing a uniform pattern with a sharp edge. In one embodiment, turbulence-features may be configured to develop a fully-turbulent flow, and allow for some dissipation of turbulence in the fluid flow prior to a spray point. In one embodiment, turbulence intensity at the outlet is less than 25% of maximum turbulence. In one embodiment, turbulence intensity is less than 20% of maximum turbulence. In one embodiment, turbulence intensity is at least 5% of maximum turbulence. In one embodiment, turbulence intensity is between 5% and 15% of maximum turbulence. Therefore, the spray pattern produced by at least some of the spray tip configurations disclosed herein, may have, in one embodiment, the same coverage across the fan width, with relatively sharp edges and no tailings effects.
In one embodiment, channel 402 is at least partially defined by portion 404. Portion 404 comprises a truncated cone defined by a first radius 416, a second radius 420, and an axial distance 418. Radius 416, in one embodiment, is smaller than radius 420. Cone portion 404, in one embodiment, is fluidically coupled, on a first end, to inlet 401, and is fluidically coupled, on a second end, to cylinder portion 406. In one embodiment, radius 416 is substantially equal to a radius of inlet 401.
In one embodiment, channel 402 is at least partially defined by portion 406. Portion 406 comprises a cylinder defined by a radius 422, and an axial distance 424. In one embodiment, radius 422 is substantially equal to radius 420. In another embodiment, radius 422 is larger than radius 420. In another embodiment, radius 422 is smaller than radius 420. Cylindrical portion 406 is, in one embodiment, fluidically coupled, on a first end, to cone portion 404, and fluidically coupled, on a second end, to cylinder portion 408. In one embodiment, portion 402 comprises a generalized geometry with a hydraulic diameter defined by an effective radius 422. However, in other embodiments, portion 402 comprises other appropriate configurations, for example a square cross-section, or an oval-cross section. In one embodiment, portion 210 is defined by two hydraulic diameters, on a first and second end, connected by a generalized surface.
In one embodiment, channel 402 is at least partially defined by cylinder portion 408. Portion 408 comprises a cylinder defined by an axial distance 428 and a radius 426. In one embodiment, radius 426 is larger than radius 422. In another embodiment, radius 426 is substantially equal to radius 422. Cylinder portion 428 is, in one embodiment, fluidically coupled on a first end to cylinder portion 306, and fluidically coupled on a second end to portion 410. In one embodiment, portion 410 comprises a generalized geometry with a hydraulic diameter defined by an effective radius 426. However, in other embodiments, portion 410 comprises other appropriate configurations, for example a square cross-section, or an oval-cross section. In one embodiment, portion 410 is defined by two hydraulic diameters, on a first and second end, connected by a generalized surface.
In one embodiment, channel 402 is at least partially defined by portion 410. Portion 410 comprises a truncated cone portion with a first radius 430, a second radius 432, and an axial distance 434. In one embodiment, radius 430 is substantially equal to radius 426. In another embodiment, radius 430 is larger than radius 426. In another embodiment, radius 430 is smaller than radius 426. In one embodiment, radius 432 is smaller than radius 430. Portion 410, in one embodiment, is fluidically coupled on a first end to cylinder portion 408, and is fluidically coupled on a second end to cylinder portion 412. However, while
In one embodiment, channel 402 is at least partially defined by portion 412. In one embodiment, portion 412 comprises a cylinder defined by an axial distance 438 and a radius 436. In one embodiment, radius 436 is substantially smaller than radius 432. In another embodiment, radius 436 is substantially equal to radius 432. Cylinder portion 412 is, in one embodiment, fluidically coupled on a first end, to cylinder portion 410, and fluidically coupled on a second end to a spheroid portion 414. In one embodiment, portion 412 comprises a generalized geometry with a hydraulic diameter defined by an effective radius 436. However, in other embodiments, portion 412 comprises other appropriate configurations, for example a square cross-section, or an oval-cross section. In one embodiment, portion 412 is defined by two hydraulic diameters, on a first and second end, connected by a generalized surface.
In one embodiment, channel 402 is at least partially defined by portion 414. Portion 414 comprises a section of a spheroid defined by a radius 440. In one embodiment, radius 440 is substantially equal to radius 436. In one embodiment, radius 440 is larger than radius 446. In one embodiment, radius 440 is smaller than radius 446. Portion 414 is, in one embodiment, fluidically coupled, on a first end, to cylinder portion 412, and is fluidically coupled, on a second end, to outlet 403. In one embodiment, portion 414 comprises a section of an oblate spheroid. In another embodiment, portion 414 comprises a section of a prolate spheroid. In another embodiment, portion 414 comprises a section of a perfect sphere. In another embodiment, the spheroid section comprising portion 414 is made imperfect by creases or asymmetries. However, while
In one embodiment, all of axial distances 418, 424, 428, 434, 438 and radius 440 are substantially equal. In another embodiment, at least some of axial distances 418, 424, 428, 434, 438 and radius 440 are different. In another embodiment, all of axial distances 418, 424, 428, 434, 438 and radius 440 are different.
In one embodiment, the radii of the adjoining portions comprising channel 402 belong to cylindrical geometries. In another embodiment, the radii of the adjoining portions comprising channel 402 are effective radii of a hydraulic diameter belonging to a generalized cross-sectional area, for example an oval, square, or other appropriate shapes.
In accordance with one embodiment, portions 504, 506, 508 and 510 comprise geometric features configured to provide turbulence-tuning capability configured to produce a desired-turbulence profile through channel 502. Turbulence tuning features may reduce tailing effects experienced by a user, thereby increasing spray pattern uniformity. In one embodiment, turbulence-features may be configured to develop a fully-turbulent flow, and allow for some dissipation of turbulence in the fluid flow prior to a spray point. In one embodiment, turbulence intensity at the outlet is less than 25% of maximum turbulence. In one embodiment, turbulence intensity is less than 20% of maximum turbulence. In one embodiment, turbulence intensity is at least 5% of maximum turbulence. In one embodiment, turbulence intensity is between 5% and 15% of maximum turbulence.
In one embodiment, channel 502 is at least partially defined by a portion 510. Portion 510 comprises a truncated cone defined by a first radius 524, a second radius 522, and an axial distance 526. In one embodiment, portion 510 is fluidically coupled, on a first end, to inlet 501, and, on a second end, to portion 508. In one embodiment, first radius 524 is substantially the same as a radius of the inlet 501. In one embodiment, radius 524 is smaller than radius 522. In one embodiment, interior angle 523 is 30°. In another embodiment, interior angle 523 is slighter greater than 30°. In another embodiment, interior angle 523 is slightly less than 30°. In one embodiment, the turbulence increasing features functions such that the sharp edge at inlet 501 creates a large shear rate to introduce the strongest disturbances to the flow.
In one embodiment, channel 502 is at least partially defined by a portion 508. Portion 508 comprises a cylinder defined by a radius 518 and an axial distance 520. In one embodiment, radius 518 is substantially equal to radius 522. In another embodiment, radius 518 is larger than radius 522. In another embodiment, radius 518 is smaller than radius 522. In one embodiment, cylinder portion 508 is fluidically coupled, on one end, to portion 510, and fluidically coupled, on a second end, to portion 506.
In one embodiment, channel 502 is at least partially defined by a portion 506. Portion 506 comprises a cylinder defined by an axial distance 516 and a radius 514. In one embodiment, radius 514 is substantially equal to radius 518. In another embodiment, radius 516 is larger than radius 518. In another embodiment, radius 514 is smaller than radius 518. Cylinder portion 506 is, in one embodiment, fluidically coupled, on a first end, to portion 508, and fluidically coupled, on a second end, to portion 504.
In one embodiment, channel 502 is at least partially defined by a portion 504. Portion 504 comprises a section of a spheroid defined by a radius 512. In one embodiment, portion 504 is a section of an oblate spheroid. In another embodiment, portion 504 is a section of a prolate spheroid. In another embodiment, portion 504 is a section of a perfect sphere. In one embodiment, radius 512 is substantially equal to radius 514. In another embodiment, radius 512 is larger than radius 514. In another embodiment, radius 512 is smaller than radius 514. In one embodiment, portion 504 is fluidically coupled, on a first end, to portion 506, and fluidically coupled, on a second end, to outlet 503. In one embodiment, portion 504 includes outlet 503. In another embodiment, the spheroid section comprising portion 504 is made imperfect by creases or asymmetries. However, while
In one embodiment, all of axial distances 526, 520, 516 and radius 512 are substantially equal. In another embodiment, at least some of axial distances 526, 520, 516 and radius 512 are different. In one embodiment, axial distance 520 is substantially larger than axial distance 516. In one embodiment, the radii of the adjoining portions comprising channel 502 belong to cylindrical geometries. In another embodiment, the radii of the adjoining portions comprising channel 502 are effective radii of a hydraulic diameter belonging to a generalized cross-sectional area, for example an oval, square, or other appropriate shapes
In accordance with one embodiment, the portions forming channel 502 comprise a confined entrance at inlet 501, defined by a sharp edge, followed by truncated cone portion 510 forming, for example, an expansion channel. Channel 502 continues, in one embodiment, providing a straight tunnel through cylindrical portions 508 and 506, leading to spheroid portion 504, before providing an exit for fluid flow through outlet 503. In one embodiment the expansion channel through portion 508 and/or 506 is configured to produce an inverse pressure gradient, causing destabilization within channel 502. Under such a combination, or similar combination of portions, channel 502 becomes fully turbulent downstream of inlet 501. Therefore, in one embodiment, channel 502, formed of a combination of portions 504, 506, 508 and 510 along with inlet 501 and outlet 503, introduce turbulence-increasing and turbulence-decreasing features designed to break up tailing effects without creating concentrated mass flux at the center of the spray pattern.
Pre-orifice spray tip configuration 500, along with outer shell 540, may be formed of any suitable material, including, but not limited to, ceramic and carbide materials. Illustratively, configuration 500 comprises portions 504, 506, 508, 510 and outer shell 540 that are integral, formed of a single unitary body. In another embodiment, portions 504, 506, 508, 510 and outer shell 540 are formed separately. In one embodiment, portions 504, 506, 508, 510 and outer shell 540 are formed of different materials. In another example, the portions are mechanically formed as separate segments and combined at a later time.
Pre-orifice spray tip configuration 500 may, in one embodiment, be configured such that first radius 524 at pre-orifice inlet 501 satisfies certain criteria determined by Reynolds number calculations. The Reynolds number Re, characterizes the ratio of inertia forces to viscous forces and is given by Equation 1 below:
In Equation 1, ρ is density of the fluid, D is the hydraulic diameter of pre-orifice inlet 401, and μ is the viscosity of the fluid at pre-orifice inlet 501. U is the characteristic velocity of the fluid, and is given by Equation 2, below:
In Equation 2, Q comprises the volumetric flow rate.
In one embodiment, the Reynolds number criterion is given by Equation 3 below:
Re>Recrit Equation 3
In Equation 3, the Recrit is the critical Reynolds number.
In one embodiment, the criteria for the diameter of pre-orifice inlet 501 of pre-orifice spray tip configuration 500 is given by Equation 4 below:
In one embodiment, the diameter D of a pre-orifice inlet 501 is smaller than the critical value, Dcrit. However, decreasing the diameter of pre-orifice inlet 501 may, in one embodiment, result in a large pressure drop that is not desirable.
In one embodiment, determining Recrit and Dcrit allows for designing of portions comprising a spray tip configuration such that a desired turbulence intensity is achieved. In one embodiment, turbulence-features may be configured to develop a fully-turbulent flow, and allow for some dissipation of turbulence in the fluid flow prior to a spray point, as shown in
In one embodiment, spray tip configuration 600 has a turbulence intensity of approximately 5%-10% at the outlet, and a distance from pre-orifice inlet 601 to outlet 603, along center line 602, of approximately between 8D and 14D, where D is the hydraulic diameter of the pre-orifice inlet 601. Such specifications may accelerate spray sheet breakup and eliminate “tailing effects.”
In one embodiment, spray tip configuration 600 comprises a cat-eye shaped outlet 603. The approximate turbulent intensity may vary based on the intensity of “tailing effects” produced by the cat-eye tip. Furthermore, in one embodiment, spray tip configuration 600 includes a cat-eye tip that generates light “tailing effects” and spray tip configuration 600 has a turbulent intensity less than 5%. In one embodiment, spray tip configuration 600 includes a cat-eye tip that generates heavy “tailing effects,” and spray tip configuration 600 has a turbulent intensity greater than 10%.
In one embodiment, the turbulent intensity of spray tip configuration 600 remains fixed as the diameter varies. In one embodiment, the turbulent decaying speed of spray tip configuration 600 varies as the cross-sectional area varies along the fluid channel within spray tip configuration 600. In one embodiment, an increase in diameter increases the turbulent decaying speed. The increase in turbulent decaying speed caused by an increase in the diameter, in one embodiment, does not alter the intensity of “tailing effects” of spray tip configuration 600.
In one embodiment, the plurality of flow simulations illustrated in
In one embodiment, for curves 1214, 1216, 1218, and 1220, or those with Reynolds numbers approximately greater than 2400, turbulent intensity remains approximately fixed as Reynolds numbers increase, because the flow can be characterized as fully turbulent, or experiencing a maximum turbulence intensity, at some point along the axial distance of the fluid passageway. As Reynolds numbers increase above 2400, the location of the turbulence peak remains constant along center line 602, and the rate of decrease in velocity remain approximately fixed. In one embodiment, turbulence-features may be configured to allow for some dissipation of turbulence in the fluid flow prior to a spray point. In one embodiment, turbulence intensity at the outlet is less than 25% of maximum turbulence. In one embodiment, turbulence intensity is less than 20% of maximum turbulence. In one embodiment, turbulence intensity is at least 5% of maximum turbulence. In one embodiment, turbulence intensity is between 5% and 15% of maximum turbulence
In one embodiment, the preferred critical number for a given fluid is the Reynolds at which velocity is uniform at an increasing distance from the peak turbulent location along centerline 602. The critical Reynolds number for the flow simulation of
As the viscosity of different fluids change, the critical Reynolds number also changes. Because different fluids, with different viscosities, are used for different fluid applications, different spray tip configurations, such as some of the embodiments described herein, may be required at different times. Therefore, for different fluid applications, different spray tip configurations may be required in order to ensure that fully turbulent flow is achieved within the spray tip, and at least some turbulence intensity to decay prior to an outlet.
In one embodiment, portion 784 receives fluid from inlet 786, and provides the fluid flow through portions 782, 780, 778, 778, and 776, respectively, to portion 774, which provides fluid flow to outlet orifice 788.
In accordance with one embodiment, portions 774, 776, 778, 780, 782, and 784 comprise geometric features configured to provide turbulence-increasing features configured to increase turbulence in fluid flow through channel 790. Turbulence increasing features may reduce tailing effects experienced by a user, thereby increasing spray pattern uniformity. In one embodiment, turbulence-features may be configured to develop a fully-turbulent flow, and allow for some dissipation of turbulence in the fluid flow prior to a spray point. In one embodiment, turbulence intensity at the outlet is less than 25% of maximum turbulence. In one embodiment, turbulence intensity is less than 20% of maximum turbulence. In one embodiment, turbulence intensity is at least 5% of maximum turbulence. In one embodiment, turbulence intensity is between 5% and 15% of maximum turbulence.
In one embodiment, channel 790 is partially defined by a portion 784. Portion 784 comprises a cylinder defined by a radius 770 and an axial distance 772. In one embodiment, radius 770 is substantially equal to a radius of inlet 786. In one embodiment, portion 784 is fluidically coupled, on a first end, to inlet 786, and, on a second end, to portion 782.
In one embodiment, channel 790 is partially defined by a portion 782. Portion 782 comprises a truncated cone defined by a first radius 777, a second radius 775, and an axial distance 768. In one embodiment, radius 777 is smaller than radius 775. In one embodiment, radius 777 is substantially equal to radius 770. In one embodiment, radius 777 is larger than radius 770. In one embodiment, radius 777 is smaller than radius 770. In one embodiment, portion 782 is fluidically coupled, on a first end, to portion 784, and, on a second end, to portion 780.
In one embodiment, channel 790 is partially defined by portion 780. Portion 780 comprises a cylinder defined by a radius 763 and an axial distance 764. In one embodiment, radius 763 is substantially larger than radius 775. In one embodiment, portion 780 is fluidically coupled, on a first side, to portion 782, and, on a second side, to portion 778.
In one embodiment, channel 790 is partially defined by portion 778. Portion 778 comprises a truncated cone defined by a first radius 762, a second radius 760, and an axial distance 758. In one embodiment, radius 762 is larger than radius 763. In one embodiment, radius 762 is larger than radius 760. In one embodiment, portion 778 is fluidically coupled, on a first end, to portion 780, and, on a second end, to portion 776.
In one embodiment, channel 790 is partially defined by portion 776. Portion 776 comprises a cylinder defined by a radius 754 and an axial distance 756. In one embodiment, radius 754 is substantially smaller than radius 760. In one embodiment, portion 776 is coupled, on a first end, to portion 778, and, on a second end, to portion 774.
In one embodiment, channel 790 is partially defined by portion 774. Portion 774 comprises a section of a spheroid defined by a radius 752. In one embodiment, portion 774 is a section of a prolate spheroid. In one embodiment, portion 724 is a section of an oblate spheroid. In one embodiment, portion 774 is a section of a perfect spheroid. In one embodiment, radius 752 is substantially equal to radius 754. In one embodiment, radius 752 is larger than radius 754. In one embodiment, radius 752 is smaller than radius 754. In another embodiment, the spheroid section comprising portion 774 is made imperfect by creases or asymmetries. However, while
In one embodiment, all of axial distances 772, 768, 764, 758, 756, and radius 752 are substantially equal. In another embodiment, at least some of axial distances 772, 768, 764, 758, 756, and radius 752 are different. In another embodiment, all of axial distances 772, 768, 764, 758, 756, and radius 752 are different. In one embodiment, the combined length of axial distances 764, 758, 756, and radius 725 is at least 0.15 inches. In one embodiment, the combined length of axial distances 764, 758, 756, and radius 725 is at least 0.16 inches. In one embodiment, the combined length of axial distances 764, 758, 756, and radius 725 is at least 0.165 inches. In one embodiment, the combined length of axial distances 764, 758, 756, and radius 725 is at least 0.166 inches. In one embodiment, the combined length of axial distances 764, 758, 756, and radius 725 is less than 0.17 inches. In one embodiment, the radii of the adjoining portions comprising channel 790 belong to cylindrical geometries. In another embodiment, the radii of the adjoining portions comprising channel 790 are effective radii of a hydraulic diameter belonging to a generalized cross-sectional area, for example an oval, square, or other appropriate shapes
In one embodiment, a pre-orifice space 720, within the insert, measures at least 0.13 inches. In one embodiment, pre-orifice space 720 measures at least 0.14 inches. In one embodiment, pre-orifice space 720 measures no more than 0.15 inches. In one embodiment, pre-orifice space 720 measures at least 0.142 inches.
In one embodiment, portion 892 receives fluid from inlet 894, and provides the fluid flow through portions 890, 888, 887, 886, 884, respectively, to portion 882, which provides fluid flow to outlet orifice 896.
In accordance with one embodiment, portions 892, 890, 888, 887, 886, 884, and 882 comprise geometric features configured to provide turbulence-increasing features configured to increase turbulence in fluid flow through channel 840. Turbulence increasing features may reduce tailing effects experienced by a user, thereby increasing spray pattern uniformity. In one embodiment, turbulence-features may be configured to develop a fully-turbulent flow, and allow for some dissipation of turbulence in the fluid flow prior to a spray point. In one embodiment, turbulence intensity at the outlet is less than 25% of maximum turbulence. In one embodiment, turbulence intensity is less than 20% of maximum turbulence. In one embodiment, turbulence intensity is at least 5% of maximum turbulence. In one embodiment, turbulence intensity is between 5% and 15% of maximum turbulence.
In one embodiment, channel 840 is partially defined by a portion 892. Portion 892 comprises a cylinder defined by a radius 880 and an axial distance 878. In one embodiment, radius 880 is substantially equal to a radius at inlet 894. In one embodiment, portion 890 is fluidically coupled, on a first end, to inlet 894, and, on a second end, to portion 890.
In one embodiment, channel 840 is partially defined by a portion 890. Portion 890 comprises a truncated cone defined by a first radius 876, a second radius 872, and an axial distance 874. In one embodiment, radius 876 is smaller than radius 872. In one embodiment, radius 876 is substantially equal to radius 880. In one embodiment, radius 876 is larger than radius 880. In one embodiment, radius 876 is smaller than radius 880. In one embodiment, portion 890 is fluidically coupled, on a first end, to portion 892, and, on a second end, to portion 888.
In one embodiment, channel 840 is partially defined by a portion 888. Portion 888 comprises a cylinder defined by a radius 868 and an axial distance 870. In one embodiment, radius 868 is substantially equal to radius 872. In one embodiment, radius 868 is larger than radius 872. In one embodiment, radius 868 is smaller than radius 872. In one embodiment, portion 888 is fluidically coupled, on a first end, to portion 890, and, on a second end, to portion 887.
In one embodiment, channel 840 is partially defined by a portion 887. Portion 887 comprises a cylinder defined by a radius 864 and an axial distance 866. In one embodiment, radius 864 is substantially larger than radius 868. In one embodiment, portion 887 is fluidically coupled, on a first end, to portion 888, and, on a second end, to portion 884.
In one embodiment, channel 840 is partially defined by a portion 886. Portion 886 comprises a truncated cone defined by a first radius 860, a second radius 858, and an axial distance 862. In one embodiment, radius 860 is substantially equal to radius 864. In one embodiment, radius 860 is larger than radius 864. In one embodiment, radius 860 is smaller than radius 864. In one embodiment, radius 860 is larger than radius 858. In one embodiment, portion 886 is fluidically coupled, on a first end, to portion 887, and, on a second end, to portion 884.
In one embodiment, channel 840 is partially defined by a portion 884. Portion 884 comprises a cylinder defined by a radius 854 and an axial distance 856. In one embodiment, the radius 854 is substantially smaller than radius 858. In one embodiment, portion 884 is fluidically coupled, on a first end, to portion 886, and, on a second end, to portion 882.
In one embodiment, channel 840 is partially defined by a portion 882. Portion 882 comprises a section of a spheroid defined by a radius 852. In one embodiment, radius 852 is substantially equal to radius 854. In one embodiment, radius 852 is smaller than radius 854. In one embodiment, radius 852 is larger than radius 854. In one embodiment, portion 882 comprises a section of an oblate spheroid. In one embodiment, portion 882 comprises a section of a prolate spheroid. In one embodiment, portion 882 comprises a section of a perfect spheroid. In one embodiment, portion 882 comprises outlet 896. In another embodiment, the spheroid section comprising portion 882 is made imperfect by creases or asymmetries. However, while
In one embodiment, all of axial distances 878, 874, 870, 866, 856, and radius 852 are substantially equal. In another embodiment, at least some of axial distances 878, 874, 870, 866, 856, and radius 852 are different. In another embodiment, all of axial distances 878, 874, 870, 866, 856, and radius 852 are different. In one embodiment, the combined length of axial distances 870, 866, 856, and radius 852 is at least 0.24 inches. In one embodiment, the combined length of axial distances 870, 866, 856, and radius 852 is at least 0.25 inches. In one embodiment, the combined length of axial distances 870, 866, 856, and radius 852 is at least 0.257 inches. In one embodiment, the combined length of axial distances 870, 866, 856, and radius 852 is less than 0.26 inches. In one embodiment, the radii of the adjoining portions comprising channel 840 belong to cylindrical geometries. In another embodiment, the radii of the adjoining portions comprising channel 840 are effective radii of a hydraulic diameter belonging to a generalized cross-sectional area, for example an oval, square, or other appropriate shapes
In one embodiment, a pre-orifice space 820, within the insert, measures at least 0.01 inches. In one embodiment, pre-orifice space 820 measures at least 0.02 inches. In one embodiment, pre-orifice space 820 measures no more than 0.025 inches. In one embodiment, pre-orifice space 820 measures at least 0.024 inches.
Portion 996, in one embodiment, receives fluid flow from an inlet orifice 942, and provides the fluid flow through portions 994, 992, 990, 988, and 986, respectively, to portion 984, which provides fluid flow to outlet orifice 946.
In accordance with one embodiment, portions 996, 994, 992, 990, 988, 986, and 984 comprise geometric features configured to provide turbulence-increasing features configured to increase turbulence in fluid flow through channel 940. Turbulence increasing features may reduce tailing effects experienced by a user, thereby increasing spray pattern uniformity. In one embodiment, turbulence-features may be configured to develop a fully-turbulent flow, and allow for some dissipation of turbulence in the fluid flow prior to a spray point. In one embodiment, turbulence intensity at the outlet is less than 25% of maximum turbulence. In one embodiment, turbulence intensity is less than 20% of maximum turbulence. In one embodiment, turbulence intensity is at least 5% of maximum turbulence. In one embodiment, turbulence intensity is between 5% and 15% of maximum turbulence.
In one embodiment, channel 940 is partially defined by a portion 996. Portion 996 comprises a cylinder with a radius 980 and an axial distance 982. In one embodiment, radius 980 is substantially equal to a radius of inlet 942. In one embodiment, portion 996 is fluidically coupled, on a first end, to inlet 942, and, on a second end, to portion 994.
In one embodiment, channel 940 is partially defined by a portion 994. Portion 994 comprises a truncated cone defined by a first radius 978, a second radius 974, and an axial distance 976. In one embodiment, radius 978 is smaller than radius 974. In one embodiment, radius 978 is substantially equal to radius 980. In one embodiment, radius 978 is larger than radius 980. In one embodiment, radius 978 is smaller than radius 980. In one embodiment, portion 994 is fluidically coupled, on a first end, to portion 996, and, on a second end, to portion 992.
In one embodiment, channel 940 is partially defined by a portion 992. Portion 992 comprises a cylinder defined by a radius 970 and an axial distance 972. In one embodiment, radius 970 is substantially equal to radius 974. In one embodiment, radius 970 is smaller than radius 974. In one embodiment, radius 970 is larger than 974. In one embodiment, portion 992 is fluidically coupled, on a first end, to portion 994, and, on a second end, to portion 990.
In one embodiment, channel 940 is partially defined by a portion 990. Portion 990 comprises a cylinder defined by a radius 966 and an axial distance 968. In one embodiment, radius 966 is substantially larger than radius 970. In one embodiment, portion 990 is fluidically coupled, on a first end, to portion 992, and, on a second end, to portion 988.
In one embodiment, channel 940 is partially defined by a portion 988. Portion 988 comprises a truncated cone defined by a first radius 962, a second radius 960, and an axial distance 964. In one embodiment, radius 962 is substantially equal to radius 966. In one embodiment, radius 962 is smaller than radius 966. In one embodiment, radius 962 is larger than radius 966. In one embodiment, radius 962 is larger than radius 960. In one embodiment, portion 988 is fluidically coupled, on a first end, to portion 990, and, on a second end, to portion 986.
In one embodiment, channel 940 is partially defined by a portion 986. Portion 986 comprises a cylinder defined by a radius 956 and an axial distance 958. In one embodiment, radius 956 is substantially smaller than radius 960. In one embodiment, portion 986 is fluidically coupled, on a first end, to portion 988, and, on a second end, to portion 984.
In one embodiment, channel 940 is partially defined by a portion 984. Portion 984 comprises a section of a spheroid defined by a radius 952. In one embodiment, radius 952 is substantially equal to radius 956. In one embodiment, radius 952 is larger than radius 956. In one embodiment, radius 952 is smaller than radius 956. In one embodiment, portion 984 comprises a section of an oblate spheroid. In one embodiment, spheroid portion 984 comprises a section of a prolate spheroid. In one embodiment, spheroid 984 comprises a section of a perfect spheroid. In one embodiment, spheroid portion 984 is coupled, on a first end, to portion 986, and, on a second end, to outlet 946. In another embodiment, the spheroid section comprising portion 984 is made imperfect by creases or asymmetries. However, while
In one embodiment, all of axial distances 982, 976, 972, 968, 964, 958, and radius 952 are substantially equal. In another embodiment, at least some of axial distances 982, 976, 972, 968, 964, 958, and radius 952 are different. In another embodiment, all of axial distances 982, 976, 972, 968, 964, 958, and radius 952 are different. In one embodiment, the combined length of axial distances 972, 968, 964, 958, and radius 952 is at least 0.20 inches. In one embodiment, the combined length of axial distances 972, 968, 964, 958, and radius 952 is at least 0.21 inches. In one embodiment, the combined length of axial distances 972, 968, 964, 958, and radius 952 is at least 0.215 inches. In one embodiment, the combined length of axial distances 972, 968, 964, 958, and radius 952 is less than 0.22 inches. In one embodiment, the radii of the adjoining portions comprising channel 940 belong to cylindrical geometries. In another embodiment, the radii of the adjoining portions comprising channel 940 are effective radii of a hydraulic diameter belonging to a generalized cross-sectional area, for example an oval, square, or other appropriate shapes
In one embodiment, a pre-orifice space 920, within the insert, measures at least 0.07 inches. In one embodiment, pre-orifice space 920 measures at least 0.075 inches. In one embodiment, pre-orifice space 920 measures no more than 0.08 inches. In one embodiment, pre-orifice space 920 measures at least 0.077 inches.
Portion 1094, in one embodiment, receives paint flow from an inlet orifice 1042, and provides the fluid flow through portions 1092, 1090, 1088, 1086, and 1084, respectively, to portions 1082, which provides paint flow to outlet orifice 1046.
In accordance with one embodiment, portions 1094, 1092, 1090, 1088, 1086, 1084, and 1082 comprise geometries configured to provide turbulence-increasing features configured to increase turbulence in fluid flow through channel 1040. Turbulence increasing features may reduce tailing effects experienced by a user, thereby increasing spray pattern uniformity. In one embodiment, turbulence-features may be configured to develop a fully-turbulent flow, and allow for some dissipation of turbulence in the fluid flow prior to a spray point. In one embodiment, turbulence intensity at the outlet is less than 25% of maximum turbulence. In one embodiment, turbulence intensity is less than 20% of maximum turbulence. In one embodiment, turbulence intensity is at least 5% of maximum turbulence. In one embodiment, turbulence intensity is between 5% and 15% of maximum turbulence.
In one embodiment, channel 1040 is partially defined by a portion 1094. Portion 1094 comprises a cylinder defined by a radius 1078 and an axial distance 1080. In one embodiment, radius 1078 is substantially equal to a radius of inlet 1042. In one embodiment, portion 1094 is fluidically coupled, on a first end, to inlet 1042, and, on a second end, to portion 1092.
In one embodiment, channel 1040 is partially defined by a portion 1092. Portion 1092 comprises a truncated cone defined by a first radius 1076, a second radius 1072, and an axial distance 1074. In one embodiment, radius 1076 is substantially equal to radius 1078. In one embodiment, radius 1076 is larger than radius 1078. In one embodiment, radius 1076 is smaller than radius 1078. In one embodiment, radius 1076 is larger than radius 1072. In one embodiment, portion 1092 is fluidically coupled, on a first end, to portion 1094, and, on a second end, to portion 1090.
In one embodiment, channel 1040 is partially defined by a portion 1090. Portion 1090 comprises a cylinder defined by a radius 1068 and an axial distance 1070. In one embodiment, radius 1068 is substantially equal to radius 1072. In one embodiment, radius 1068 is smaller than radius 1072. In one embodiment, radius 1068 is larger than radius 1072. In one embodiment, portion 1090 is fluidically coupled, on a first end, to portion 1092, and, on a second end, to portion 1088.
In one embodiment, channel 1040 is partially defined by a portion 1088. Portion 1088 comprises a cylinder defined by a radius 1064 and an axial distance 1066. In one embodiment, radius 1064 is substantially larger than radius 1068. In one embodiment, portion 1088 is fluidically coupled, on a first end, to portion 1090, and, on a second end, to portion 1086.
In one embodiment, channel 1040 is partially defined by a portion 1086. Portion 1086 comprises a truncated cone portion defined by a first radius 1060, a second radius 1058 and an axial distance 1062. In one embodiment, radius 1058 is smaller than radius 1060. In one embodiment, radius 1060 is smaller than radius 1064. In one embodiment, radius 1060 is larger than radius 1064. In one embodiment, portion 1086 is fluidically coupled, on a first end, to portion 1088, and, on a second end, to portion 1084.
In one embodiment channel 1040 is partially defined by a portion 1084. Portion 1084 comprises a cylinder defined by a radius 1054 and an axial distance 1056. In one embodiment, radius 1054 is substantially smaller than radius 1058. In one embodiment, portion 1084 is fluidically coupled, on a first end, to portion 1086, and, on a second end, to portion 1082.
In one embodiment, channel 1040 is partially defined by a portion 1082. Portion 1082 comprises a portion of a spheroid defined by radius 1052. In one embodiment, radius 1052 is substantially equal to radius 1054. In one embodiment, radius 1052 is smaller than radius 1054. In one embodiment, radius 1052 is larger than radius 1054. In one embodiment, portion 1082 comprises a portion of a prolate spheroid. In one embodiment, portion 1082 comprises a portion of an oblate spheroid. In one embodiment, portion 1082 comprises a portion of a perfect spheroid. In one embodiment, portion 1082, is fluidically coupled, on a first end, to portion 1084, and, on a second end, to outlet 1086. In another embodiment, the spheroid section comprising portion 1082 is made imperfect by creases or asymmetries. However, while
In one embodiment, all of axial distances 1080, 1074, 1070, 1066, 1062, 1056, and radius 1052 are substantially equal. In another embodiment, at least some of axial distances 1080, 1074, 1070, 1066, 1062, 1056, and radius 1052 are different. In another embodiment, all of axial distances 1080, 1074, 1070, 1066, 1062, 1056, and radius 1052 are different. In one embodiment, the combined length of axial distances 1070, 1066, 1062, 1056, and radius 1052 is at least 0.18 inches. In one embodiment, the combined length of axial distances 1070, 1066, 1062, 1056, and radius 1052 is at least 0.19 inches. In one embodiment, the combined length of axial distances 764, 1070, 1066, 1062, 1056, and radius 1052 is at least 0.195 inches. In one embodiment, the combined length of axial distances 1070, 1066, 1062, 1056, and radius 1052 is at least 0.200 inches. In one embodiment, the combined length of axial distances 1070, 1066, 1062, 1056, and radius 1052 is less than 0.205 inches. In one embodiment, the radii of the adjoining portions comprising channel 1040 to cylindrical geometries. In another embodiment, the radii of the adjoining portions comprising channel 1040 are effective radii of a hydraulic diameter belonging to a generalized cross-sectional area, for example an oval, square, or other appropriate shapes.
In one embodiment, a pre-orifice space 1020, within the insert, measures at least 0.080 inches. In one embodiment, pre-orifice space 1020 measures at least 0.090 inches. In one embodiment, pre-orifice space 1020 measures no more than 0.095 inches. In one embodiment, pre-orifice space 1020 measures at least 0.092 inches.
At block 1102, fluid is received. In one embodiment, receiving fluid comprises a spray gun, for example spray gun 10, receiving fluid at an inlet. The fluid may be pressurized, in one embodiment, at a relatively low spray pressure, for example 1,000 PSI.
At block 1104, the fluid is applied to a surface. In one embodiment, applying fluid comprises a user actuating a trigger of spray gun, for example such that fluid flows from an inlet of a spray gun to an outlet of the spray gun. In one embodiment, applying fluid comprises the pressurized fluid passing through a low pressure spray tip, for example any of the low pressure spray tips described herein, such that a desired turbulence intensity is achieved, and an even spray pattern applied to a surface substantially free of tailing effects.
At block 1106, a spray tip configuration is altered. In one embodiment, altering the spray tip configuration comprises switching one spray tip for another, based on a change in fluid to be used for a given job. For example, a first spray tip may be used during a priming operation, and a second spray tip may be used during a painting operation. As the viscosity of primers differ from the viscosity of paint, different spray tip configurations may be required to ensure a satisfactory spray pattern is achieved.
Insert 1360 may correspond, for example, to stem 702, described above with regard to
Insert 1370 may correspond, for example, to stem 802, described above with regard to
Insert 1380 may correspond, for example, to stem 902, described above with regard to
Insert 1390 may correspond, for example, to stem 1002, described above with regard to
In one embodiment, spray tip inserts provided with kit 1200 are removeable, such that a user of spray gun 1310 can select a spray tip in anticipation of a particular spray operation. In one embodiment, kit 1300 is configured with spray tip inserts tailored to a specific fluid. For example, in one embodiment, inserts 1360, 1370, 1380 and 1390 are configured for use with latex paint.
In one embodiment, at least some of spray tip inserts 1360, 1370, 1380 and 1390 are reversible within spray gun 1310, such that a user can more easily clean an insert at the end of a spraying operation.
Kit 1300, illustrated in
The present application is based on and claims the benefit of U.S. Provisional Patent Application Serial Nos. 62/149,840, filed Apr. 20, 2015, and 62/203,551, filed Aug. 11, 2015, the contents of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3000576 | Levey et al. | Sep 1961 | A |
3202360 | O'Brien | Aug 1965 | A |
3556411 | Nord et al. | Jan 1971 | A |
3633828 | Larson | Jan 1972 | A |
3858812 | Williams et al. | Jan 1975 | A |
3865314 | Levey et al. | Feb 1975 | A |
3955763 | Pyle et al. | May 1976 | A |
4074857 | Calder | Feb 1978 | A |
4157163 | Pinto et al. | Jun 1979 | A |
4165836 | Eull | Aug 1979 | A |
4337281 | Boone | Jun 1982 | A |
4346849 | Rood | Aug 1982 | A |
4437610 | Huber et al. | Mar 1984 | A |
4484707 | Calder | Nov 1984 | A |
4508268 | Geberth, Jr. | Apr 1985 | A |
4611758 | Geberth, Jr. | Sep 1986 | A |
4635850 | Leisi | Jan 1987 | A |
4721250 | Kennedy et al. | Jan 1988 | A |
4760956 | Mansfield | Aug 1988 | A |
4815665 | Haruch | Mar 1989 | A |
4828182 | Haruch | May 1989 | A |
5294053 | Perret | Mar 1994 | A |
5505381 | Torntore | Apr 1996 | A |
5749528 | Carey et al. | May 1998 | A |
5765753 | Kieffer | Jun 1998 | A |
5829679 | Strong | Nov 1998 | A |
5875922 | Chastine et al. | Mar 1999 | A |
5887793 | Kieffer | Mar 1999 | A |
5893522 | Kieffer | Apr 1999 | A |
5911364 | Johnson et al. | Jun 1999 | A |
6261367 | Donges | Jul 2001 | B1 |
6264115 | Liska et al. | Jul 2001 | B1 |
6352184 | Stern et al. | Mar 2002 | B1 |
6390386 | Krohn et al. | May 2002 | B2 |
6465047 | Scott et al. | Oct 2002 | B1 |
6481640 | Carey et al. | Nov 2002 | B1 |
6502763 | McCann | Jan 2003 | B1 |
6655606 | Earl | Dec 2003 | B2 |
6702198 | Tam et al. | Mar 2004 | B2 |
7328853 | Carey et al. | Feb 2008 | B2 |
D651691 | Muetzel et al. | Jan 2012 | S |
8545937 | Kosovish et al. | Oct 2013 | B2 |
8596555 | Thompson et al. | Dec 2013 | B2 |
8814070 | Drozd et al. | Aug 2014 | B2 |
9010658 | Johnson et al. | Apr 2015 | B2 |
9016599 | Johnson et al. | Apr 2015 | B2 |
9085008 | Kinne et al. | Jul 2015 | B2 |
9192952 | Becker et al. | Nov 2015 | B2 |
20020014541 | Krohn et al. | Feb 2002 | A1 |
20030080213 | Clauss et al. | May 2003 | A1 |
20030189114 | Taylor et al. | Oct 2003 | A1 |
20040046069 | Gromes | Mar 2004 | A1 |
20040195354 | Leisi | Oct 2004 | A1 |
20070129469 | Befurt et al. | Jun 2007 | A1 |
20120043399 | Fortier et al. | Feb 2012 | A1 |
20120097765 | Drozd et al. | Apr 2012 | A1 |
20120205466 | Baltz et al. | Aug 2012 | A1 |
20130001328 | Hsu | Jan 2013 | A1 |
20130037629 | Boquet | Feb 2013 | A1 |
20190283054 | Rossner et al. | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
1038622 | Sep 1978 | CA |
1498137 | May 2004 | CN |
1812843 | Aug 2006 | CN |
1218322 | Jun 1966 | DE |
2506811 | Aug 1975 | DE |
2622396 | Dec 1976 | DE |
8032826 | Jul 1981 | DE |
3046464 | Jul 1982 | DE |
3513587 | Nov 1985 | DE |
4401488 | Jul 1995 | DE |
19513927 | Oct 1995 | DE |
0054124 | Jun 1982 | EP |
0112181 | Jun 1984 | EP |
0804969 | May 1997 | EP |
1445030 | Aug 2004 | EP |
2136928 | Dec 2009 | EP |
2544824 | Jan 2013 | EP |
2288348 | Oct 1995 | GB |
05-337405 | Dec 1993 | JP |
2002-522206 | Jul 2002 | JP |
2013-244429 | Dec 2013 | JP |
2005005055 | Jan 2005 | WO |
2007092850 | Aug 2007 | WO |
2007092850 | Aug 2007 | WO |
WO 2009147443 | Dec 2009 | WO |
2011094246 | Aug 2011 | WO |
2015039078 | Mar 2015 | WO |
2016128033 | Aug 2016 | WO |
2016172105 | Oct 2016 | WO |
Entry |
---|
International Search Report and the Written Opinion for PCT/US2016/028285, dated Jul. 18, 2016, Filed Apr. 19, 2016. 11 pages. |
International Preliminary Report on Patentablility for International Patent Application No. PCT/US2016/028285 dated Oct. 24, 2017, 8 pages. |
European Search Report, dated Jan. 31, 2017, 11 pages. |
Canadian Office Action, dated Feb. 9, 2018, 6 pages. |
Nordson, Airless Nozzle Catalog, Dec. 2003, Pub. Part. No. 107963, Nordson Corporation Liquid Finishing Systems, Amherst, OH, pp. 1-202. |
Delavan Spray Technologies, Airless Tips, retrieved at http://www.delavan.co.uk/pdfs/Airless%20Tips.pdf on Nov. 8, 2016, pp. 1-2. |
Goodrich, Delavan Spray Technologies, Airless Products, retrieved at http://pdf.directindustry.com/pdf/delavan-spray-technologies/airless-products/13166-102842.html on Nov. 8, 2016, pp. 1-4. |
Ecco Finishing , Spare parts for Airless spray tips, retrieved at http://www.eccofinishing.se/API/DownloadFile.ashx?fileID=3537cd88-d0ed-4a58-a209-af71fb29fc79&type=sparepart&lang=en, issued Feb. 2007, pp. 1-2. |
Wagner, Wagner GM 4700AC Operating Manual, Jun. 2014, p. 65. |
Office Action for Canadian Patent Application No. 2,955,118 dated Nov. 14, 2018. 4 pages. |
Examination Report No. 1 for Australian Patent Application No. 2016252285, dated Oct. 13, 2018, 3 pages. |
First Office Action for Chinese Patent Application No. 201680002734.0 dated Jul. 2, 2018, 15 pages. |
Third Examination Report for Australian Patent Application No. 2016252285 dated May 30, 2019, 2 pages. |
Wagner, Aircoat-Wendeschalter Manual, Mar. 1995, pp. 1-2, Germany with Machine Translation. |
Second Examlnation Report for Australian Patent Application No. 2016252285 dated Feb. 4, 2019, 6 pages. |
Second Office Action for Chinese Patent Application No. 201680002734.0 dated Mar. 4, 2019, 17 pages. |
First Examination Report for India Patent Application No. 201627044575 dated Sep. 24, 2019, 8 pages. |
Office Action for Canadian Patent Application No. 2,955,118 dated Sep. 25, 2019, 3 pages. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2019/021782, dated Jun. 26, 2019, date of filing: Mar. 12, 2019, 12 pages. |
Communication Pursuant to Article 94(3) for European Patent Application No. 16783689.9 dated Dec. 17, 2019, 4 pages. |
Third Office Action for Chinese Patent Application No. 201680002734.0 dated Sep. 11, 2019, 10 pages with English Translation. |
International Preliminary Report on Patentability for International Patent Application No. PCT/US2019/021782, dated Sep. 24, 2020, date of filing: Mar. 12, 2019, 9 pages. |
Restriction Requirement for U.S. Appl. No. 16/297,885 dated Jun. 4, 2020, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 16/297,885 dated Jul. 31, 2020, 10 pages. |
Response to Restriction Requirement for U.S. Appl. No. 16/297,885 dated Jul. 13, 2020, 2 pages. |
Final Office Action for U.S. Appl. No. 16/297,885 dated Nov. 24, 2020, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20160303585 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62149840 | Apr 2015 | US | |
62203551 | Aug 2015 | US |