Claims
- 1. A low pressure fuel supply mechanism for a spark ignition internal combustion engine having a throttle body defining a substantially vertical air intake passage and a movable throttle therein, comprising:
- an injector mechanism mounted above said air intake passage and adapted to receive fuel at said low pressure, said injector mechanism having a fuel discharge passage through which fuel flows generally downwardly and is discharged into said air intake passage, the mechanism defining a valve seat at the upper end of the passage and a fuel space about said valve seat, the mechanism further having a vertically movable valve member effective to close said fuel discharge passage at said seat;
- said injector mechanism also defining (a) an annular fuel well substantially horizontally aligned with said fuel space and radially outboard the same (b) a generally horizontally oriented fuel intake passage into said fuel space from said annular fuel well (c) a fuel intake passage opening into said fuel well at one peripheral point and (d) a fuel return passage opening from said fuel well at a point circumferentially spaced from said one peripheral point to return excess fuel from the same, whereby excess fuel circulates peripherally about the annular fuel well to establish cooling heat flow communication from the circulating fuel to the fuel at the said fuel discharge passage;
- the passages being so proportioned and located that the amount of fuel entering the injector mechanism is substantially greater than the fuel injected into the throttle body in an amount sufficient to avoid substantial fuel vaporization at the metering orifice.
- 2. A low pressure fuel supply mechanism for a spark ignition internal combustion engine having a throttle body defining a substantially vertical air intake passage and a movable throttle therein, comprising:
- an injector mechanism mounted above said air intake passage and adapted to receive fuel at said low pressure, said injector mechanism having a fuel discharge passage through which fuel flows generally downwardly and is discharged into said air intake passage, the mechanism defining a valve seat at the upper end of the passage and a fuel space about the valve seat, the mechanism further having a vertically movable valve member effective to close said fuel discharge passage at said seat;
- said injector mechanism also defining (a) an annular fuel well substantially horizontally aligned with said fuel space and radially outward the same, (b) a generally horizontally oriented fuel intake port into said fuel space from said annular fuel well, (c) a fuel intake passage opening into said fuel well at one point, (d) a fuel return passage opening from said fuel well at a point spaced from said one point to return excess fuel from the same, and (e) at least one vapor return passage opening from said fuel intake passage upstream of said annular fuel well to discharge fuel vapor therefrom to said fuel return passage, whereby excess liquid fuel circulates through the annular fuel space to establish cooling heat flow communication between the circulating fuel and the fuel in said fuel space;
- the passages being so proportioned and located that the fuel entering the injector mechanism is in excess of that injected whereby to provide excess fuel for cooling to thereby avoid substantial fuel vaporization adjacent to said valve seat.
- 3. A low pressure fuel supply mechanism for an internal combustion engine having at least one substantially vertical air intake passage, comprising:
- an injector mechanism mounted above said intake passage and adapted to receive fuel at said low pressure, said mechanism defining a fuel passage through which fuel flows downwardly and is discharged into said intake passage, said mechanism further defining an annular valve seat located above said discharge opening and a fuel space at said valve seat,
- a valve disposed within the injector mechanism and adapted in a lowered position to seal said valve seat and in an elevated position to form an annular fuel passage in cooperation with said valve seat so that the amount of liquid fuel entering the engine is determined by the proportion of time said valve is in elevated position;
- the injector mechanism further defining an annular fuel well encircling said fuel space and radially outboard the same, said fuel well being separated from the fuel space by a heat conducting wall with at least one fuel passage therethrough to provide fuel flow from the fuel well to the fuel space, said fuel well having a fuel inlet passage and a fuel return passage at circumferentially spaced points whereby fuel entering the inlet and escaping through the fuel return wipes said wall to provide heat transfer cooling fuel in the fuel space;
- said mechanism being constructed and arranged so that the amount of fuel entering the injector mechanism is greater than the fuel injected in an amount sufficient to circulate through the annular space between the inlet and fuel escape passages to avoid substantial fuel vaporization at said annular space.
- 4. A low pressure fuel supply mechanism for an internal combustion engine having at least one substantially vertical air intake passage, comprising:
- an injector mechanism mounted above said intake passage and adapted to receive fuel at said low pressure, said mechanism defining a fuel passage through which fuel flows downwardly and is discharged into said intake passage, said mechanism further defining an annular valve seat located above said fuel passage and a fuel space at said valve seat;
- a valve disposed within the injector mechanism and adapted in a lowered position to seal said valve seat and in an elevated position to form an annular fuel passage in cooperation with said valve seat so that the amount of liquid fuel entering the engine is determined by the proportion of time said valve is in elevated position;
- the injector mechanism further defining a fuel well encircling said fuel space and radially outboard the same, said fuel well being separated from the fuel space by a heat conducting wall with at least one fuel port therethrough to provide a fuel flow from the fuel well to the fuel space, said fuel well having a fuel inlet passage and a fuel return passage at spaced locations whereby fuel entering through the inlet passage and escaping through the fuel return passage wipes said wall to provide heat transfer cooling of the fuel in the fuel space; said injector mechanism defining at least one vapor return passage opening into said fuel return passage from upstream of said fuel well whereby substantially only liquid fuel is present for flow through said annular fuel passage;
- said mechanism being constructed and arranged so that the amount of fuel entering the injector mechanism is substantially greater than the fuel injected through the discharge opening in an amount sufficient to avoid substantial fuel vaporization at the metering orifice between said valve and said valve seat.
- 5. A low pressure fuel supply mechanism for an internal combustion engine having at least one substantially vertical air intake passage, comprising:
- an injector mechanism mounted above said intake passage and adapted to receive fuel at said low pressure, said mechanism defining a fuel passage through which fuel flows downwardly and is discharged into said intake passage, said mechanism further defining an annular valve seat located above said discharge opening and a fuel space at said valve seat;
- a valve disposed within the injector mechanism and adapted in a lowered position to seal said valve seat and in an elevated position to form an annular fuel passage in cooperation with said valve seat so that the amount of liquid fuel entering the engine is determined by the proportion of time said valve is in elevated position;
- the injector mechanism further defining a fuel wall separated from the fuel space by a heat conducting wall with at least one fuel passage therethrough to provide fuel flow from the fuel well to the fuel space, said injector mechanism having a fuel inlet passage and a fuel return passage in spaced apart communication with the fuel well whereby fuel entering the fuel inlet and escaping through the fuel return wipes said wall with fuel to provide heat transfer cooling the fuel in the fuel space;
- said mechanism being constructed and arranged so that the amount of fuel entering the injector mechanism is substantially greater than the fuel injected into the intake passage in an amount sufficient to effect substantial heat transfer cooling of the fuel in said fuel space whereby to avoid substantial fuel vaporization at the fuel space.
- 6. A unit to receive low pressure fuel and to discharge the same in metered action into each of a pair of upstanding spaced throttle bores of a gasoline internal combustion engine, wherein a substantially cylindrical unit surmounts the open upper ends of the bores to define a manifold space, said unit comprising:
- a housing structure having a support web joined to the said unit along the circumferential length defined by a chord substantially parallel to the plane defined by the axes of the throttle bores, said housing defining a pressure regulator portion adjacent said chord and injector portions disposed above and in alignment with each of the bores, respectively, the housing being of material having good heat conduction and defining surfaces across which the air entering the bores wipes in cooling action;
- a pressure regulator in the regulator portion of said housing and an injector in each of the injector portions of said housing, each injector having a valve seat and annular intake chamber therefor so that liquid fuel flows in metered quantity from said chamber through the valve seat and is injected into the bore, the housing further defining a fuel well in thermal communication with each said annular intake chamber, respectively,
- the housing having passages for fuel flow from a source to said fuel wells and out of said fuel wells, respectively, to said pressure regulator, whereby the regulator maintains a predetermined low pressure upstream itself and fuel flowing through the same removes heat, said injectors each further having at least one passage from its respective fuel well to each said intake chamber, respectively, to deliver fuel to the same for injection;
- the apparatus being constructed and arranged so that the amount of fuel entering said housing structure is substantially greater than the rate of fuel discharge through said valve seats in an amount sufficient to circulate through the pressure regulator to effect cooling of the housing structure and of said injectors whereby to avoid substantial fuel vaporization at said injectors.
- 7. A unit to receive low pressure fuel and to discharge the same in metered action into each of a pair of upstanding spaced throttle bores of a gasoline internal combustion engine, wherein a substantially cylindrical unit surmounts the open upper ends of the bores to define a manifold space, said unit comprising:
- a housing structure having a support web joined to the said unit along the circumferential length defined by a chord substantially parallel to the plane defined by the axes of the throttle bores, said housing defining a pressure regulator portion adjacent said chord and injector portions disposed above and in alignment with each of the bores, respectively, the housing being of material having good heat conduction and defining surfaces across which the air entering the bores wipes in cooling action;
- a pressure regulator in the regulator portion of said housing and an injector in each of the injector portions of said housing, each injector having a valve seat and annular intake chamber therefor so that liquid fuel flows in metered quantity from said chamber through the valve seat and is injected into the bore, the housing further defining a fuel well in thermal communication with each said annular intake chamber, respectively,
- the housing having passages for fuel flow from a source to said fuel wells and out of said fuel wells, respectively, to said pressure regulator, whereby the regulator maintains a predetermined low pressure upstream itself passages and fuel flowing through the same removes heat,
- said housing having at least one vapor return passage located to effect bypass of fuel vapor in one of the fuel wells or the fuel space to the downstream side of the pressure regulator, said housing further having at least one passage from each fuel well to each chamber, respectively, to deliver fuel to the same for injection;
- the apparatus being constructed and arranged so that the amount of fuel entering said housing is substantially in excess of the rate of fuel discharge through said valve seats in an amount sufficient to effect cooling whereby to avoid substantial fuel vaporization at said valve seats.
- 8. A fuel-air management system comprising a throttle body adapted for connection to an intake manifold of an internal combustion engine, said throttle body having a plurality of induction bores wherein each of said induction bores is associated with the intake manifold and each of said air induction bores includes:
- a throttle assembly having a rotatable throttle plate for controlling the amount of air flow through said induction bore;
- a fuel injector jacket having a pressurized fuel accumulation chamber;
- suspension means for suspending said fuel injector jacket immediately over the entrance to or in said air induction bore above the throttle plate; and
- an intermittent fuel injection valve mounted in said jacket to meter fuel from said accumulation chamber into the air flow of the induction bore before it reaches the throttle plate, said injection valve having a hollow conical spray pattern wherein the spray pattern directs substantially all of the injected fuel at the opening between the periphery of the throttle plate and the wall of the air induction bore when the throttle plate is rotated.
- 9. A fuel-air management system comprising a throttle body adapted for connection to a intake manifold of an internal combustion engine, said throttle body having a plurality of induction bores wherein each of said induction bores is associated with the intake manifold and each of said air induction bores includes:
- a throttle assembly having a rotatable throttle plate for controlling the amount of air flow through said induction bore;
- a fuel injector jacket having a pressurized fuel accumulation chamber;
- suspension means for suspending said fuel injector jacket above the throttle plate; and
- an intermittent fuel injection valve mounted in said jacket to meter fuel from said accumulation chamber into the air flow of the injection bore before it reaches the throttle plate, said injection valve having a hollow conical spray pattern.
- 10. A fuel-air management system comprising a throttle body adapted for connection to an intake manifold of an internal combustion engine, said throttle body having an induction bore which includes:
- a throttle assembly having a rotatable throttle plate for controlling the amount of air flow through said induction bore;
- a fuel injector jacket having a pressurized fuel accumulation chamber;
- suspension means for suspending said fuel injector jacket above said air induction bore and throttle plate; and
- an intermittent fuel injection valve mounted in said jacket to meter fuel from said accumulation chamber into the air flow of the induction bore before it reaches the throttle plate, said injection valve having a hollow conical spray pattern wherein the spray pattern directs injected fuel at the opening between the periphery of the throttle plate and the wall of the air induction bore when the engine runs under open throttle operation and above said opening when the engine runs under closed throttle operation.
FIELD OF THE INVENTION
This application is a continuation-in-part of my copending application Ser. No. 853,331, filed Nov. 21, 1977 and now abandoned.
US Referenced Citations (10)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
853331 |
Nov 1977 |
|