The present invention relates to a low-profile air conditioning register that has a rectangular opening serving as an air outlet for air sent from an air conditioner, and regulates the direction of air blown out of the opening.
In a vehicle such as an automobile, in order to operate a device such as a navigation system, and to display a state of the device, there is a case that a display device is installed in a center cluster of an instrument panel. In this case, as shown by a solid line in
In recent years, in order to improve the visibility, there has been a demand for enlargement in size of the display portion 91. Accordingly, as shown by two-dot chain lines in
However, in this case, since the right air conditioning register 93 comes close to a steering wheel 94, the following problems are generated. As one of them, there is a problem that since the air blown out of the right air conditioning register 93 is directly applied to an arm of the driver holding the steering wheel 94, the driver feels disturbed. Further, since the air blown out of the right air conditioning register 93 is obstructed by the arm of the driver, there is a case that the air cannot be circulated within the passenger compartment.
As a countermeasure against the problem, the air conditioning register 93 may be arranged immediately above the display portion 91 in place of both sides of the display portion 91. However, if the conventional air conditioning register 93 is arranged immediately above the display portion 91 in its original shape, the height of an instrument panel 95 is increased. As a result, an open feeling within the passenger compartment cannot be obtained, and the passenger may feel cramped or confined. Accordingly, in order to limit the height of the instrument panel 95, there have been attempts to arrange a low-profile air conditioning register immediately above the display portion 91.
For example, in a low-profile air conditioning register 96 shown in
In the low-profile air conditioning register 96, it is possible to change the direction of a windblown out of the bezel 98 to the right and left by adjusting the angle of the upstream fin 102. Further, it is also possible to change the direction of the wind blown out of the bezel 98 up and down by adjusting the angle of the downstream fin 103.
Low-profile air conditioning registers basically having the same structure as mentioned above are described in Japanese Laid-Open Patent Publication No. 2005-350029, Japanese Laid-Open Utility Model Publication No. 5-16525 and Japanese Laid-Open Patent Publication No. 2003-34136.
However, a Coanda flow is generated in the opening 101 of the bezel 98 due to the lower inner wall surface 105 of the passage portion 99. A main stream (a potential core layer) 106 of the flow rate distribution Ds2 is pulled toward the inner wall surface 105 due to the Coanda flow. As a result, the original flow rate distribution Ds2 is changed to a flow rate distribution Ds3 shown by a solid line in
An objective of the present invention is to provide a low-profile air conditioning register that prevents the intensity of wind applied to a user from being lowered due to attenuation of the flow rate distribution in an opening of a bezel caused by a Coanda flow.
To achieve the foregoing objective and in accordance with one aspect of the present invention, an air conditioning register for regulating a direction of air blown out of an air conditioner into a passenger compartment is provided. The register includes a tubular retainer, and a bezel provided in a downstream end of the retainer. The bezel has a passage portion distributing the air from the interior of the retainer, and a flange portion provided in the periphery of a downstream end of the passage portion. An opening is positioned in an upstream end of the passage portion. The opening is formed in a rectangular shape and has first and second long sides and first and second short sides. Fins are arranged along the first short side of the opening and in a state of being spaced from each other. Each of the fins is arranged so as to be adjustable in angle within the retainer. The flange portion and a ventilation direction within the retainer intersect at an angle equal to or more than 60° in such a manner that the first long side in the opening is positioned downstream of the second long side. The length of a side corresponding line to the first short side of the opening is equal to or less than 35 mm in a plane which is orthogonal to the ventilation direction. An inner wall surface including the first long side in the passage portion is inclined with respect to the ventilation direction in such a manner as to enlarge the interval between the inner wall surface and an inner wall surface including the second long side as the distance from a downward side decreases. An inner wall surface including the first long side has a length equal to or less than 10 mm along a thickness direction of the flange portion.
A description will be given below of a low-profile air conditioning register according to one embodiment applied to a vehicle with reference to
As shown in
A pair of low-profile air conditioning registers 15 are installed immediately above the display portion 13 in an upper portion of the center cluster 12, in a state of being lined up in the vehicle width direction. Each low-profile air conditioning register 15 regulates a direction of an air blown off into the passenger compartment from an air conditioner, and shuts off the blowoff of the air.
Both low-profile air conditioning registers 15 are arranged at the positions mentioned above because the following problems are generated in the case that the low-profile air conditioning registers are arranged on both sides of the display portion 13. One of the problems is that the driver would feel disturbed because air blown out of the right low-profile air conditioning register 15 would be directly applied to an arm of the driver holding the steering wheel 14. Another problem is that the air blown out of the right low-profile air conditioning register 15 would be hardly circulated within the passenger compartment because the air flow would be prevented by the arm of the driver.
In the case that air conditioning registers shown by a two-dot chain line in
The pair of low-profile air conditioning registers 15 have approximately the same structure. As shown in
The retainer 20 is structured such as to connect a ventilation duct 21 of an air conditioner, and an opening 12a (refer to
The retainer 20 is provided with four wall portions surrounding the flow path. In order to distinguish these four wall portions, a wall portion corresponding to a first short side (left side) of the opening 20b is referred to as a left wall portion 26, a wall portion corresponding to a second short side (right side) of the opening 20b is referred to as a right wall portion 27. Also, a first wall portion corresponding to a first long side (lower side) of the opening 20b is referred to as a lower wall portion 29, and a second wall portion corresponding to a second long side (upper side) of the opening 20b is referred to as an upper wall portion 28. In the present embodiment, since the opening 20b is formed in the wide rectangular shape, the mutually opposing walls along the vehicle width direction correspond to the left and right wall portions 26 and 27, and the mutually opposing wall portions in the vertical direction correspond to the upper and lower wall portions 28 and 29. Within the retainer 20, the air flows along a ventilation direction shown by an arrow X. The ventilation direction X is in parallel to the upper and lower wall portions 28 and 29, and is in parallel to a horizontal plane.
As shown in
Further, a plurality of bearing portions 32 are provided in the upper wall portion 28 so as to be spaced at a uniform interval along the upper long side of the opening 20b. In correspondence thereto, a plurality of bearing portions 33 are provided in the lower wall portion 29 so as to be spaced at a uniform interval along the lower long side of the opening 20b.
As shown in
In the flange portion 24, a lower long side BL of the opening 23a is positioned downstream of an upper long side BU. In other words, the flange portion 24 is inclined in the advancing direction of the vehicle in such a manner as to recede from the driver's seat and the front passenger seat as the distance from the upper side decreases. A downstream end surface of the flange portion 24 forms an ornamental surface 25 of the low-profile air conditioning register 15.
The bezel 22 is installed to the retainer 20 from the downstream side while causing the passage portion 23 to contact or be close to the downstream edge 30 of the retainer 20. In this state, the upper wall portion 28 is positioned in a higher position than the corresponding upper long side BU of the opening 23a, and the lower wall portion 29 is positioned in a lower position than the corresponding lower long side BL of the opening 23a.
The downstream fin group 40 is provided near the opening 20b within the retainer 20. The downstream fin group 40 is constituted by three downstream fins extending along the upper long side BU of the opening 22b. The downstream fins are arranged along the short sides AL, AR of the opening 20b so as to be in parallel to each other and in a spaced state.
In order to distinguish these three downstream fins, two fins that are positioned closed to the upper and lower sides BU, BL of the opening 20b, respectively, are referred to as end fins 41 and 42, and the fin positioned between the end fins 41 and 42 is referred to as an intermediate fin 43. The end fin 41 is arranged between the upper long side BU and the upper wall portion 28, and the end fin 42 is arranged between the lower long side BL and the lower wall portion 29.
As shown in
The support shaft 45 of each of the end fins 41 and 42 and the intermediate fin 43 protrudes further outward than the corresponding left and right wall portions 26. An arm 46 is integrally formed in an end portion of each of the support shafts 45 protruding from the left wall portion 26. Each of the arms 46 extends straightly to an upstream side from the support shaft 45 as a starting point, and has a coupling projection 47 in an extended end portion.
The arms 46 are coupled to each other by an elongated coupling rod 48 extending in the vertical direction. The coupling rod 48 has a plurality of holes 49 at positions corresponding to the end fins 41 and 42 and the intermediate fin 43. The coupling projection 47 of each of the arms 46 is rotatably engaged with each of the holes 49 of the coupling rod 48. In the present embodiment, a link mechanism 50 mechanically coupling the end fins 41 and 42 and the intermediate fin 43 is constructed by the arm 46, the coupling projection 47, the coupling rod 48 and the like.
As shown in
Support shafts 62 and 63 are respectively provided in an inclined state in both end surfaces of each of the upstream fins 61. The upper support shaft 62 is rotatably engaged with the bearing portion 32 of the upper wall portion 28, and the lower support shaft 63 is rotatably engaged with the bearing portion 33 of the lower wall portion 29. Accordingly, each of the upstream fins 61 is tilted along the upper and lower long sides BU and BL of the opening 23a around each of the support shafts 62 and 63.
The support shaft 62 provided in the upper end of each of the upstream fin 61 protrudes further upward than the upper wall portion 28. An arm 64 is formed in an end portion of each of the support shafts 62. Each of the arms 64 extends to a downstream side from the support shaft 62 serving as a starting point, and has a coupling projection 65 in an extended end portion.
Each of the arms 64 is coupled by an elongated coupling rod 66 extending along the vehicle width direction. The coupling rod 66 has a plurality of holes 67 at corresponding positions to the upstream fins 61. The coupling projection 65 of each of the arms 64 is rotatably engaged with each of the holes 67. In the present embodiment, a link mechanism 68 mechanically coupling each of the upstream fins 61 is constructed by the arm 64, the coupling projection 65, the coupling rod 66 and the like.
An operating knob 71 is fitted onto,the intermediate fin 43 (a specific downstream fin) so as to be slidable along the vehicle width direction. The inclination of the specific downstream fin and the specific upstream fin 61 is manually regulated by operating the operating knob 71. Further, a rack gear 72 is formed in an upstream portion of the operating knob 71. A pinion gear 73 with which a rack gear 72 is engaged is formed in the upstream fin 61 in the center.
The shut damper 80 is provided for opening and closing the flow path within the retainer 20, and is arranged in a position upstream of the upstream fin group 60. The shut damper 80 is provided with a damper plate 81 formed in a wide rectangular plate shape. The damper plate 81 has a seal member 82 installed all over an outer peripheral edge thereof.
The damper plate 81 is supported to the left and right wall portions 26 and 27 by a support shaft 83. The damper plate 81 is rotatable between a position (a position shown by a solid line in
As shown in
In the case where the angle between the flange portion 24 and the ventilation direction X is indicated by θ, and the length of a line A1 corresponding to the short sides AL, AR of the opening 23a in an imaginary plane F which is orthogonal to the ventilation direction X is indicated by H, the length L of the inner wall surface 23L is set on the assumption that the low-profile air conditioning register 15 satisfies both of the following two conditions. The first condition is that the angle θ is equal to or more than 60°, and the second condition is that the length H is equal to or less than 35 mm. In the present embodiment, the angle θ is set to 60° in such a manner as to satisfy the condition mentioned above, and the length H is set to 30 mm. Further, the width W of the opening 23a is set to 120 mm.
The reason why the angle θ is set equal to or more than 60° is shown below. In the case that the angle θ is less than 60°, that is, in the case that the flange portion 24 is largely inclined, it is impossible to create a sufficient flow path between the adjacent downstream fins at a time of tilting the downstream fin. In this case, a flow path area of the passage portion 23 can be enlarged by elongating the lower inner wall surface 23L of the passage portion 23 along the thickness direction of the flange portion 24. However, the condition L≦10 mm cannot be satisfied. In order to satisfy the condition L≦10 mm, it is necessary to set the angle θ equal to or more than 60°.
The reason why the length H is set equal to or less than 35 mm is shown below. As shown in
The length of the inner wall surface 23L in which the reduction of the flow rate caused by the Coanda flow is allowed is 10 mm or less. In other words, if the length L is equal to or less than 10 mm, the reduction amount of the flow rate is negligible, however, if the length L gets over 10 mm, the reduction amount of the flow rate gets over an allowable range.
As shown in
If the operating knob 71 is operated to the right and left in the state in which the shut damper 80 is fully opened, an engaging position between the rack gear 72 and the pinion gear 73 is changed, and the specific upstream fin 61 provided with the pinion gear 73 is tilted in the same direction as the operating knob 71 around the support shafts 62 and 63. The movement of the upstream fin 61 is transmitted to all the other upstream fins 61 via the link mechanism 68. As a result, all the upstream fins 61 are synchronously tilted. Since the air flows along the tilted upstream fins 61, the direction of the air blown out of the opening 23a of the bezel 22 is changed to the right and left.
Further, in a state (a neutral state) in which the shut damper 80 is fully opened, and the intermediate fin 43 is arranged in parallel to the ventilation direction X on the basis of the operation of the operating knob 71, the end fins 41 and 42 coupled to the intermediate fin 43 by the link mechanism 50 are also arranged horizontally. Accordingly, the air flows along both end fins 41 and 42 and the intermediate fin 43 after passing through the shut damper 80 and the upstream fin group 60, thereby being blown out straightly to the rear side of the vehicle from the opening 23a of the bezel 22.
From the neutral state, if the operating knob 71 is operated upward as shown in
On the contrary, if the operating knob 71 is operated downward as shown in
As mentioned above, the angle of inclination of the end fins 41 and 42 and the intermediate fin 43 is changed on the basis of the upward or downward operation of the operating knob 71, and the direction of the wind blown out of the opening 23a of the bezel 22 is changed.
In the case that the support shaft 45 is provided in a position other than the downstream ends in the intermediate fin 43 and the end fins 41 and 42, the portion downstream of the support shaft 45 is moved at a time when the intermediate fin 43 and the end fins 41 and 42 are tilted, and the outer appearance deteriorates. In this regard, in the present embodiment, since the support shaft 45 is provided in the downstream end of each of the fins 41 to 43, the portion downstream of the support shaft 45 is hardly moved at a time when the intermediate fin 43 and the end fins 41 and 42 are tilted.
As shown in
In the passage portion 23, the lower inner wall surface 23L is inclined with respect to the ventilation direction X in such a manner as to expand the interval between the lower inner wall surface 23L and the upper inner wall surface 23U as the distance from the downstream side decreases. In other words, the lower inner wall surface 23L is arranged so as to becomes lower toward the downstream side. Accordingly, if the inner wall surface 23L is too long along the ventilation direction X, the Coanda flow caused by the inner wall surface 23L is generated, and the main stream 85 in the flow rate distribution Ds2 is pulled toward the inner wall surface 23L.
In this regard, in the present embodiment, the length L of the lower inner wall surface 23L is set to 5 mm in such a manner as to satisfy the condition (L≦10 mm) mentioned above. Accordingly, the Coanda flow caused by the inner wall surface 23L is suppressed. Therefore, it is possible to suppress such a phenomenon that the flow rate distribution Ds2 comes to a different shape from the original flow rate distribution, whereby the flow rate of the air is largely lowered. Accordingly the flow rate distribution Ds2 of the air flowing through the opening 23a of the bezel 22 becomes equal to the flow rate distribution Ds1 within the retainer 20.
In accordance with the present embodiment in detail mentioned above, the following advantages are obtained.
(1) In the bezel 22 having the flange portion 24 which is inclined with respect to the ventilation direction X of the wind flowing within the retainer 20, the inner wall surface 23L including the lower long side BL has the length L equal to or less than 10 mm (5 mm in this case) along the thickness direction of the flange portion 24, in the opening 23a of the passage portion 23. Accordingly, it is possible to inhibit the wind speed from being lowered due to the Coanda flow. Accordingly, the flow rate distribution Ds2 of the air flowing through the opening 23a of the bezel 22 becomes equal to the flow rate distribution Ds1 within the retainer 20. Therefore, it is possible to sufficiently secure the intensity (the wind speed) of the wind applied to the passenger.
The example shows the results of measurement in the case of using the low-profile air conditioning register 15 in accordance with the embodiment mentioned above. In this low-profile air conditioning register, the length L is set to 5 mm. The comparative example 2 shows the results of measurement in the case of using the low-profile air conditioning register in which the length L is set to 15 mm, and the comparative example 3 shows the results of measurement in the case of using the low-profile air conditioning register in which the length L is set to 30 mm.
In accordance with
(2) In the case of the thin type retainer 20, the size in the arranging direction of the downstream fins 41 to 43 is small. Accordingly, if the end fins 41 and 42 are displaced inward and separated from the upper and lower long sides BU and BL of the opening 23a, the interval between the adjacent downstream fins becomes narrow even in the case that each of the downstream fins is set in parallel to the ventilation direction X. Further, if the angle of inclination with respect to the ventilation direction of each of the downstream fins becomes larger, the interval between the adjacent downstream fins becomes narrow, and it is impossible to secure the flow path having a sufficient width between the adjacent downstream fins.
In this regard, in the present embodiment, the end fins 41 and 42 are respectively arranged near the upper and lower long sides BU and BL of the opening 23a, as shown in
(3) In connection with the item (2), in the present embodiment, the downstream fin group 40 is constituted by a pair of end fins 41 and 42, and one intermediate fin 43 arranged in the center of both end fins 41 and 42. Accordingly, the wind direction regulating function is achieved, the interval between the adjacent downstream fins becomes large, and the flow path having the sufficient width is secured.
(4) The end fins 41 and 42 and the intermediate fin 43 are supported by the support shaft 45 provided in the downstream ends thereof in such a manner as to be tiltable with respect to the left and right wall portions 26 and 27. Accordingly, since the portion near the downstream end of each of the fins 41 to 43 is hardly moved at a time when the end fins 41 and 42 and the intermediate fin 43 are tilted, the outer appearance is improved.
(5) In the retainer 20, the upper wall portion 28 is provided in a position higher than the upper long side BU of the opening 23a, and the lower wall portion 29 is provided in the lower position than the lower long side BL of the opening 23a. Further, the end fin 41 is arranged between the upper long side BU of the opening 23a and the upper wall portion 28, and the lower end fin 42 is arranged between the lower long side BL of the opening 23a and the lower wall portion 29. On the basis of these arrangements, since the fins 41 and 42 are not visible from the driver's seat and the front passenger seat side, the ornamentality is further improved.
The present invention may be modified as shown below.
The present invention may be applied to a low-profile air conditioning register having a vertically long opening 23a. In this case, in the retainer 20, a pair of laterally opposing wall portions correspond to the first and second wall portions 28 and 29. Further, in this case, the end fins 41 and 42 and the intermediate fin 43 corresponding to the downstream fin are arranged along the vehicle width direction, and a plurality of upstream fins 61 are arranged along the vertical direction.
The downstream fin group 40 may be constituted by the end fins 41 and 42, the intermediate fin 43 and the other downstream fins.
In the passage portion 23, it is necessary that the lower inner wall surface 23L be inclined with respect to the ventilation direction X. However, the upper inner wall surface 23U does not necessarily be inclined with respect to the ventilation direction X. It is preferable that the inner wall surface 23L be inclined with respect to the ventilation direction X in such a manner that the interval between the inner wall surface 23L and the inner wall surface 23U becomes larger toward the downstream side.
The present invention may be applied to a low-profile air conditioning register in which the flange portion 24 of the bezel 22 is inclined in an inverse direction to the above illustrated embodiment. In this case, the upper long side BU in the opening 23a is arranged downstream of the lower long side BL. In other words, the flange portion 24 is arranged so as to be inclined in such a manner as to recede from the driver's seat and the front passenger seat toward the lower side.
The present invention may be applied to a low-profile air conditioning register in which the retainer 20 is arranged in a state in which the ventilation direction X is inclined with respect to the horizontal plane.
The present invention may be widely applied to a low-profile air conditioning register in which the angle θ is equal to or more than 60°, and the height H is equal to or less than 35 mm.
The length L of the inner wall surface 23L may be changed to any dimension as long as the length is equal to or less than 10 mm.
It is possible to omit the members and parts which are not directly related to the features of the present invention. Alternatively, the shapes and numbers of such members and parts may be changed. For example, the upstream fin 61 and the shut damper 80 may be omitted, or the shapes and numbers of the fin 61 and the shut damper 80 may be changed.
Number | Date | Country | Kind |
---|---|---|---|
2006-338537 | Dec 2006 | JP | national |