Low profile antenna

Information

  • Patent Grant
  • 6580398
  • Patent Number
    6,580,398
  • Date Filed
    Thursday, October 25, 2001
    23 years ago
  • Date Issued
    Tuesday, June 17, 2003
    21 years ago
Abstract
The invention is a low profile antenna array, particularly beneficial for AM broadcasting stations, which dramatically reduces the height of the antenna. The antenna array is constructed of at least two conductors oriented horizontally or sloping slightly up and extending away from a center location where they have upright sections extending above the ground plane by as little as 0.01 wavelength. The individual conductors are each approximately one-quarter wavelength long. The multiple conductors of the antenna array are each fed by impedance matching sections to achieve high individual impedances, which, when connected in parallel can be made to match any desired impedance with dimensional changes.
Description




BACKGROUND OF THE INVENTION




This invention deals generally with antennas and more specifically with an antenna with significantly lower height above ground than those usually available.




A single quarter wavelength vertical monopole antenna may be the classic of all antenna designs. We see it for virtually every AM broadcasting station, and we see approximations of it on almost every automobile in the rod attached to an upper surface of the automobile. Such an antenna is an unbalanced antenna, and for transmitting it must be fed against a ground plane, a relatively flat conductive surface. The impedance of such an antenna is approximately 36 ohms at resonance.




For use in AM medium wave broadcasting the quarter wavelength antenna must be 447 feet (136 meters) high at 550 kHz, and at 1600 kHz it is still 154 feet (47 meters) high. Such heights not only require towers demanding considerable design and expense, but often such high towers are restricted by local building codes or pose a danger to aircraft.




One solution to the problem of high antennas was proposed as early as 1909 by Simon Eisenstein of Kiev, Russia. This was an antenna with a single vertical conductor and top loading. For the top loading, a horizontal plane formed of multiple radial conductors is added atop the vertical section that has a height much less than a quarter wavelength. Unfortunately, however, this configuration produces an antenna with a very low impedance if the height is in the desirable range of less than 0.1 wavelength.




It would be very beneficial, particularly to broadcasters and for vehicle antenna users, to have an antenna design which has both a very low height, that is, less than 0.1 wavelength, and also could be matched to a typical 50 ohm impedance system.




SUMMARY OF THE INVENTION




The present invention is a low profile antenna configuration constructed of multiple top loaded approximately vertical upright conductors clustered together. In the preferred embodiment, in order to yield an omnidirectional pattern, the individual conductors are spaced along a small circular pattern, with each conductor being excited by only an appropriate fraction of the total signal power which would be applied to a single monopole antenna for the same application. Thus a four conductor pattern has the upright conductors spaced apart at 90 degree separation points, and for a transmitting antenna configuration, each conductor is fed one-quarter of the total power.




Another feature of the invention is that the top loading on each upright conductor is only a single conductor extending away from the cluster of upright conductors, and the length of the top loading conductors and the heights of the their ends above the ground plane can be adjusted to achieve resonance and to provide the desired impedance. For ease of construction, the upright sections and the non-vertical extension can be a continuous conductor bent to form both the upright section and the non-vertical extension. With the further use of impedance matching sections on each feed to an upright conductor, a high enough impedance can be achieved on each individual conductor feed to result in an impedance which matches the commonly used 50 ohm impedance systems when all the individual antennas are fed in parallel.




The present invention thereby furnishes low profile, very low height, antenna configurations which can match the typical signal feed cables and yield nearly uniform omnidirectional radiation fields substantially identical to the fields provided by quarter wavelength monopole antennas.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side view schematic diagram of an antenna configuration with two sloped conductors.





FIG. 2

is a,top view schematic diagram of an antenna configuration with four conductors.





FIG. 3

is a top view schematic diagram of an antenna configuration with eight conductors.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 1

is a side view schematic diagram of antenna assembly


10


with two top loading sloped conductors


12


located on a diameter of a circle. The typical spacing A between upright conductors


18


is 0.20 wavelength, and dimension A must be below ½ wavelength at which distance the signals on the upright conductors would interfere. Ground plane


14


for such an antenna is also shown schematically. As is well understood by those skilled in the art, the ground plane is a conductive surface or network of conductors and can be the earth itself. It typically extends to approximately the same outer diameter as the antenna assembly, and for a ground mounted antenna for AM broadcast the diameter typically can vary between 0.50 and 1.0 wavelengths.




Each antenna conductor


12


is independently excited and connected to a common radio frequency signal device


16


through signal converter


17


. In the case when radio frequency signal device


16


is a transmitter, signal converter


17


is selected to be a splitter which divides the total signal, power generated by radio frequency signal device


16


equally between all the conductors


18


with the total signal power being the equivalent of the power that would be applied to a single conventional vertical quarter wavelength monopole antenna.




In the case when radio frequency signal device


16


is a receiver, signal converter


17


is selected to be a combiner which combines the signals from all the conductors


18


and sends the combined signal to radio frequency signal device


16


. That combined signal is also the equivalent of the signal received by a single conventional vertical quarter wavelength monopole antenna.




The most important characteristic of antenna assembly


10


is its low profile, its very low height above the ground plane. Thus, for the two conductor embodiment shown in

FIG. 1

, when matching a 50 ohm impedance the heights of upright conductors


18


are only 0.01 wavelengths, and the heights B of the ends of conductors


12


above ground plane


14


are only 0.065 wavelengths. That means that for the two conductor sloping, version of

FIG. 1

the antenna with a 50 ohm impedance for a broadcast station in the middle of the AM band, at 1000 kHz, is only 64 feet high at its outer perimeter and 10 feet high at the center. Each sloped antenna conductor


12


is approximately one quarter wavelength (246 feet) long, so that the entire antenna assembly at 1000 kHz is approximately 500 feet in diameter.




However, this compares to the conventional antenna tower which is 246 feet tall and has the same ground plane diameter of approximately 500 feet diameter.




It is important to understand that the length of sloped conductors


12


and the heights B of their ends above the ground plane can be adjusted to achieve resonance and adjust impedance. Thus, antenna assembly


10


can have conductors


12


with lengths in the range between 0.15 wavelengths and 0.30 wavelengths, upright conductors


18


with lengths in the range of between 0.001 and 0.25 wavelengths, and distances B of the remote ends above ground plane


14


can be in the range of between 0.001 and 0.25 wavelengths.




Moreover, with the further use of impedance matching sections


19


between each antenna conductor


12


and its signal source


16


, a high enough impedance can be achieved on each individual antenna feed to result in the commonly used 50 ohm impedance when all the individual antennas are fed in parallel. Such matching sections can be applied both to the sloping configuration shown in FIG.


1


and to an antenna assembly with the conductors


12


oriented in a single plane.





FIG. 2

is a top view schematic diagram of antenna configuration


20


with four top loading conductors


22


extending away from each other, with the signal fed into each of the conductors


22


from an upright segment located at their inner ends


24


adjacent to the other conductors of the configuration. It should be appreciated that the benefit of the symmetry and equal spacing between conductors


22


is that they yield an omnidirectional radiation pattern, and it is not a requirement of the invention itself. As with the two conductor configuration shown in

FIG. 1

, each antenna conductor


22


in

FIG. 2

can be connected to a radio frequency signal device (not shown) through a signal converter (not shown) and an impedance matching section (also not shown in FIG.


2


). Thus, the total radio frequency power excitation of all the conductors of any of the antenna configurations of the invention can be split in the transmitting mode or combined in the receiving mode so that the total signal power exciting an antenna configuration of the invention is the equivalent of the power that would be applied to a single conventional vertical quarter wavelength monopole antenna. However, for the antenna configurations of the invention, this power can be broadcast or received by an antenna of significantly lower height.




It is important to appreciate that the slopes of the extending conductors


22


, their lengths, and their heights above the ground plane are variable and can be used effectively to tune the antenna assembly. Thus, for the previously discussed station in the middle of the AM band, at 1000 kHz, the four conductor antenna of

FIG. 2

when designed to match a 50 ohm impedance is only 46 feet high at its outer perimeter, and it is 10 feet high at the center. Furthermore, each sloped antenna conductor


22


is still one quarter wavelength (246 feet) long, so that the entire four conductor antenna assembly at 1000 kHz is still approximately 500 feet in diameter but only 46 feet at its maximum height.





FIG. 3

is a top view schematic diagram of an antenna configuration


30


with eight top loading conductors


32


. The operation and dimensions for the eight conductor version with sloping antenna conductors


32


are the same as the


4


conductor version of

FIG. 2

except for the obvious difference of splitting the power into or combining it from a greater number of paths.




However, when all the conductors


12


of the two conductor system of

FIG. 1

, conductors


22


of the four conductor embodiment of

FIG. 2

, or conductors


32


of the eight conductor embodiment of

FIG. 3

are oriented horizontally, the dimensions change somewhat for the 50 ohm impedance match.




For the two, four, and eight conductor 1000 kHz antenna configurations the height of all the conductors above the ground plane is the same, at 43 feet. However, the length of each conductor of the two conductor horizontal system is 207 feet, and the length of each conductor for both the four and eight conductor systems is 185 feet.




It is also interesting to note that for a cellular antenna at 850 MHz, the four and eight conductor antennas of FIG.


2


and

FIG. 3

become almost flush with the ground plane, with a center height of 0.14 inch, an outside height of 0.65 inch, and a total diameter of only approximately 7 inches.




The antenna design of the invention thus yields a very practical antenna, not only for low frequency AM broadcasting transmitters, but also for high frequency wireless communication.




It is to be understood that the form of this invention as shown is merely a preferred embodiment. Various changes may be made in the function and arrangement of parts; equivalent means may be substituted for those illustrated and described; and certain features may be used independently from others without departing from the spirit and scope of the invention as defined in the following claims.




For example, the antenna configurations of the invention can be used for any frequency, since the dimensions of the design are specified in wavelength, and the antennas of the invention can also be used in systems with any impedance with suitable adjustment of dimensions. Furthermore the conductors need not be located on exact radii of circles, as is shown in the FIGURES for convenience of drawing.



Claims
  • 1. An antenna comprising:at least two separated upright conductors each independently excited by a common signal, with the common signal equally divided among the upright conductors, with each of the upright conductors extending from adjacent to a ground plane of the antenna to a point of common height above the ground plane, and with each upright conductor having a top loading structure of a conductor for impedance adjustment, with the top loading structure attached to its upright conductor at the point of the common height, and with the top loading structure extending away from the other upright conductors in a single horizontal plane, and all the top loading structures having a common length.
  • 2. The antenna of claim 1 wherein the antenna is installed with the ground plane having a diameter in the range of between 0.50 and 1.0 wavelengths of the frequency for which the antenna is used.
  • 3. The antenna of claim 1 further including an impedance matching section connected to each upright conductor to match the antenna to an active radio frequency device.
  • 4. The antenna of claim 1 further including an impedance matching section connected to each upright conductor to match the antenna to an active radio frequency signal device to which all the antenna upright conductors are connected in parallel.
  • 5. The antenna of claim 4 further including a signal converter connected to all the upright conductors to provide separate power signal paths for each upright conductor.
  • 6. The antenna of claim 1 wherein the common height of the upright conductors is in the range of between 0.001 and 0.25 wavelengths of the frequency for which the antenna is used.
  • 7. The antenna of claim 1 wherein the common length of the top loading structures is in the range of between 0.15 and 0.30 wavelengths of the frequency for which the antenna is used.
  • 8. An antenna comprising:at least two separated conductors each independently excited by a common signal source, with each of the conductors having an upright section extending from adjacent to a ground plane of the antenna to a point of common height above the ground plane, with each upright section having top loading structure of a conductor for impedance adjustment, with the top loading structure attached to its upright section at the point of the common height, and with the top loading structure sloping up as it extends away from the other conductors, and all the top loading structures having a common length.
  • 9. The antenna of claim 8 wherein the antenna is installed with the ground plane with a diameter in the range of between 0.50 and 1.0 wavelengths of the frequency for which the antenna is used.
  • 10. The antenna of claim 8 further including an impedance matching section connected to each conductor to match the antenna to an active radio frequency signal device.
  • 11. The antenna of claim 8 further including an impedance matching section connected to each conductor to match the antenna to an active radio frequency signal device to which all the antenna conductors are connected in parallel.
  • 12. The antenna of claim 11 further including a signal converter connected to all the conductors to provide separate power signal paths for each conductor.
  • 13. The antenna of claim 8 wherein the common height is in the range of between 0.001 and 0.25 wavelengths of the frequency for which the antenna is used.
  • 14. The antenna of claim 11 wherein the common length is in the range of between 0.15 and 0.30 wavelengths of the frequency for which the antenna is used.
  • 15. The antenna of claim 11 wherein the remote ends of the conductors are at a height above the ground plane in the range of between 0.001 and 0.25 wavelengths of the frequency for which the antenna is used.
US Referenced Citations (16)
Number Name Date Kind
2147814 Hahnemann Feb 1939 A
2521550 Smith Sep 1950 A
2558487 Hills Jun 1951 A
2769169 Munzig Oct 1956 A
3388400 Veldhuis Jun 1968 A
3564551 Mills et al. Feb 1971 A
3683376 Pronovost Aug 1972 A
3716867 Mayes et al. Feb 1973 A
3725943 Spanos Apr 1973 A
4109255 Silliman Aug 1978 A
4155092 Blaese May 1979 A
4381566 Kane Apr 1983 A
4516127 Siwiak May 1985 A
4814777 Monser Mar 1989 A
6052094 Kharadly et al. Apr 2000 A
6356242 Ploussios Mar 2002 B1