The present disclosure generally relates to a fenestration unit and, more particularly, relates to a low-profile crank handle assembly for a fenestration unit.
Various fenestration units include a crank handle for actuating a panel thereof. The crank handle may be moveably attached to the frame, and for many of these types of fenestration units, the crank handle may be manually rotated to move the panel between a closed position and an open position.
However, problems remain. Many crank handles project and/or hang off of the frame. As such, the crank handle may be undesirably conspicuous, bulky, and/or inconveniently positioned. Some crank handles may be lacking in ergonomic functionality. Furthermore, some crank handle assemblies may present manufacturing inefficiencies, may include a high number of parts, and/or may increase manufacturing costs.
Thus, it is desirable to provide an improved crank handle, crank handle assembly, and fenestration unit that is aesthetically pleasing. It is desirable to provide a low-profile, compact, and inconspicuous crank handle that also provides highly ergonomic functionality. It is also desirable to provide improved manufacturing methods for these crank handles, crank handle assemblies, and fenestration units. Other desirable features and characteristics of the present disclosure will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and this background discussion.
This is solved by the subject-matter of the independent claims. Further embodiments are included in the dependent claims.
In one embodiment, a crank handle assembly for actuating a panel of a fenestration unit relative to a frame is disclosed. The crank handle assembly includes an arm (i.e., a first handle part) that is elongate and is configured to be supported at one end by the frame for rotation to actuate the moveable panel relative to the frame. The crank handle assembly also includes a knob (i.e., a second handle part) that is moveably attached to an opposite end of the arm and that extends therefrom. The knob is supported for movement between an aligned position and a misaligned position relative to the arm. The arm and the knob cooperatively define a crank handle longitudinal axis. The knob, in the aligned position, is aligned with the arm and the crank handle longitudinal axis is straight. The knob, in the misaligned position, is misaligned with the arm, and the crank handle longitudinal axis is nonlinear.
In another embodiment, a crank handle assembly for actuating a panel of a fenestration unit relative to a frame is disclosed. The crank handle assembly includes a first handle part that is elongate and axially straight and that is configured to be supported at one end by the frame for rotation about a first axis to move between a stowed position and a deployed position. The one end of the arm is supported for rotation about a second axis to actuate the moveable panel relative to the frame. The handle assembly further includes a second handle part that is rotationally attached to an opposite end of the first handle part at a joint. The joint supports the second handle part for rotational movement between an aligned position and a misaligned position relative to the first handle part. The first and second handle parts cooperatively define a crank handle longitudinal axis. The second handle part, in the aligned position, is aligned with the first handle part and the crank handle longitudinal axis is straight. The second handle part, in the misaligned position, is misaligned with the first handle part and the crank handle longitudinal axis is nonlinear.
In an additional embodiment, a fenestration unit is disclosed that includes a frame and a panel that is supported for movement relative to the frame between a closed position and an open position. The fenestration unit includes a crank handle assembly for selectively actuating the panel between the closed position and the open position. The crank handle assembly includes an arm that is elongate and that is configured to be supported at one end by the frame for rotation to actuate the moveable panel relative to the frame. The crank handle assembly also includes a knob that is moveably attached to an opposite end of the arm and that extends therefrom. The knob is supported for movement between an aligned position and a misaligned position relative to the arm. The arm and the knob cooperatively define a crank handle longitudinal axis. The knob, in the aligned position, is aligned with the arm and the crank handle longitudinal axis is straight. The knob, in the misaligned position, is misaligned with the arm and the crank handle longitudinal axis is nonlinear.
The present disclosure will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:
The following detailed description is merely exemplary in nature and is not intended to limit the present disclosure or the application and uses of the present disclosure. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.
Broadly, example embodiments disclosed herein include an improved crank handle assembly for a fenestration unit. The crank handle assembly may include a plurality of parts that cooperatively define a crank handle, which extends along an axis. For example, the handle parts may include an arm and a knob that cooperatively define the crank handle and the crank handle axis. The crank handle may also be supported by an escutcheon, which is fixed to the frame. The escutcheon may be inset, recessed, and/or received into a rail of the frame. The escutcheon may define an inset space, pocket, recess, or other receiving space that receives the crank handle. The crank handle may be supported for movement between a stowed position and a deployed position relative to the escutcheon and the frame. In the stowed position, the crank handle may be received within the inset space of the escutcheon and may lie substantially flat therein so as to appear integrated within the frame of the fenestration unit. In the deployed position, the crank handle may extend outward and may project from the inset space and away from the escutcheon and frame of the fenestration unit.
Once deployed, the crank handle may be rotated in a number of directions relative to the frame. The arm of the crank handle may rotate about a first axis relative to the frame to actuate the panel of the fenestration unit. The knob may move relative to the arm of the crank handle to facilitate cranking motion of the handle assembly. To facilitate this motion and to improve ergonomic function of the crank handle, the knob may rotate relative to the arm. As the knob rotates, it may move in and out of alignment with the arm.
The shape, profile, surfaces, and/or other features of the knob may correspond to those of the arm. As such, when the knob is in alignment with the arm, the knob may appear as an extension of the arm. When aligned with the arm, the knob may appear as a projection along a straight longitudinal axis of the crank arm. The knob may be co-linear, may be co-planar, and/or may be coaxial with the arm. Accordingly, the knob may align with the arm, allowing the crank handle to stow away against the escutcheon and frame in a low-profile arrangement. The crank handle may lie flat against the frame. The crank handle assembly may, thus, appear integrated into the frame. Then, when needed, the crank handle may fold up and away from the escutcheon/frame and deployed therefrom for convenient and ergonomic use in actuating the panel. The knob may rotate relative to the arm to facilitate this motion. The crank handle assembly may be stowed back in its low-profile and compact position, appearing integrated into the frame of the fenestration unit.
Manufacturing methods for the crank handle assembly are also disclosed herein. The crank handle assembly may include a relatively low number of parts. These parts may be manufactured efficiently and at reduced costs. The assembly may be manufactured in a repeatable and accurate fashion. Accordingly, the manufacturing methods of the present application provide a number of efficiencies and advantages.
Referring now to
The fenestration unit 102 may further include a crank handle assembly 110 for manually actuating (i.e., cranking) the panel 106 between its open and closed positions. The crank handle assembly 110 may be moveably mounted to the frame 104, and various positions are illustrated in
In some embodiments, the crank handle assembly 110 may include an escutcheon 112, which is shown in detail in
As shown in
The crank handle assembly 110 may also include a crank handle 130. The crank handle 130 is shown in detail in
As shown, the crank handle 130 may generally include an arm 132 (i.e., a first handle part) and a knob 134 (i.e., a second handle part). The knob 134 may be moveably attached to the arm 132 at a joint 135. Stated differently, the arm 132 and the knob 134 may collectively and/or cooperatively define the crank handle 130. The knob 134 and the arm 132 may have corresponding features, surfaces, sizes, cross sectional profiles, etc. As such, the knob 134, in at least one position, may appear flush, aligned with, and projected from the arm 132. Accordingly, the crank handle 130 may have a low profile and may be compactly stowed when not in use as will be discussed.
As shown in
The arm 132 may also define parts of the first end 140 of the crank handle 130. A first arm rotational axis 162 may be defined at this end. The first arm rotational axis 162 may extend through (e.g., normal to both of) the first longitudinal side 148 and the second longitudinal side 150. A pin 164 may be included, which is coaxial with the arm rotational axis 162, and which pivotally attaches the arm 132 relative to the escutcheon 112 and the frame 104.
As shown in
At the opposite longitudinal end, the arm 132 may include a joint face 172, which may include a substantially flat surface 174 and a post 176 that projects from the surface 174. The surface 174 may be disposed at a bias angle 178 relative to the longitudinal axis of the arm 132 (i.e., relative to the crank handle axis 141). The post 176 may project out orthogonally from the flat surface 174 and may be rounded and centered about a knob rotational axis 180.
The knob 134 may have an outer profile that substantially has a hexahedron-type shape. The knob 134 may include a plurality of planar and flat surfaces that cooperate with the arm 132 to define respective portions of the front face 144, the first longitudinal side 148, and the second longitudinal side 150 of the crank handle 130. The knob 134, at the back face 146 of the crank handle 130, may define a knob hollow 182. The knob hollow 182 may be shaped and sized such that the majority of the knob 134 is defined by a relatively thin wall 185. An outer surface of the wall 185 may define portions of the front face 144, the first longitudinal side 148, and the second longitudinal side 150. The knob hollow 182 may be shaped and sized to receive the second projection 125 as will be discussed. The knob 134 may also include a terminal end surface 186, which may be flat to define the second end 142 of the crank handle 130.
Moreover, the knob 134 may include a joint face 188, which may include a substantially flat surface 190 and a raised annular collar 192 with an aperture that receives the post 176. The flat surface 190 may oppose the surface 174 of the arm 132 and may be disposed at the same bias angle 178 relative to the crank handle axis 141. A retainer ring 181 may also be included to secure the knob 134 to the post 176. Accordingly, the knob 134 may be supported for rotation (e.g., three-hundred-sixty degree rotation) about the knob rotational axis 180 relative to the arm 132. Also, when attached, the joint face 188 of the knob 134 may overlie the surface 174 of the arm 132 to cooperatively define the joint 135, and the knob 134 may project and extend from the arm 132 to define the second end 142 of the crank handle 130.
Accordingly, the knob crank handle 130 may be supported for various types of movement relative to the frame 104 and the escutcheon 112. These movements will be discussed in detail, and it will be assumed that the crank handle 130 is initially disposed in the stowed position of
Then, the arm 132 may be manually flipped and rotated about the first arm rotational axis 162 to disengage the crank handle 130 from the escutcheon 112 and to move the crank handle 130 to the deployed position represented in
When stowed, the crank handle 130 may be compactly stored and may appear integrated into the frame 104. The crank handle 130 may lie flat against the seat surface 128. As shown in
Referring now to
The joint 1135 connecting the knob 1134 to the arm 1132 may be configured differently. For example, the knob 1134 may be joined to the arm 1132 via a pin 1197 in some embodiments.
Also, the joint 1135 may be cooperatively defined by the joint face 1172 of the arm 1132 and the joint face 1188 of the knob 1134. These surfaces may overlap, similar to the embodiments of
With the knob 1134 in the aligned position with the arm 1132, the knob 1134 and arm 1132 may cooperatively define a front edge 1189 where the first longitudinal side 1148 and the front face 1144 meet. The front edge 1189 may run horizontally on the fenestration unit in some embodiments.
Due to the second bias angle 1199 of the joint 1135, the front edge 1189 may include a point 1193, for example, on the arm 1132. The front edge 1189 may also include a corresponding bevel 1191, for example, on the knob 1134. (It will be appreciated that the opposite arrangement may be included such that the knob 1134 includes the point 1193 and the arm 1132 includes the bevel 1191.) When the knob 1134 is in the aligned position with respect to the arm 1132 (
Furthermore, as shown in
Furthermore, the following examples are provided:
In an example, a crank handle assembly for actuating a panel of a fenestration unit relative to a frame is disclosed. The crank handle assembly includes an arm that is elongate and is configured to be supported at one end by the frame for rotation to actuate the moveable panel relative to the frame. The crank handle assembly also includes a knob that is moveably attached to an opposite end of the arm and that extends therefrom. The knob is supported for movement between an aligned position and a misaligned position relative to the arm. The arm and the knob cooperatively define a crank handle longitudinal axis. The knob, in the aligned position, is aligned with the arm and the crank handle longitudinal axis is straight. The knob, in the misaligned position, is misaligned with the arm, and the crank handle longitudinal axis is nonlinear.
In an option, the crank handle assembly further includes an escutcheon configured to be mounted to the frame. The escutcheon includes an inset space. The arm is supported at the one end for movement between a first position and a second position relative to the frame. The inset space is configured to receive the arm in the first position and to receive the knob in the aligned position.
In another option, the knob is configured to engage the escutcheon with the arm in the first position and the knob in the aligned position.
Furthermore, in another option, the escutcheon includes a first projection and a second projection that project outward from within the inset space. The arm is configured to receive and engage the first projection to support the arm in the first position. The knob is configured to receive and engage the second projection to support the knob in the aligned position.
Additionally, in an option, the arm and the knob are configured to lie flat against the escutcheon when the arm is in the first position and the knob is in the aligned position.
In another option, the arm has a first flat surface. Also, the knob has a second flat surface that is flush with the first flat surface when the knob is in the aligned position.
As a further option, the arm and the knob cooperatively define a crank handle with an exterior profile. The exterior profile has a substantially cuboid shape with the knob in the aligned position.
In an additional option, the knob is rotationally attached to the arm at a rotational joint. The arm and the knob, in the aligned position, cooperatively define a plurality of flat surfaces that extend along the crank handle longitudinal axis. The plurality of flat surfaces is interrupted by the joint.
Moreover, as an option, the knob is moveably attached to the arm at a joint. The knob has a knob joint face, and the arm has an arm joint face that face each other on opposite sides of the joint. The knob joint face and the arm joint face are substantially parallel to a plane. The plane is disposed at a nonorthogonal bias angle relative to the crank handle longitudinal axis.
In an additional option, the knob and the arm cooperatively define a flat surface that is interrupted by the joint. The flat surface has a first longitudinal edge. The longitudinal edge includes a point on one side of the joint and a bevel on an opposite side of the joint.
In another example, a crank handle assembly for actuating a panel of a fenestration unit relative to a frame is disclosed. The crank handle assembly includes first handle part that is elongate and axially straight and that is configured to be supported at one end by the frame for rotation about a first axis to move between a stowed position and a deployed position. The one end of the first handle part is supported for rotation about a second axis to actuate the moveable panel relative to the frame. The handle assembly further includes a second handle part that is rotationally attached to an opposite end of the first handle part at a joint. The joint supports the second handle part for rotational movement between an aligned position and a misaligned position relative to the first handle part. The first and second handle parts cooperatively define a crank handle longitudinal axis. The second handle part, in the aligned position, is aligned with the first handle part and the crank handle longitudinal axis is straight. The second handle part, in the misaligned position, is misaligned with the first handle part and the crank handle longitudinal axis is nonlinear.
In an option, the first handle part, in the stowed position, and the second handle part, in the aligned position, are configured to lie substantially flat against the frame.
Additionally, in an option, the crank handle assembly further includes an escutcheon configured to be mounted to the frame. The escutcheon includes an inset space. The inset space is configured to receive the first handle part in the first position and to receive the second handle part in the aligned position.
In an option, the second handle part is configured to engage the escutcheon with the first handle part in the stowed position and the second handle part in the aligned position.
Furthermore, in an option, the escutcheon includes a first projection and a second projection that project outward from within the inset space. The first handle part is configured to receive and engage the first projection to support the first handle part in the first position. The second handle part is configured to receive and engage the second projection to support the second handle part in the aligned position.
In an option, the first and second handle parts cooperatively define a crank handle with an exterior profile. The exterior profile has a substantially cuboid shape with the second handle part in the aligned position.
As another option, the second handle part is moveably attached to the first handle part at a joint. The second handle part has a second joint face and the first handle part has an first joint face that face each other on opposite sides of the joint. The first and second joint faces are substantially parallel to a plane. The plane is disposed at a nonorthogonal bias angle relative to the crank handle longitudinal axis.
As another option, the first and second handle parts cooperatively define a flat surface that is interrupted by the joint. The flat surface has a first longitudinal edge. The longitudinal edge includes a point on one side of the joint and a bevel on an opposite side of the joint.
In an additional example, a fenestration unit is disclosed that includes a frame and a panel that is supported for movement relative to the frame between a closed position and an open position. The fenestration unit includes a crank handle assembly for selectively actuating the panel between the closed position and the open position. The crank handle assembly includes an arm that is elongate and that is configured to be supported at one end by the frame for rotation to actuate the moveable panel relative to the frame. The crank handle assembly also includes a knob that is moveably attached to an opposite end of the arm and that extends therefrom. The knob is supported for movement between an aligned position and a misaligned position relative to the arm. The arm and the knob cooperatively define a crank handle longitudinal axis. The knob, in the aligned position, is aligned with the arm and the crank handle longitudinal axis is straight. The knob, in the misaligned position, is misaligned with the arm and the crank handle longitudinal axis is nonlinear.
In an option, the crank handle assembly further includes an escutcheon that is inset into the frame, the escutcheon includes an inset space. The arm is supported at the one end for movement between a first position and a second position relative to the frame. The inset space is configured to receive the arm in the first position and to receive the knob in the aligned position. The arm, in the first position, and the knob, in the aligned position, are configured to lie flat against the escutcheon.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the present disclosure in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the present disclosure. It is understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the present disclosure as set forth in the appended claims.