The subject matter herein relates generally to electrical connectors.
Communication systems exist today that utilize electrical connectors to transmit data. For example, network systems, servers, data centers, and the like may use numerous electrical connectors to interconnect the various devices of the communication system. Many electrical connectors include signal conductors and ground conductors in which the signal conductors convey data signals and the ground conductors reduce crosstalk and/or electromagnetic interference (EMI) between the signal conductors.
As communication systems continue to decrease in size, there is increased demand to decrease the size of all electrical components, including electrical connectors. By reducing the size of the electrical connectors, spatial constraints are minimized allowing for greater design choices for custom and new communication systems.
Accordingly, there is a need for electrical connectors that improve spatial characteristics while maintaining robustness, performance, and/or expense.
In an embodiment, an electrical connector is provided including a housing with an interior cavity configured to receive a card, and a plurality of electrical contacts secured across a wall of the housing within the interior cavity and configured to matingly receive corresponding electrical contacts of the card. The plurality of electrical contacts secured across the wall of the housing are the only electrical contacts of the electrical connector. Each of the plurality of electrical contacts includes a mating interface and the mating interface of each of the plurality of electrical contacts is co-planer. Additionally, the housing includes a card slot opening and each of the plurality of electrical contacts are arranged on one side of the card slot opening.
In another embodiment, an electrical device is provided that includes a heat sink and a substrate secured to the heat sink to convey heat from the substrate to the heat sink. An electrical connector is also provided that includes a housing having a plurality of electrical connectors therein configured to matingly receive a card. The electrical connector is secured between the substrate and the heat sink.
In another embodiment, an electrical connector is provided that includes a housing with an interior cavity configured to receive a card having a first electrical component on a first surface and a second electrical component on a second surface. A plurality of electrical contacts are secured across a wall of the housing within the interior cavity and configured to matingly receive corresponding electrical contacts of the card. The housing also includes a top wall with a height that is equal to or less than a height of the electrical component on the first surface of the card and a bottom wall with a height that is equal to or less than a height of the electrical component on the second surface of the card.
Embodiments set forth herein may include various electrical connectors that are configured for communicating data signals. The electrical connectors may mate with a corresponding mating connector to communicatively interconnect different components of a communication system. In the illustrated embodiment, the electrical connector is a plug connector, which may be terminated to and electrically coupled to another electrical component, such as a circuit board, a wire harness or another electrical component. The plug connector may be a pluggable input/output (I/O) connector, which may be mated with a corresponding receptacle connector during a mating operation. It should be understood, however, that the inventive subject matter set forth herein may be applicable in other types of electrical connectors.
In various embodiments, the electrical connectors provide low profile connectors including electrical connectors with electrical contacts on only one wall of an interior cavity of the electrical connector housing. Exemplary electrical connectors provide electrical connector housing that aligns with electrical components on a card inserted into the housing. Exemplary electrical connectors also allow a compression fit between a heat sink and a printed circuit board (PCB). In other exemplary embodiments quad small form factor pluggable double density QSFP-DD type connectors are provided including with electrical contacts that result in a low-profile spatial connector.
In this exemplary embodiment, the electrical connectors 108 present two low-profile electrical connectors 108 adjacent the ASIC 106 such that each electrical connector 108 is disposed between the heat sink 102 and substrate 104. In one example, the electrical connector 108 is 4 mm or less. In another example, the electrical connector 108 has a height in a range between about 3 mm and about 4 mm. Thus, the card 110 is able to be inserted into the electrical connector 108 parallel to the substrate 104 to provide an electrical connection between the card 110 and the substrate 104 underneath the heat sink 102. In this manner the electrical connector 108 provides a right-angle connection to the substrate 104. In one embodiment, when the heat sink 102 and substrate 104 are coupled, the heat sink 102 and substrate 104 provide a frictional fit with the electrical connector 108 by engaging the electrical connector 108 providing a compression force on the electrical connector 108. This compression force thus holds the electrical connector 108 and card 110 in place and minimizes vibration on the card 110 for improved functioning of the electrical device 100. The card 110 is of any type, including a personal computer (PC) card, smart card, a personal computer memory card, or the like.
The housing 304 includes a top wall 316, opposing bottom wall 318, opposing side walls 320, 322, and a back wall 324 that form the interior cavity 306. In this manner the housing 304 includes an opening 326 for receiving the card 302. The plurality of electrical contacts 308 are secured across a wall within the interior cavity 306. In one example embodiment, the bottom wall 318 receives the plurality of electrical contacts 308. In another example embodiment, the top wall 316 receives the plurality of electrical contacts 308. In each embodiment, electrical contacts are only presented on one wall 316 or 318 of interior cavity 306 of the housing. Thus, the plurality of electrical contacts 308 are configured to be positioned either only below the card 302 or above the card 302. By having electrical contacts 308 on only one wall 316 or 318, the height of the housing is decreased improving spatial characteristics of the electrical connector 300.
The plurality of electrical contacts 308 of the electrical connector 300 in one example include a first section 328 and a second section 330 that are spaced from one another. In such an embodiment, the stop element 310 is disposed between the first section 328 and second section 330 and receives a slot 332 of the card 302. Consequently, the stop element 310 resists lateral movement of the card 302. In one example the stop element 310 is offset between the side walls 320, 322 of the interior cavity 306 to ensure the card 302 can only be inserted in one manner, preventing improper insertion of the card 302. In other embodiments the stop element 310 is removed and the electrical contacts 308 are only in one section. Alternatively, in other embodiments, additional stop elements extend from the back wall 324. Meanwhile, the mounting tabs 312 are configured to engage and couple to a substrate, such as the substrate 104 of
The housing 404 includes an open top, a bottom wall 418, opposing side walls 420, 422, and a back wall 424 that form the interior cavity 406. The opposing side walls 420, 422 extend from the back wall 424 and terminate prior to the termination of the bottom wall 418. Specifically, the stop elements 410 include a first stop element 425 extending from adjacent the back wall 424, and opposing second and third stop elements 426, 428 extending adjacent the side walls 420, 422. Meanwhile, the card 402 includes a slot 430 disposed therethrough that mates with the first stop element 425, and first set of teeth members 432 that mate with the second stop element 426 and a second set of teeth members 434 that mate with the third stop element 428. In this manner the housing 404 receives the card 402 within the interior cavity 406 to prevent lateral movement of the card 402. Additionally, as a result of the placement of the stop elements 410, the card 402 may only be inserted into the electrical connector 400 in one manner, preventing the misplacement of the card 402. In addition, by removing the top wall, the height of the electrical connector 400 is reduced improving spatial characteristics.
The plurality of electrical contacts 408 are secured across a wall within the interior cavity 406. In one example embodiment, the plurality of electrical contacts 408 is received by the bottom wall 418. Thus, the plurality of electrical contacts 408 are only presented on one wall 418 of interior cavity 406 of the housing. By having electrical contacts 408 on only one wall 418, the height of the housing is decreased improving spatial characteristics of the electrical connector 400. Similarly, in this embodiment, this allows the top wall to be removed, again reducing the height of the electrical connector 400 as described above. Therefore, in one example, when the connector 400 is placed on a substrate adjacent an ASIC as illustrated in in the example of
The plurality of electrical contacts 408 of the electrical connector 400 in one example also include a first section 436 and a second section 438 that are spaced from one another similar to the example embodiment of
The card 602 is illustrated with electrical components 614 on a top surface 616 and a bottom surface 618. The housing 604 includes a top wall 620, opposite bottom wall 622, opposing side walls 624, 626, and a back wall 628. The housing 604 is configured to include an opening 630 that is centrally located in the front of the housing 604 such that in one embodiment the top wall 620 is the same height or of lesser height than a top surface 616 of the electrical component 614 on the top surface 616 of the card 602. In another embodiment, the housing 604 is configured to include an opening 630 that is centrally located in the front of the housing 604 such that the bottom wall 622 is the same height or of lesser height than a bottom surface of the electrical component 614 on the bottom surface 618 of the card 602. Alternatively, the housing 604 is configured to include an opening 630 that is centrally located in the front of the housing 604 such that the top wall 620 is the same height or of lesser height than the top surface of the electrical component 614 on the top surface 616 of the card 602, while the bottom wall 622 is the same height or of lesser height than a bottom surface of the electrical component 614 on the bottom surface 618 of the card 602.
The plurality of electrical contacts 608 are secured across a wall within the interior cavity 606. In one example, the electrical contacts 608 are only disposed on the top wall 620 of the housing to reduce height of the housing 604. In another embodiment the electrical contacts 608 are only disposed on the bottom wall 622 of the housing 604, again to reduce height of the housing 604. Alternatively, electrical contacts 608 are disposed on both the top wall 620 and bottom wall 622 of the housing 604 and the opening 630 is configured to include an opening 630 that is centrally located in the front of the housing 604 such that the top wall 620 is the same height or of lesser height than the top surface of the electrical component 614 on the top surface 616 of the card 602. Specifically, the top surface of the top wall 620 is at or below a plane 631 formed by a top surface of the electrical component 614 on the top surface 616 of the card 602. Thus, spatial characteristics are improved to allow for more design flexibility.
With reference to
In this embodiment, the electrical contacts 1008 only engage and couple to a single surface of the card 1002 where in this embodiment that surface is the bottom surface 1026 of the card 1002. So, in the example embodiment of
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This application claims benefit to U.S. Provisional Application No. 62/750,317, filed Oct. 25, 2018, titled “LOW PROFILE ELECTRICAL CONNECTOR”, the subject matter of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5526229 | Wakabayashi | Jun 1996 | A |
5971775 | Tor et al. | Oct 1999 | A |
6328605 | Walker | Dec 2001 | B1 |
6428360 | Hassanzadeh | Aug 2002 | B2 |
6575763 | Choy | Jun 2003 | B1 |
6695647 | Tsai | Feb 2004 | B2 |
7480147 | Hoss | Jan 2009 | B2 |
7625232 | Lin | Dec 2009 | B2 |
8142207 | Ljubijankic et al. | Mar 2012 | B1 |
9028281 | Kirk et al. | May 2015 | B2 |
Number | Date | Country |
---|---|---|
4133669 | Aug 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20200136286 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
62750317 | Oct 2018 | US |