The present invention relates to a low-profile expandable ring structure, which is expandable from a minimum size to a maximum size. More specifically, the present invention discloses an expandable ring structure comprising of a plurality of coupled blocks and an internal spring, which allows the structure to expand or contract as needed.
Conventional rings are a completely fixed solid structure, and each ring is tailor made to a specific size for the wearer. While this does provide an adequate fit for the wearer, most rings are made to be worn at the base of a given finger. The knuckles of said finger may be larger in circumference than the intended area for the ring; thus, it can be difficult or uncomfortable to put on and vice versa. As a result, the ring may be slightly larger than the finger cross-section and thus would cause it to slide along the finger.
Similarly, most bracelets are rigid and consistently oversized to slip the bracelet over the wrist. While this method works, it causes an issue with a loose bracelet that can slide with ease or even slide through the wrist by accident. Therefore, a need exists for a ring structure that allows the bracelet or ring to conform to the cross section of the wrist or finger.
A present disclosure provides an expandable ring structure, comprising of a plurality of coupled blocks that each has a degree of translational movement relative to each other. In the main embodiment, each block comprises one or more downward curved tubes extending from the front surface of each block. Further, each curved tube comprises a cutout on the bottom surface for a stopper connection. Each tube has a curved internal channel that extends through an opening in the back surface of each block. The tubes from a block are inserted into the channels of an adjacent block through the rear. A stopper is then coupled beneath each curved tube once a pair of blocks are connected. This is done by “squeezing” the stopper into the curved cutout beneath the bottom surface of the curved tube protrusion. This is done to prevent separation of the blocks. The groove is longer than the stopper thus allowing the translational movement of each relative block. The spring is internal to the tubes and the curved channel through the block. The spring provides a compressive force to maintain a solid-like “closed appearance” unless stretched to accommodate wearer's size. Once taken off, the expandable ring structure reverts to its original size. Application of the curved tube(s) to connect a pair of blocks is novel and unobvious. It provides a strong, durable connection between the pair of adjacent blocks and is easy in manufacture, assembly and is costs effective. Use of the curved tube(s) to connect two adjacent blocks does not require soldering. It constitutes an unique and a simple connection of a pair of adjacent elements of rings and bracelets. Such type of connection can be used not only in jewelry but also in other industries.
Each block generally comprises body 100, tube 101, stopper 102, groove 103, and channel 105.
Each channel is curving downward. Each stopper 102 is shorter than each groove 103 to allow the translational movement of the blocks, which form the low-profile expandable ring structure.
Body 100 is generally prism shaped with a hollow center to reduce the weight of the body 100 and for ease of manufacturing, according to a preferred embodiment of the invention. As shown in
In the main embodiment, each block has one or more downward curved tubes 101 extending from the front surface of each block as depicted in
A stopper 102 is provided in the ring structure that is coupled beneath each curved tube 101 once pairs of blocks are connected as depicted in
The groove 103 is longer than the stopper 102 as seen in
A spring 104 is provided in the ring structure, which goes through an opening 105 of the tubes 101 as displayed in
The internal surface of the claimed expandable ring structure forms a ring and would not feel any different to a user than a standard ring during wear. In fact, the expandable ring structure is more comfortable because it can be adjusted to the user to accommodate swelling, aging, etc. as well as any possible expansion or contraction of the components of the expandable ring structure due to heat, humidity, wear, etc.
To form the claimed expandable ring structure, the following process is preferably utilized. First, all of the blocks, except the first and the last, are joined together using the tubes 101. The tubes 101 from a block are inserted into the channels of an adjacent block through the rear. Then, a stopper 102 is coupled beneath each curved tube once a pair of blocks are connected by “squeezing” the stopper into the curved cutout beneath the bottom surface of the curved tube protrusion. One end of the spring(s) 104 is fixed to the first block, passed through all spring channels, and then stretched and secured to the interior of the last block. The first and last block are then permanently joined together by the tube 101.
Blocks are preferably formed as a unitary piece by casting in a mold. When used for jewelry, the blocks are preferably formed from a precious or semi-precious metal such as silver, gold, platinum, titanium, etc. However, other metals, such as steel, may be used and then provided with a coating or plating of another metal, such as gold.
Another embodiment of the claimed low-profile expandable ring structure shown in
The present solution described above is not intended to be limited to any particulars or embodiments or any particular embodiment, but instead it is construed to provide the broadest possible interpretation of claims in view of prior art and, therefore, to effectively provide the possible broadest scope of protection.
This application is a continuation-in-part of U.S. patent application Ser. No. 17/347,219, filed Jun. 14, 2021, the content of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17347219 | Jun 2021 | US |
Child | 18134026 | US |