This disclosure relates to improved pyrotechnic igniters. In particular, this disclosure relates to pyrotechnic igniters usable, for example, to ignite a pyrotechnic material and, in turn, cause the heating of energetic devices such as thermal batteries. The invention, however, is not limited to use with thermal batteries, but is applicable to various situations in which a pyrotechnic igniter may be useful in generating heat and/or pressure.
Pyrotechnic igniters are devices containing a pyrotechnic material that is ignited causing a chain reaction resulting in the expulsion of hot gases and/or particles from the igniter. The expelled hot gases and/or particles are then used to ignite a later stage of a pyrotechnic train or to perform work.
The pyrotechnic material is often ignited via electrical initiation. In particular, electrical pyrotechnical initiators are initiators that use a bridge (a resistance element), which heats up by electrical current passing through the bridge, in order to ignite the pyrotechnic material. An example of a pyrotechnic initiator is the coin-shaped electrical pyrotechnic initiator illustrated in
The coin-shaped initiator 1 of
The non-conductive (electrically-isolative) material 4 is provided in contact with the bridge element to electrically isolate the bridge element from the housing 2 and the disc closure 3 so that any charge (including electro-static charge) inadvertently applied to the external housing (including the disc closure 3) does not unintentionally cause the bridge element to heat up. For example, if only electrically conductive ignitable material 5 is provided in the igniter, charges inadvertently applied to the external housing might cause current to flow through (and heat up) the bridge element and the pyrotechnic materials 4 , 5 because the external housing (including the disc closure 3) is electrically conductive. Thus, it may be desirable or necessary to electrically isolate the pyrotechnic materials 4, 5 from the external housing.
Another typical electrical pyrotechnic igniter is an axial igniter having a cylindrical housing and a header. The cylindrical (barrel-shaped) housing includes an end opening into which a conductive pyrotechnic material and then a non-conductive pyrotechnic material are loaded. The header has lead wires attached to a first end and a bridge element attached to a second end. The second end of the header is inserted into the housing containing the conductive and non-conductive pyrotechnic materials such that the bridge element contacts the non-conductive material and the header is sealed to the housing end opening. An opposite (second) end of the housing, opposite the first end opening, includes a weakened area. When current is conducted through the lead wires of the axial igniter and through the bridge element, the bridge element heats up, causing the pyrotechnic material to ignite. The pressure increase caused by ignition of the pyrotechnic material causes the weakened area to rupture in an axial direction that is parallel to the direction of insertion of the lead wires into the header.
Both of the above igniters have a number of drawbacks addressed by the present disclosure. In particular, the coin-shaped igniter is manufactured using a housing with integral leads or posts, compacting the powder into the housing against the bridge element, and capping the assembly with a rupture disc. This approach results in free internal space within the interior of the housing that can allow the pyrotechnic material to separate or move away from the bridge element. When separation between the pyrotechnic material and bridge element occurs, the pyrotechnic material might not be ignited and thus, the igniter fails. Additionally, the coin-shaped igniter is more costly and inefficient when compared to the present disclosure in that the present disclosure allows for ease of lapping the glass (of the header) to a flat condition for the igniter.
A further problem associated with the axial (cylindrical) design, for example, is the increase in the axial length of the energetic device (a thermal battery, for example) in which it is installed. Specifically, by using an axial igniter where the rupture of the weakened area occurs in the axial direction, the length of the device (e.g., battery) is increased in order to accommodate the length of the igniter such that the weakened area is directed towards the device components that will be ignited and/or heated by the ignited pyrotechnic material expelled from the ruptured weakened area.
Additionally, typical pyrotechnic igniter housings and closure discs are mostly manufactured from stainless steel or gilding metal because the stainless steel or gilding metal does not fragment upon rupture of the weakened area. However, these materials do not provide the electrical insulation necessary to protect surrounding components from the current flowing through the lead wires into the housing. Thus, typical methods of insulating the igniter are to coat the interior of the housing or provide a sleeve to isolate the interior of the housing. However, the coating, for example, involves an increased cost to manufacture as it requires another step in the manufacturing process. Additionally, the coating is likely to be scraped off during installation or use of the igniter, resulting in unwanted current conduction. Similarly, manufacturing a sleeve to isolate the housing increases manufacturing costs and the sleeve may move during use or installation causing unwanted current conduction.
The manufacturing costs and insulation requirements as well as the need to decrease the size of the overall device into which the igniter is installed and to prevent movement of the pyrotechnic material dictate the need for an improved pyrotechnic igniter. Currently, pyrotechnic igniter designs include high manufacturing costs, increased axial length of the devices installed with the igniters, movement of the pyrotechnic material within the igniter resulting in failure of the igniter, and expensive insulation methods.
It would thus be advantageous to provide an igniter that allows for a decrease in both manufacturing costs and overall device length as well as improved insulation qualities and prevention of movement of the pyrotechnic material.
In accordance with one aspect of the invention, an igniter may include a housing having a first end, a second end opposite the first end, a longitudinal axis extending from the first end to the second end, and a top surface. The first end has an opening. The top surface has a weakened area. The igniter further includes a pyrotechnic material disposed within the housing, a header having a first end and a second end opposite the first end, and a bridge element provided on the first end of the header and having lead wires on the second end of the header. The first end of the header is inserted into the opening of the housing in a first direction so as to force the header against the pyrotechnic material. Flow of current through the bridge element heats the bridge element and ignites the pyrotechnic material, which causes the weakened area to rupture due to the increase in pressure caused by the ignited pyrotechnic material.
In some embodiments, the top surface of the housing extends in a plane substantially parallel to the longitudinal axis of the housing.
In some embodiments, when the weakened area ruptures, the ignited pyrotechnic material is expelled in a direction perpendicular to the longitudinal axis of the housing.
In some embodiments, the housing is composed of an aluminum alloy.
In some embodiments, the aluminum alloy is an anodized aluminum alloy. Because the anodized aluminum alloy is electrically-isolative, it is possible to use only conductive pyrotechnic material in the igniter.
In some embodiments, the housing has a hollow, rectangular cross-section in a plane perpendicular to the longitudinal axis.
In some embodiments, the second end of the housing is curved when viewed from above the top surface.
In some embodiments, the header, inserted into the housing, is sealed to the housing.
In some embodiments, the weakened area of the top surface has a reduced thickness compared to a remainder of the housing.
In some embodiments, the pyrotechnic material is a single type of pyrotechnic material.
In some embodiments, the single type of pyrotechnic material is electrically conductive.
In accordance with another aspect of the invention, a method of manufacturing an igniter may include providing an igniter housing having a first end, a second end opposite the first end, a longitudinal axis extending from the first end to the second end, and a top surface. The first end has an opening. The top surface has a weakened area. The method may further include loading a pyrotechnic material into the opening of the housing, inserting a header into the opening of the pre-filled housing in a first direction parallel to the longitudinal axis, pressing the bridge element of the header against the pyrotechnic material; and attaching the header to the housing. The header has a first end that is inserted into the housing, a second end opposite the first end, and a bridge element provided on the first end and having lead wires on the second end. When current flows through the bridge element, the bridge element is heated to ignite the pyrotechnic material, which ruptures the weakened area due to the increase in pressure caused by the ignited pyrotechnic material.
Various exemplary embodiments of an igniter to which aspects of the invention are applied will be described in detail with reference to the following drawings in which:
Exemplary embodiments of igniters to which aspects of the invention are applied are described below with reference to the figures in the context of energetic devices, such as thermal batteries. Additionally, the invention is applicable to any device that would benefit from an igniter having improved insulation qualities, decrease in one or both of manufacturing costs and overall device length, and prevention of movement of the pyrotechnic material.
The header 23 includes a first end 24 and a second end 25 opposite the first end 24. The header 23 is formed from a metal portion 23a that surrounds a glass portion 23b (see
The header 23 further includes a bridge element 27 provided on the first end 24 of the header 23. The bridge element 27 is provided at to the first end 24 of the header 23 and attached to ends of the lead wires 31. Current is supplied to the lead wires 31 external to the igniter 15 and conducted along the length of the lead wires 31 such that the current flows through the bridge element 27 causing the bridge element 27 to heat up. The bridge element 27 is a resistive element such as a metal wire or foil.
As illustrated in
After the pyrotechnic material 22 has been disposed within the housing 16, the first end 24 of the header 23 is inserted into the housing opening 20 and the header 23 is moved in a first direction 32, thus forcing the header 23 against the pyrotechnic material 22 (
The insertion of the header 23 into the housing 16 in the first direction 32 (along the longitudinal axis 26) compacts the pyrotechnic material 22 within the housing 16 and prevents movement of the pyrotechnic material 22 away from the bridge element 27 of the header 23. More specifically, when the header 23 is inserted in the first direction 32, the header 23 compacts the pyrotechnic material 22 within the housing 22 until the header 23 can no longer be moved in the first direction 32. Thus, the header 23 has forced the pyrotechnic material 22 to substantially fill every void and space within the housing 16 (
The use of an igniter 15 that ruptures in a direction 28 perpendicular to the longitudinal axis 26 along which the lead wires 31 are disposed minimizes the dimension of the igniter in the rupture direction (direction 28). This allows for the construction of an energetic device (such as a thermal battery) that has a decreased axial length because the rupture direction usually must be parallel to the axial direction of such energetic devices. Typical cylindrical igniters rupture in a direction parallel to the direction in which the lead wires are disposed. These igniters require increased axial length of the device (e.g., a thermal battery) in order to accommodate the igniter, while at the same time positioning the weakened area such that the expulsion of hot gases and/or particles is directed to the component(s) that are to be affected by this expulsion. Thus, an advantage of the current invention is the rupture of the weakened area 21 in a direction perpendicular to the longitudinal axis 26. In addition, an igniter in accordance with the present invention is easier to manufacture than a coin-shaped igniter and can be made smaller in the rupture direction (direction 28) than the coin-shaped igniter. Furthermore, igniters according to the present invention more reliably maintain the pyrotechnic material in contact with the bridge element than do coin-shaped igniters.
Typical igniter housings are constructed from stainless steel or gilding metal, as discussed above, which requires the use of either an insulating coating or sleeve to prevent surrounding components from electrically conducting with the housing. However, as previously discussed, there are a number of disadvantages to the use of stainless steel or gilding metal. Thus, in an exemplary embodiment, the material used to manufacture the housing 16 is an aluminum alloy and, in particular, an anodized aluminum alloy. Aluminum alloys and anodized aluminum alloys are electrically-isolative and thus, isolate the igniter 15 from the surrounding components. Aluminum also allows for significant deformation beyond the yield point without fragmenting upon rupture of the weakened area 21. The use of these materials for the housing 16 allows for the elimination of the electrically non-conductive pyrotechnic material 22a disposed within the housing 16, as illustrated in
In addition, the construction of the igniter 15, as discussed above, significantly reduces the cost of manufacturing the igniter 15 when compared to the costs of many typical igniters. Specifically, a coin-shaped igniter as illustrated in
The pyrotechnic material 22 loaded within the housing 16 can be any known material that would combust when contacted with a heated bridge element. Additionally, the pyrotechnic material 22 can be in any form. The above described invention utilizes the pyrotechnic material 22 in a powder form but the invention is not limited to powder-form pyrotechnic material. Instead, the pyrotechnic material 22 can be any form that allows for the axial loading of the pyrotechnic material 22 into the housing 16.
The housing 16 has a hollow, rectangular cross-section in the plane perpendicular to the longitudinal axis 26.
A method of manufacturing the igniter 15 according to an exemplary embodiment is now described. As illustrated in
The illustrated exemplary embodiments of the igniter as set forth above are intended to be illustrative and not limiting. Various changes may be made without departing from the spirit and scope of the invention.
This non-provisional application claims the benefit of U.S Provisional Application No. 61/537,880, filed Sep. 22, 2011.
Number | Name | Date | Kind |
---|---|---|---|
1901469 | Piccard | Mar 1933 | A |
5423261 | Bernardy et al. | Jun 1995 | A |
5596163 | Caflisch et al. | Jan 1997 | A |
5603525 | Zakula | Feb 1997 | A |
7357083 | Takahara et al. | Apr 2008 | B2 |
7730837 | Lahitte et al. | Jun 2010 | B2 |
20030150348 | Furusawa et al. | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
2 573 502 | Mar 2013 | EP |
WO 2006045726 | May 2006 | WO |
WO 2011096872 | Aug 2011 | WO |
Entry |
---|
Nov. 19, 2013 Office Action issued in Japanese Patent Application No. 2012-190504 (with statement of relevance). |
Jun. 2, 2014 Extended European Search Report issued in European Patent Application No. 12185154.7 (with Abstract). |
Number | Date | Country | |
---|---|---|---|
20130074722 A1 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
61537880 | Sep 2011 | US |