Low profile instrument immobilizer

Information

  • Patent Grant
  • 10974029
  • Patent Number
    10,974,029
  • Date Filed
    Monday, August 20, 2018
    6 years ago
  • Date Issued
    Tuesday, April 13, 2021
    3 years ago
Abstract
This document discusses, among other things, examples of a low profile instrument immobilizer and means for positioning the same. In one example, the low profile instrument immobilizer grasps, secures, and immobilizes an electrode or other instrument that extends through a burr hole in a skull to a target location in a patient's brain.
Description
FIELD OF THE INVENTION

This document relates generally to instrument immobilizers, and more specifically, but not by way of limitation, to a low profile instrument immobilizer.


BACKGROUND

Neurosurgery sometimes involves inserting an electrode (for recording brain signals or providing stimulating pulses) or other instrument (for example, a catheter for fluid aspiration or drug infusion) through a burr hole or other entry portal into a subject's brain toward a target region of the brain. In certain applications, there is a need to secure the electrode or other instrument in place after it has been introduced, potentially for an extended period of time. Moreover, in certain applications, other equipment (such as a trajectory guide and any associated equipment) is mounted to the patient's skull about the burr hole.


For these and other reasons, which will become apparent upon reading the following detailed description and viewing the drawings that form a part thereof, the present inventors have recognized an unmet need for low profile instrument immobilizer devices, tools, and methods that reduce or avoid patient discomfort and also better retain instruments.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals describe substantially similar components throughout the several views. Like numerals having different letter suffixes represent different instances of substantially similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.



FIG. 1 is a top view illustrating generally, by way of example, but not by way of limitation, portions of a first instrument immobilizer.



FIG. 2 is a top view illustrating generally an example of portions of the first instrument immobilizer after cover pieces have been partially inserted into respective slots in opposing sides of a hoop.



FIG. 3 is a perspective view illustrating generally an example of portions of the first instrument immobilizer after the cover pieces have been partially inserted into the respective slots of the hoop.



FIG. 4 is a side view illustrating generally an example of portions of the first instrument immobilizer after the cover pieces have been almost fully inserted into the respective slots of the hoop.



FIG. 5 is a top view illustrating generally an example of portions of the first instrument immobilizer after the cover pieces have been fully inserted into the respective slots of the hoop.



FIG. 6 is a perspective view illustrating generally, by way of example, but not by way of limitation, portions of a second instrument immobilizer.



FIG. 7 is a side view of the second instrument immobilizer with a latch piece in an open position.



FIG. 8 is a perspective view of the second instrument immobilizer with the latch piece in a closed position.



FIG. 9 is a side view of the second instrument immobilizer with the latch piece in a closed position.



FIG. 10 is a top view of a third instrument immobilizer.



FIG. 11 is a top view of the third instrument immobilizer with a clasp in a closed position.



FIG. 12 is a perspective view of the third instrument immobilizer with the clasp in its closed position.



FIG. 13 is a side view of the third instrument immobilizer with the clasp in its open position.



FIG. 14 is a side view of the third instrument immobilizer with the clasp in its closed position.



FIG. 15 is a perspective view of a fourth instrument immobilizer with base pieces in an open position.



FIG. 16 is a top view of the fourth instrument immobilizer with base pieces in a closed position, grasping and immobilizing a laterally bent electrode.



FIG. 17 is a top view of a fifth instrument immobilizer.



FIG. 18 is a top view illustrating the fifth instrument immobilizer where the first retaining member and second retaining member immobilize an instrument.



FIG. 19 is a top view of a sixth instrument immobilizer.



FIG. 20 is a top view illustrating the sixth instrument immobilizer where the socket slot and socket immobilize an instrument.



FIG. 21 is a perspective view of another example of the lid for the sixth instrument immobilizer having multiple slots and corresponding sockets.



FIG. 22 is a top view illustrating generally the first instrument immobilizer where the cover pieces immobilize an instrument.



FIG. 23 is a perspective view of the second instrument immobilizer with the latch piece in the closed position where the latch piece immobilizes an instrument.



FIG. 24 is a perspective view of the third instrument immobilizer with the clasp in the closed position where the clasp immobilizes an instrument.



FIG. 25 is a perspective view of an apparatus for positioning an instrument immobilizer within a burr hole.



FIG. 26 is a top view of an instrument immobilizer coupled to an apparatus for positioning an instrument immobilizer.



FIG. 27 is an exploded view of an apparatus for positioning an instrument immobilizer, an instrument immobilizer, a cap and a burr hole having including a countersink.



FIG. 28 is a perspective view of another example of an apparatus for positioning an instrument immobilizer within a burr hole.



FIG. 29 is a perspective view of yet another example of an apparatus for positioning an instrument immobilizer within a burr hole.



FIG. 30 is an exploded view of still another example of an apparatus for positioning an instrument immobilizer within a burr hole.



FIG. 31A is an exploded view of an additional example of an apparatus for positioning an instrument immobilizer within a burr hole.



FIG. 31B is an exploded view of a further example of an apparatus for positioning an instrument immobilizer within a burr hole.



FIG. 31C is an exploded view of a supplementary example of an apparatus for positioning an instrument immobilizer within a burr hole.



FIG. 32 is a block diagram illustrating generally, by way of example, and not by way of limitation, a first method to immobilize an instrument.



FIG. 33 is a block diagram illustrating generally, by way of example, and not by way of limitation, a second method to immobilize an instrument.



FIG. 34 is a block diagram illustrating generally, by way of example, and not by way of limitation, a third method to immobilize an instrument.



FIG. 35 is a block diagram illustrating generally, by way of example, and not by way of limitation, a fourth method to immobilize an instrument.



FIG. 36 is a block diagram illustrating generally, by way of example, and not by way of limitation, a fifth method to immobilize an instrument.



FIG. 37 is a block diagram illustrating generally, by way of example, and not by way of limitation, a sixth method to immobilize an instrument.



FIG. 38 is a block diagram illustrating generally, by way of example, and not by way of limitation, a first method to position an instrument immobilizer.



FIG. 39 is a side view of one example of a countersinking drill bit for cutting a countersink into a burr hole.



FIG. 40 is a block diagram illustrating generally, by way of example, and not by way of limitation, a second method to position an instrument immobilizer.



FIG. 41 is a block diagram illustrating generally, by way of example, and not by way of limitation, a third method to position an instrument immobilizer.





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that the embodiments may be combined, or that other embodiments may be utilized and that structural, logical and electrical changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims and their equivalents.


In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one. Furthermore, all publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this documents and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.



FIGS. 1-5 and 22 illustrate various views of a first embodiment of a low-profile instrument immobilizer for securing a flexible recording or stimulating electrode or the like, or other instrument (such as a catheter for fluid aspiration or drug, cell, or substance infusion) after it has been introduced through a burr hole or other entry portal to a desired target location in the brain.



FIG. 1 is a top view illustrating generally, by way of example, but not by way of limitation, portions of instrument immobilizer 100. In this example, instrument immobilizer 100 includes a hoop-like base 102 (also referred to herein as a “hoop”). The hoop 102 is sized and shaped for being circumferentially disposed about a burr hole (which, in this document, is understood to include a twist drill hole) or other entry portal of a desired size. Burr holes typically range in diameter between about 6 millimeters to about 14 millimeters. In this example, hoop 102 includes holes 104A-B or other passages for receiving corresponding bone screws or the like therethrough for securing hoop 102 to a subject's skull (or other desired location upon the subject). In this example, hole 104A is located on an opposite side of hoop 102 from hole 104B. In operation, hoop 102 is secured to the skull before the electrode or other instrument is inserted to the desired location in the patient's brain. The electrode or other instrument (for example an aspiration catheter or an infusion catheter) is inserted through the circular center passage defined by hoop 102.


In this example, instrument immobilizer 100 includes a two-piece sliding cover including cover pieces 106A-B. Each cover piece 106A-B is sized and shaped to be inserted through a corresponding side slot 108A-B in an opposing side of hoop 102. Each piece of cover piece 106A-B also has a snap-fit or other catch 109A-B, such as a deformable tab, that engages a portion of hoop 102 when that cover piece 106A or 106B has been fully inserted. Catches 109A-B hold their corresponding cover piece 106A-B in place after it has been fully inserted. Alternatively, the instrument immobilizer includes a one-piece sliding cover that, in one example, the single cover piece substantially covers the circular center passage when fully inserted through a corresponding side slot.



FIG. 2 is a top view illustrating generally an example of portions of instrument immobilizer 100 after cover pieces 106A-B have been partially inserted into respective slots 108A-B in opposing sides of hoop 102. FIG. 3 is a perspective view illustrating generally an example of portions of instrument immobilizer 100 after cover pieces 106A-B have been partially inserted into respective slots 108A-B of hoop 102. FIG. 4 is a side view illustrating generally an example of portions of instrument immobilizer 100 after cover pieces 106A-B have been almost fully inserted into respective slots 108A-B of hoop 102. FIG. 5 is a top view illustrating generally an example of portions of instrument immobilizer 100 after cover pieces 106A-B have been fully inserted into respective slots 108A-B of hoop 102.


As illustrated generally in FIGS. 1-5, when cover pieces 106A-B have been fully inserted and pressed against each other, they substantially cover the center passage defined by hoop 102, except for a small circular opening 500 formed by aligned semi-circular cutouts 110A-B of cover pieces 106A-B. Also, when cover pieces 106A-B have been fully inserted and their respective beveled edges 112A-B are pressed against each other, a resulting trough, channel or groove 502 is formed. In this example, groove 502 aligns with exit grooves 114A-B in hoop 102, however, this is not required. In another example, one or more exit grooves 114A-B are disposed elsewhere about hoop 102, such as, for example, exit grooves 114 distributed about hoop 102 at regular intervals (e.g., every 30 degrees, etc.). Moreover, such differently disposed exit grooves 114 are also applicable to all of the other examples depicted and/or described in this document.



FIG. 22 is a top view illustrating an instrument immobilizer 100 retaining at least one wire electrode or other introduced instrument 2200 (e.g., a catheter). Once the instrument 2200 is retained by cover pieces 106A-B so as to immobilize the instrument, a portion of the instrument 2200 may be bent into a portion of groove 502 and one of exit grooves 114A-B to laterally exit hoop 102. In the above described example having multiple exit grooves 114A-B, the instrument 2200 may be bent into any one of the exit grooves 114A-B. The introduced instrument 2200 is retained and immobilized by the snug fit through opening 500. Additionally the instrument 2200 is further retained by snug positioning of a portion of the instrument 2200 within the groove 502 and one of the exit grooves 114A-B. Where the instrument 2200 is positioned within an exit groove 114A-B the instrument immobilizer 100 and instrument 2200, in one example, are covered by a cap that provides a semi-permanent fixture for both.



FIGS. 6-9 and 23 illustrate various views of a second embodiment of a low-profile instrument immobilizer for securing a flexible recording or stimulating electrode or the like (or other instrument, such as a catheter) after it has been introduced through a burr hole or other entry portal to a desired target location in the brain.



FIG. 6 is a perspective view illustrating generally, by way of example, but not by way of limitation, portions of instrument immobilizer 600. In this example, instrument immobilizer 600 includes a base 602 sized and shaped for being secured above and covering a similarly-sized burr hole or other entry portal. In this example base 602 includes a pair of semicircular pieces 602A-B. Base 602 includes holes 604A-B or other passages for receiving corresponding bone screws or the like therethrough for securing base 602 to a subject's skull (or other desired location upon the subject). In this example, hole 604A is located on an opposite side of base 602 from hole 604B. The holes 604A-B are, in this example, located on members 605A-B, which extend radially outward from base 602. In one example of operation, base 602 is secured to the skull by inserting a screw through one of the holes 604A-B. This permits the instrument immobilizer 600 to rotate about the axis of the screw through the one of the holes 604A-B. The instrument immobilizer 600 is rotated away from the burr hole in this manner, thereby providing access to the burr hole. The electrode or other instrument is inserted through the burr hole to the target location, as desired. The instrument immobilizer is then rotated back toward the burr hole about the axis of the screw through the one of the holes 604A-B such that the instrument extends through an access slot 606. The instrument can then be further secured, such as discussed below.


In this example, the access slot 606 extends across base 602, except for the presence of connecting member 608. The slot 606 permits access to the underlying burr hole or other entry portal, except for the obstruction of connecting member 608. Connecting member 608 provides a mechanical connection between two semicircular portions 602A-B of base 602. The semicircular portions 610A-B are separated by slot 606 and connecting member 608.


In this example, a latch 610 is eccentrically coupled to base 602 by coupling the latch to the base at a point offset from the center of the base. In the example of FIG. 6, the latch includes a semicircular latch piece 610 having a post 616 that is snap-fit into semicircular piece 602A of base 602. FIG. 6 illustrates latch piece 610 in an eccentrically-mounted open position. In this example, latch piece 610 includes a semicircular notch or cutout 612 that is sized to retain the electrode or other instrument snugly within slot 606 when latch piece 610 is moved to the closed position. After the instrument is axially positioned as desired within the slot 606, then the latch piece 610 is moved to the closed position and immobilizes the instrument. FIG. 7 is a side view of instrument immobilizer 600 with latch piece 610 in the open position. FIG. 8 is a perspective view of instrument immobilizer 600 with latch piece 610 in the closed position. FIG. 9 is a side view of instrument immobilizer 600 with latch piece 610 in the closed position.


In FIGS. 6-9, when latch piece 610 is in the closed position the semicircular shape of latch piece 610 aligns and conforms with the circumference of base 602 such that the peripheral profile of the latch piece 610 is coextensive with the peripheral profile of the base 602 when the immobilizer 600 is viewed from above.



FIG. 23 is a perspective view illustrating the instrument immobilizer retaining a wire electrode or other introduced instrument 2200 (for example a catheter as described above). In the closed position, the instrument 2200 is snugly retained within the semicircular cutout 612 between latch piece 610 and connecting member 608. In this example, the latch piece 610 is securable in the closed position by a detent 616 that extends from a lower surface of the latch piece 610. As generally shown in FIG. 6, the detent 616 engages the base 602 within a securing slot 618 defined by the base to secure the latch piece 610 in the closed position. The instrument 2200 may be laterally bent (e.g., such as at about a 90 degree angle, or otherwise) to laterally exit base 602. In this example, the laterally bent portion of the instrument 2200 may be wedged snugly under or along a tab (such as retaining member 614) disposed above slot 606. This further secures the instrument 2200 after immobilization by the latch piece 610.



FIGS. 10-14 illustrate various views of a third embodiment of a low-profile instrument immobilizer for securing a flexible recording or stimulating electrode or the like, or other instrument, after it has been introduced through a burr hole or other entry portal to a desired target location in the brain.



FIG. 10 is a top view illustrating generally, by way of example, but not by way of limitation, portions of instrument immobilizer 1000. In this example, instrument immobilizer 1000 includes a base 1002 sized and shaped for being secured such that it is cantilevered over at least a portion of a burr hole or other entry portal. In this example base 1002 includes a pair of approximately semicircular portions 1002A-B connected by connecting member portions 1002C-D. Base 1002 includes holes 1004A-B or other passages for receiving corresponding bone screws or the like therethrough for securing base 1002 to a subject's skull (or other desired location upon the subject). An optional slot or lateral groove 1006 extends between semicircular portions 1002A-B and connecting member portions 1002C-D of base 1002.


In this example, instrument immobilizer 1000 includes a semicircular shaped clasp 1008. The clasp 1008 is coupled at a first end to one of the semicircular portions 1002A-B by a hinge 1010. At a second end, the clasp 1008 includes a fastener 1012. In this example, the fastener 1012 includes a male snap-fitting, for securing to a mating female receptacle 1100 (FIG. 11) in the other of the semicircular portions 1002A-B when the clasp 1008 is moved from an open position to a closed position. In another example, the clasp 1008 is coupled at a first end to one of the semicircular portions 1002A-B with a flexible element, including but not limited to deformable plastic, or a hinge as described above. FIG. 11 is a top view of instrument immobilizer 1000 with clasp 1008 in the closed position. FIG. 12 is a perspective view of instrument immobilizer 1000 with clasp 1008 in its closed position. FIG. 13 is a side view of instrument immobilizer 1000 with clasp 1008 in its open position. FIG. 14 is a side view of instrument immobilizer 1000 with clasp 1008 in its closed position.



FIG. 24 is a perspective view of an instrument immobilizer retaining a wire electrode or other instrument 2200 (for example, a catheter for aspiration or substance infusion). The instrument immobilizer base 1002 is secured to the skull such that clasp 1008 is cantilevered over the burr hole or other entry portal. The electrode or other instrument is inserted through the burr hole or other entry portal to the desired location so the instrument is near the clasp 1008. In one option, the instrument is adjacent a side surface of the instrument immobilizer 1000. The clasp 1008 is then closed around the electrode or other instrument to snugly retain it. The electrode or other instrument is laterally bent into lateral groove 1006 and positioned snugly under cantilevered retaining members 1014A-B extending from semicircular portions 1002A-B over lateral groove 1006. As shown in FIG. 24, The electrode or other instrument is thereby immobilized by clasp 1008. Cantilevered retaining members 1014A-B and/or lateral groove 1006 are sized or otherwise configured to snugly conform to the electrode or other instrument. This provides additional snug retention of the electrode or other instrument.



FIGS. 15-16 illustrate various views of a fourth embodiment of a low-profile instrument immobilizer for securing a flexible recording or stimulating electrode or the like, or other instrument (a catheter, in one example), after it has been introduced through a burr hole or other entry portal to a desired target location in the brain.



FIG. 15 is a perspective view illustrating generally, by way of example, but not by way of limitation, portions of instrument immobilizer 1500 for securing an electrode 1502 or other instrument. In this example, instrument immobilizer 1500 includes a two-piece base 1504A-B. Base piece 1504A is sized and shaped for being disposed along a first side of a burr hole 1505 or other entry portal. Base piece 1504B is sized and shaped for being disposed along a second side of a burr hole or other entry portal. Each elongated base piece 1504A-B includes a corresponding hole 1506A-B, at a first end, for receiving a corresponding bone screw 1508A-B or the like therethrough for securing the corresponding base piece 1504A-B to the subject's skull. In one example, the bone screws 1508A-B and holes 1506A-B are disposed on opposite sides of the burr hole 1505. In another example, the base pieces 1504A-B are sized and shaped so bone screws 1508A-B and holes 1506A-B are disposed at non-opposed locations around the burr hole 1505. Each bone screw 1508A-B and corresponding hole 1506A-B provides a hinge about which the corresponding elongate base piece 1504A-B rotates, such as from the open position illustrated in FIG. 15 to a closed position, in which base pieces 1504A-B retain and immobilize the electrode or other instrument. In one option, the base pieces 1504A-B rotate about parallel axes. In another option the base pieces 1504A-B rotate within the same plane. FIG. 16 is a top view illustrating base pieces 1504A-B in a closed position, retaining and immobilizing a laterally bent electrode 1502.


In the example of FIGS. 15-16, base pieces 1504A-B are disposed such that when these pieces are rotated into the closed position of FIG. 16, male couplers 1508A-B (for example snap fittings) on base piece 1504A engage corresponding mating couplers 1510A-B on base piece 1504B. This fastens base pieces 1504A-B together to retain electrode 1502 therebetween. Electrode 1502 is further laterally bent into the groove 1512 of base piece 1504A. Groove 1512 is sized and shaped to snugly grasp electrode 1502 therein to further retain and immobilize electrode 1502.



FIG. 17 is a top view illustrating generally, by way of example, but not by way of limitation, a fifth embodiment of an instrument immobilizer, such as instrument immobilizer 1700. In this example, instrument immobilizer 1700 includes a hoop-like base 1702 (also referred to herein as a “hoop”) sized and shaped for being circumferentially disposed about a burr hole or other entry portal of a desired size. In this example, hoop 1702 includes holes 1704A-B or other passages for receiving corresponding bone screws or the like therethrough for securing hoop 1702 to a subject's skull (or other desired location upon the subject). In this example, hole 1704A is located on an opposite side of hoop 1702 from hole 1704B.


In this example, hoop 1702 defines a center passage therewithin, into which an insert 1706 is disposed. Insert 1706 includes at least one snap-fitting feature that allows insert 1706 to be snapped into hoop 1702. In one example, insert 1706 is inserted into the circular center passage of hoop 1702 such that insert 1706 rotates therewithin with respect to hoop 1702. In this example, the insert 1706 includes at least one detent disposed about the insert bottom surface and projecting to the side of the insert. The hoop 1702 includes a corresponding grooved surface disposed upon an intermediate surface therein. The at least one detent engages the grooved surface. This engagement prevents unwanted rotation of the insert 1706 with respect to the hoop 1702.


In FIG. 17, insert 1706 includes a rectangular or other access opening 1708. Retaining members 1710A-B are movably coupled to the insert 1706. In one example, the retaining members 1710A-B, include slidable retaining members carried substantially within access opening 1708. In one example, access opening 1708 includes opposing side slide rails that allow retaining members 1710A-B to slide toward and away from each other within access opening 1708. In the example of FIG. 17, sliding retaining members 1710A-B each have beveled edges 1712A-B and semicircular cutouts 1714A-B in center portions of beveled edges 1712A-B. When retaining members 1710A-B are positioned adjacent to each other, beveled edges 1712A-B form a lateral groove, and semicircular cutouts 1714A-B are aligned to each other to form a circular opening. In an alternative example, however, the semicircular cutouts 1714A-B are omitted.


In one example, retaining members 1710A-B include respective mating couplings to hold the retaining members in engagement with each other. In one option, the mating couplings include snap-fit features to maintain engagement between the retaining members 1710A-B. In another example, at least one of the retaining members 1710A-B includes an engagement coupling that secures the at least one of the retaining members 1710A-B relative to insert 1706. In one option, the engagement coupling includes a “one-way” toothed surface disposed substantially upon the side slide rails of the insert 1706. Corresponding tabs are disposed along the bottom edge of the at least one of the retaining members 1710A-B. The tabs engage the toothed surface and thereby allow slidable movement of the at least one of the retaining members 1710A-B in one direction, typically toward the other retaining member. In another option, both retaining members 1710A-B have tabs that engage toothed surfaces on the rails. When retaining members 1710A-B contact each other, the tabs engaging the toothed rails maintain engagement between the retaining members 1710A-B. The retaining members 1710A-B do not disengage from each other because the tabs and teeth prevent sliding away in the other direction. If it is desirable to move the retaining members 1710A-B in a direction counter to that allowed by the tabs and teeth the retaining members 1710A-B are pulled out of engagement with the side rails, disengaged from each other and repositioned within the side slide rails.



FIG. 18 is a top view illustrating instrument immobilizer 1700 retaining a wire electrode or other instrument 2200. In operation, hoop 1702 is secured and insert 1706 is inserted therein. An electrode or other instrument 2200 (for example an aspiration or infusion catheter) is inserted between retaining members 1710A-B to the desired location in the patient's brain. In one example, the insert 1706 is capable of being rotated about the instrument 2200. This provides added flexibility in the location for immobilization of the instrument. Retaining members 1710A-B are moved against each other to snugly retain and immobilize a portion of the instrument 2200, such as within the circular opening defined by semicircular cutouts 1714A-B. In another example, the semicircular cutouts 1714A-B are omitted and the instrument 2200 is compressibly retained between the beveled edges 1712A-B at a desired position anywhere along the beveled edges. The retaining members 1710A-B engage each other and/or the side rails (as discussed above) to immobilize the instrument 2200. If desired, the instrument 2200 can be bent into the lateral groove formed 1800 by beveled edges 1712A-B. In one example, the lateral groove 1800 aligns with one or more lateral exit grooves 1716A-B providing lateral access through hoop 1702, allowing the electrode or other instrument to laterally exit hoop 1702. In one example, the lateral groove 1800 and/or the lateral exit groove(s) 1716A-B are sized and shaped to snugly grasp and retain the instrument 2200. In another example, once the instrument 2200 is immobilized by the retaining member 1710A-B and grasped and retained by the lateral groove 1800 and/or lateral exit groove 1716A-B, a cap is affixed to the instrument immobilizer 1700.



FIG. 19 is a top view illustrating generally, by way of example, but not by way of limitation a sixth embodiment of an instrument immobilizer, such as instrument immobilizer 1900. In this example, instrument immobilizer 1900 includes a hoop-like base 1902 (also referred to herein as a “hoop”) sized and shaped for being circumferentially disposed about a burr hole or other entry portal of a desired size. In this example, hoop 1902 includes holes 1904A-B or other passages for receiving corresponding bone screws or the like therethrough for securing hoop 1902 to a subject's skull (or other desired location upon the subject). In this example, hole 1904A is located on an opposite side of hoop 1902 from hole 1904B.


In this example, hoop 1902 defines a center passage therewithin, into which a lid 1906 is disposed. Lid 1906 includes at least one snap-fitting feature that allows lid 1906 to be snapped into hoop 1902. In one example, lid 1906 rotates substantially within the circular center passage of hoop 1902. In another example, the lid 1906 includes at least one detent on its bottom surface, and the hoop 1902 includes a corresponding groove on or near its inner periphery. The at least one detent engages the groove. This prevents undesirable rotation of the lid 1906 with respect to the hoop 1902.


In this example, the lid 1906 includes a slot 1908. In one option, the slot 1908 has an arcuate geometry defined by the lid 1906 and extends across an angle of approximately 15 degrees. The slot 1908 extends from an outer edge 1920 of the lid 1906, tapering inward toward a center 1922 of the lid 1906. The slot includes at least one socket 1910. FIG. 19 illustrates the socket 1910 extending through the center of the lid 1906. However, the socket 1910 may alternatively be offset from the center of the lid 1906 to provide added flexibility in positioning and immobilizing an instrument. In one example, the slot 1908 narrows as it extends from the outer edge 1920 of the lid 1906 toward the socket 1910. In FIG. 19, just before reaching the socket 1910, the slot 1908 is slightly more narrow than the socket 1910 is wide. This provides a lip 1912 on the slot 1908 adjacent the socket 1910.



FIG. 20 is a top view illustrating a wire electrode or other instrument 2200 (e.g., a catheter, such as for aspiration or infusion of drug(s), cell(s) or other substances) that is immobilized by the instrument immobilizer 1900. In one example of operation, hoop 1902 is first secured. The instrument 2200 is then inserted through the hoop 1902 to the desired location in the patient's brain. In one example, the lid 1906 is then inserted into the hoop 1902 such that the instrument 2200 is disposed within a slot 1908. Inserting the lid 1906 after positioning the instrument 2200 provides additional flexibility for positioning the slot around the instrument 2200 so as to reduce or minimize any unwanted movement of the instrument 2200. The instrument 2200 is then advanced laterally within the slot 1908 toward the socket 1910. Upon reaching the lip 1912, a portion of the instrument 2200 and/or the lip 1912 deforms slightly to permit the instrument 2200 to enter the socket 1910 for retention and immobilization by the socket 1910. In one example, the hoop 1902 includes at least one lateral exit groove 1916 and the lid 1906 includes at least one lateral exit groove 1918. The lid 1906 is positionable to permit groove 1918 to align with one of the lateral exit grooves 1916. A portion of the instrument 2200 is then bent and positioned within the groove 1918 and lateral exit groove 1916 where it is retained snugly therein. This further immobilizes the instrument 2200. In one example, a cap is affixed to the instrument immobilizer 1900.



FIG. 21 is a perspective view of another embodiment of a lid 2100 usable with the instrument immobilizer 1900 illustrating generally multiple slots 2102, sockets 2104 and lips 2106. The lid 2100, as illustrated in the example of FIG. 21, is operable to retain and immobilize up to three instruments. Alternately, the lid 2100 is operable to retain an instrument in multiple positions for flexibility of immobilization. Similar configurations can be used to immobilize fewer or greater instruments.



FIG. 25 is a perspective view illustrating generally, by way of example, but not by way of limitation a seat assembly 2500. In this example, the seat assembly 2500 includes a seat 2502 sized and shaped for being disposed within a burr hole. In one example, the seat has a geometry corresponding to the burr hole, for example a circular shape. In an example, the seat 2502 is constructed from a deformable material having a shape memory property, for example a thermoplastic, which goes by the trade name GRILAMID, and is registered to EMS-Grivory. In another example, the seat 2502 is constructed with polycarbonate. In another example, the seat 2502 includes prongs 2504. The prongs 2504, in one option, are joined substantially adjacent to a bridge 2506. In one example, as shown with arrows 2508, the prongs 2504 are deformable. In another example, the prongs 2504 are pinched and the ends of the prongs 2504 move into the gap 2510. When released, the prongs 2504 expand back toward their original position. In one example, the prongs 2504 are pinched together while inserting the seat assembly 2500 within the burr hole. The prongs 2504 are then released to expand so the outer surfaces of the prongs 2504 engage the inner cylindrical surface defining the burr hole to snugly hold the seat assembly 2500 within the burr hole. In still another example, cavities 2512 are provided in the ends of the prongs 2504. The cavities 2512 allow forceps, or the like, to grasp and pinch the prongs 2504 by inserting the forceps into the cavities 2512.


The seat assembly also includes a collar 2514 coupled to the seat 2502 by the bridge 2506. In one example, the collar 2514 is suspended within the burr hole by the bridge 2506. In other words, the collar 2514 is suspended within a space 2516 defined by the inner surfaces of the seat 2502. In an alternative embodiment, the collar 2514 is disposed above or below the plane defined by the seat 2502. Optionally, where the collar 2514 is disposed below or above the seat 2502 at least the outer surface of the collar 2514 may have a greater circumference than the inner surface of the seat 2502. In another example, the bridge 2506 spans a distance between the seat 2502 and the collar 2514 substantially equal to the distance between the inner surface of the seat 2502 and the outer surface of the collar 2514. In one example, the collar 2514 is spaced from the seat 2502 so where the prongs 2504 are in an undeformed or deformed condition they do not contact the collar 2514. In an example, the collar 2514 defines a socket 2518 and is dimensioned and configured to retain an instrument immobilizer seated therein, for example instrument immobilizer insert 1706. In still another example, the seat assembly 2500 and instrument immobilizer insert 1706 are integral to each other.



FIG. 26 is a top view showing instrument immobilizer insert 1706 seated within the socket provided by the collar 2514 of the seat assembly 2500. In one example, the collar 2514 includes a slit 2600 sized and shaped to pass an instrument therethrough. The instrument immobilizer insert 1706, in another example, includes a corresponding slit 2602 sized and shaped to pass an instrument between the retaining members 1710A-B. The slit 2602 is aligned with the slit 2600 to permit movement of the instrument from outside the collar 2514 toward the retaining member 1710A, B. Optionally, the collar 2514 is dimensioned and configured to retain a variety of instrument immobilizer inserts, including, but not limited to, inserts configured like instrument immobilizers 100, 600, 1000, 1500, or 1900 and lid 2100. In one option, when using the seat assembly 2500 bone screws are not needed as the instrument immobilizer is snugly retained by the collar 2514 and the seat 2502 is retained within the burr hole by the prongs 2504.



FIG. 27 is an exploded view showing one example of a burr hole 2700, seat assembly 2500, instrument immobilizer insert 1706 and cap 2701. In this example, the burr hole 2700 includes a countersink 2702. At least a portion of the inner surface 2704 of the burr hole 2700 and a shelf 2706 within the burr hole 2700 define the countersink 2702. In one example, the lower surface of the seat 2502 is disposed on the shelf 2706 and the outer surfaces of the prongs 2504 are snugly coupled to the inner surface 2704 of the burr hole 2700. In another example, the cap 2701 is disposed over the instrument immobilizer and snugly coupled to the instrument immobilizer and/or the seat assembly 2500. Optionally, the cap 2701 covers the instrument immobilizer and an instrument immobilized therein and provides a semi-permanent fixture for both. In another option, the cap 2701 is constructed with a biocompatible polymer (e.g. santoprene, polyurethane, silicone or the like). In yet another option, the cap 2701 is constructed with a deformable material so the cap 2701 may be press fit around the seat assembly 2500. The seat assembly 2500 and the instrument immobilizer insert 1706 optionally include slits 2600, 2602 as shown in FIG. 26 and described above.



FIG. 28 is a perspective view of another example of a seat assembly 2800. In one example, the seat assembly 2800 is substantially cylindrical and dimensioned and configured to snugly couple with an inner surface of a burr hole. In one option, the burr hole has a substantially cylindrical geometry corresponding to the seat assembly 2800. In another example, the seat assembly 2800 includes threading 2802 along an outer surface of the seat assembly 2800 for securing the seat assembly 2800 within the burr hole. Optionally, the threading 2802 is self tapping and correspondingly threads the bone surface defining the burr hole as the seat assembly 2800 is inserted in the burr hole. In yet another example, the outer surface of the seat assembly 2800 is smooth and is dimensioned and configured to be press fit into the burr hole.


An inner surface of the seat assembly 2800 defines an access lumen 2804. In one option, the access lumen 2804 is dimensioned and configured so an instrument immobilizer, for example, instrument immobilizer insert 1706 is capable of being disposed within the access lumen 2804. In yet another example, the seat assembly 2800 includes a collar 2806. In one option, the collar 2806 extends from the inner surface of the seat assembly 2800 and forms an annular ridge within the access lumen 2804. In another option, the collar 2806 is a discontinuous flange within the access lumen 2804. The collar 2806 is dimensioned and configured to couple with an instrument immobilizer such as instrument immobilizer insert 1706. In one example, the collar 2806 includes at least one snap fitting 2805 sized and shaped to engage with a corresponding projection, such as snap fitting 2807, on the instrument immobilizer insert 1706 to retain the insert 1706 in the collar 2806. The snap fitting 2805 defines a socket and is sized and shaped to receive the snap fitting 2807. In another example, the collar 2806 is dimensioned and configured to retain a variety of instrument immobilizer inserts, including, but not limited to, inserts configured like instrument immobilizers 100, 600, 1000, 1500, or 1900 and lid 2100.


In one option, when the seat assembly 2800 is inserted within the burr hole the seat assembly 2800 is substantially flush with the surface of the skull or disposed beneath the surface of the skull. In another option, when the instrument immobilizer insert 1706 is coupled to the seat assembly 2800 and the seat assembly 2800 is inserted within the burr hole, the insert 1706 is substantially flush with the surface of the skull or disposed beneath the surface of the skull. Optionally, the seat assembly 2800 and instrument immobilizer insert 1706 present no profile above the surface of the skull when inserted within the burr hole.


In another example, the seat assembly 2800 includes tool cavities 2808. In one option, the multiple tool cavities 2808 are formed in an end surface 2810 of the seat assembly 2800. In another option, the tool cavities 2808 are dimensioned and configured to receive the tines of a driving instrument. Optionally, the driving instrument is used to turn the threaded seat assembly 2800 and screw the seat assembly 2800 into the burr hole.



FIG. 29 is a perspective view of yet another example of a seat assembly 2900. In some respects, seat assembly 2900 is similar to seat assembly 2800. In one example, seat assembly 2900 includes threading 2902 similar to seat assembly 2800. In one option, the threading 2902 is self tapping and correspondingly threads the bone surface defining the burr hole as the seat assembly 2800 is inserted in the burr hole. The seat assembly 2900 includes a flange 2903. In one example, the flange 2903 extends radially from an access lumen 2905 and has a sloping geometry to create a smooth profile over the skull when the seat assembly 2900 is disposed within the burr hole. In another example, the flange 2903 is an annular ridge extending around the seat assembly 2900.


In another example, the flange 2903 includes tool cavities 2904. The tool cavities 2904 are dimensioned and configured to receive the tines of a driving instrument. Optionally, the driving instrument is used to turn the threaded seat assembly 2900 and screw the seat assembly 2900 into the burr hole. The flange 2903 serves as a depth stop as the seat assembly 2900 is driven into burr hole. In one option, the flange 2903 positions the seat assembly 2900 at a predetermined depth within the burr hole.



FIG. 30 is an exploded view of still another example of a seat assembly 3000. In some respects, seat assembly 3000 is similar to seat assemblies 2800, 2900. Seat assembly 3000 includes tool cavities 3002 that extend through the flange 3004. In another option, the tool cavities 3002 receive fasteners such as screws 3006 or the like that are driven into the skull. The screws 3006 secure the seat assembly 3000 to the skull. The outer surface of the seat assembly 3000 is smooth and is dimensioned and configured to be press fit into a burr hole. The press fit engagement of the seat assembly 3000 temporarily retains the seat assembly 3000 within the burr hole. Optionally, the seat assembly 3100 is then securely coupled to the surface around the burr hole with fasteners, such as screws 3006, described above. Optionally, the outer surface of the seat assembly 3000 includes threading similar to the outer surfaces of the seat assemblies 2800, 2900, described above.



FIG. 31A is an exploded view of another example of a seat assembly 3100A. In one example, the seat assembly 3100A is cylindrical and dimensioned and configured to snugly couple with an inner surface of the burr hole 3103. In another example, the seat assembly 3100A includes threading 3106 along an outer surface for securing the seat assembly 3100A within the burr hole 3103. In yet another example, the outer surface of the seat assembly 3100A is smooth and is dimensioned and configured to be press fit into the burr hole 3103. In still another example, seat assembly 3100A includes tool cavities 3102 in an end surface 3104. As described above with the seat assemblies 2800, 2900, 3000, the tool cavities 3102 are dimensioned and configured to receive the tines of a driving instrument for inserting the seat assembly 3100A within the burr hole 3103.


An inner surface of the seat assembly 3100A defines an access lumen 3111. In one example, an instrument immobilizer, for example, instrument immobilizer insert 1706 is coupled to the seat assembly 3100A and disposed above the access lumen 3111. In one option, the instrument immobilizer insert 1706 has an outer perimeter substantially corresponding to the outer perimeter of the seat assembly 3100A. As a result, the instrument immobilizer insert 1706 has an outer perimeter substantially corresponding to an inner perimeter of the burr hole 3103. Optionally, the instrument immobilizer insert 1706 has a diameter of about 14 millimeters.


Optionally, at least one of the seat assembly 3100 and the insert 1706 includes projections and/or sockets sized and shaped to couple the insert 1706 with the seat assembly 3100 by a snap fit. In one example, the instrument immobilizer insert 1706 includes projections, such as posts 3108, extending from one face of the insert 1706. In one option, the posts 3108 are dimensioned and configured to snugly fit within the tool cavities 3102. In another option, the posts 3108 include snap fittings 3110. In yet another option, the tool cavities 3102 include corresponding sockets 3112 dimensioned and configured to receive the snap fittings 3110. The snap fittings 3110 and sockets 3112 are dimensioned and configured to snugly couple the instrument immobilizer insert 1706 to the seat assembly 3100. In another example, the seat assembly 3100 is dimensioned and configured to snugly couple with a variety of instrument immobilizer inserts, including, but not limited to, inserts configured like instrument immobilizers 100, 600, 1000, 1500, or 1900 and lid 2100.



FIG. 31B shows another example of a seat assembly 3100B. The instrument immobilizer insert 1706 has a slightly smaller outer perimeter than the outer perimeter of the seat assembly 3100B. The instrument immobilizer insert 1706 is coupled to the inner surface of the seat assembly 3100B that defines the access lumen 3111. In one example, the seat assembly 3100B includes an annular ridge on the inner surface that defines a collar 3114. The collar 3114 includes at least one snap fitting 3116 sized and shaped to engage with a corresponding projection, such as snap fitting 3118, on the instrument immobilizer insert 1706 to retain the insert 1706 in the collar 3114. The snap fitting 3116 defines a socket and is sized and shaped to receive the snap fitting 3118. In another example, the collar 2806 is dimensioned and configured to retain a variety of instrument immobilizer inserts, including, but not limited to, inserts configured like instrument immobilizers 100, 600, 1000, 1500, or 1900 and lid 2100.


In another example, the seat assembly 3100B includes a cap 3120 sized and shaped to cover the instrument immobilizer insert 1706. At least one of the seat assembly 3100B and the cap 3120 includes projections and/or sockets sized and shaped to couple the cap 3120 with the seat assembly 3100B by a snap fit. In one option, the cap 3120 includes projections, such as posts 3108, extending from one face of the cap 3120. In one option, the posts 3108 are dimensioned and configured to snugly fit within tool cavities 3102. In another option, the posts 3108 include snap fittings 3110. In yet another option, the tool cavities 3102 include corresponding sockets 3112 dimensioned and configured to receive the snap fittings 3110. The snap fittings 3110 and sockets 3112 are dimensioned and configured to snugly couple the cap 3120 to the seat assembly 3100B.



FIG. 31C shows another example of a seat assembly 3100C. The seat assembly 3100C has an integral instrument immobilizer such as instrument immobilizer 1706. In one option, the instrument immobilizer 1706 is formed with the rest of the seat assembly 3100C (e.g., by molding, machining and the like). In another option, the instrument immobilizer 1706 is bonded with the seat assembly 3100C with adhesives, welds (e.g., ultrasonic welding) and the like. In yet another example, the seat assembly 3100C includes a variety of integral instrument immobilizers, including, but not limited to, immobilizers configured like instrument immobilizers 100, 600, 1000, 1500, or 1900 and lid 2100. The seat assembly 3100B, in still another example, includes a cap such as cap 3120 (FIGS. 31A, B) sized and shaped to cover the instrument immobilizer 1706.


Referring again to FIGS. 31 A-C, in one example, when the seat assembly 3100A-C is inserted within the burr hole the seat assembly 3100A-C is substantially flush with the surface of the skull or disposed beneath the surface of the skull. In another option, when the instrument immobilizer insert 1706 is coupled to the seat assembly 3100A, B and the seat assembly 3100A, B and insert 1706 are inserted within the burr hole, the insert 1706 and/or the seat assembly 3100A, B are substantially flush with the surface of the skull or disposed beneath the surface of the skull. Optionally, the seat assembly 3100A-C and instrument immobilizer insert 1706 present no profile above the surface of the skull when inserted within the burr hole.


In the above examples (aspects of which can be combined with each other), the components of instrument immobilizers 100, 600, 1000, 1500, 1700, 1900, lid 2100, and seat assemblies 2500, 2800, 2900, 3000, 3100 may be manufactured from molded plastic and are MRI compatible. The bone screws used for securing the instrument immobilizers may be manufactured from stainless steel. In one example, such bone screws include imaging fiducial markers integral or attachable thereto. Additionally, in other embodiments of the above examples the exit grooves are disposed at various locations (for example, at regular intervals) about the instrument immobilizers 100, 600, 1000, 1500, 1700, and 1900 to provide flexibility in the placement of the instruments when immobilized. Instrument immobilizers 100, 600, 1000, 1500, 1700, 1900, lid 2100, and seat assemblies 2500, 2800, 2900, 3000, 3100 are not limited to use in conjunction with skull burr holes in neurosurgery, but may be secured at other locations of a patient for securing an electrode or other surgical instrument (for example catheters used for aspiration or infusion), or about or within an entry portal in other objects into which an instrument has been introduced, and which requires immobilization. The above examples provide instrument immobilizers that are designed to advantageously provide a low-profile (e.g., small height) above or flush to the patient's skull. By way of example, but not by way of limitation, in one embodiment, instrument immobilizer 100 provides a height of less than about 0.1 inches, instrument immobilizer 600 provides a height of less than about 0.08 inches, instrument immobilizer 1000 provides a height of less than about 0.08 inches, instrument immobilizer 1500 provides a height of less than about 0.065 inches, instrument immobilizer 1700 provides a height of less than about 0.1 inches, instrument immobilizer 1900 and lid 2100 provide a height of less than about 0.1 inches, and seat assemblies 2500, 2800, 3100 and instrument immobilizer 1700 provide a height of 0.0 inches.



FIG. 32 is a block diagram of a method 3200 for immobilizing an instrument, for example an electrode or catheter. At 3202, an instrument is disposed within a passage of an instrument immobilizer base. At 3204, a first cover piece and a second cover piece are advanced toward the instrument as shown, for example, in FIGS. 1 and 22 with the instrument immobilizer 100 having cover pieces 106A, 106B. At 3206 the first cover piece and the second cover piece are engaged against the instrument to immobilize the instrument therebetween.


Several variations are possible. One example includes sliding the first cover piece through a slot in the instrument immobilizer base and sliding the second cover piece through another slot in the instrument immobilizer base. Another example includes grasping and/or retaining a portion of the instrument within a groove defined by the first and second cover piece.



FIG. 33 is a block diagram of a method 3300 for immobilizing an instrument. At 3302, an instrument is disposed within a passage of an instrument immobilizer base. At 3304, a latch including a notch is rotated toward the instrument as shown, for example, in FIGS. 6 and 23 with the instrument immobilizer 600 having the latch 610 and the notch 612. At 3300 the instrument is engaged against the latch to immobilize the instrument, where the surface defining the notch engages the instrument.


Several variations are possible. One example includes retaining the latch against the instrument by engaging a portion of the latch to a mating portion of the instrument immobilizer base. In another example, a portion of the instrument is laterally positioned against the instrument immobilizer base, and the portion of the instrument is tucked under an overlying retaining member that holds the portion of the instrument against the instrument immobilizer base.



FIG. 34 is a block diagram of a method 3400 for immobilizing an instrument. At 3402, an instrument immobilizer base is cantilevered above a burr hole as shown, for example, in FIGS. 10 and 24 with the instrument immobilizer 1000. At 3404, the instrument is disposed near a side of the instrument immobilizer base. In one example, the instrument is disposed adjacent a side of the instrument inmobilizer base. At 3406 the clasp is advanced around the instrument by rotating the clasp about a first end of the clasp. At 3408, another end of the clasp is engaged with the instrument immobilizer base to immobilize the instrument.


Several variations are possible. One example includes positioning a portion of the instrument laterally against the instrument immobilizer base, and tucking the instrument under a retaining member overlying the instrument and a groove. Another example includes snap-fitting the clasp to the instrument immobilizer base.



FIG. 35 is a block diagram of a method 3500 for immobilizing an instrument. At 3502, an instrument is positioned between a first base piece and a second base piece as shown, for example, in FIGS. 15 and 16 with the instrument immobilizer 1500 having base pieces 1504A, 1504B. At 3504, the first base piece is rotatably advanced toward the instrument. In one example, the first base piece is rotatably coupled to a surface. At 3506, the first base piece and the second base piece are engaged against the instrument to immobilize the instrument therebetween.


Several variations are possible. One example includes rotatably advancing the second base piece toward the instrument, where the second base piece is rotatably coupled with the surface. Another example includes snapping the first base piece together with the second base piece. In still another example, a portion of the instrument is positioned within a groove defined by one of the first base piece or the second base piece.



FIG. 36 is a block diagram of a method 3600 for immobilizing an instrument. At 3602, an instrument is disposed within a passage of an instrument immobilizer base. At 3604, a first retaining member and a second retaining member are advanced toward the instrument as shown, for example, in FIGS. 17 and 18 with the instrument immobilizer 1700 having the retaining members 1710A, 1710B. At 3606, the first retaining member and second retaining member are engaged against the instrument to immobilize the instrument.


Several variations are possible. One example includes coupling an insert with an instrument immobilizer base. In another example, a portion of the instrument is received along edges of the first and second retaining member.



FIG. 37 is a block diagram of a method 3700 for immobilizing an instrument. At 3702, an instrument is disposed within a tapered slot of an instrument immobilizer base as shown, for example, in FIGS. 19 and 20 with the instrument immobilizer 1900 having tapered slot 1908. At 3704, the instrument is moved along the tapered slot until the instrument is grasped by the tapered slot and immobilized.


Several variations are possible. One example includes disposing a second instrument within a second tapered slot of the instrument immobilizer base, and moving the second instrument along the second tapered slot until the second instrument is grasped by the second tapered slot and immobilized. In another example, a portion of the instrument is received laterally along the instrument immobilizer base.



FIG. 38 is a block diagram of a method 3800 for positioning an instrument immobilizer. At 3802 a seat is coupled to a surface defining a countersink, such as countersink 2702 shown in FIG. 27. At 3804, the instrument immobilizer is disposed within a collar coupled to the seat by a bridge. One example of a seat and collar is shown in FIG. 25 including the seat 2502 and collar 2514.



FIG. 39 is a side view of a countersinking drill bit 3900. In another example, a countersink is cut around the burr hole. Optionally, coupling the seat to the surface defining the burr hole includes coupling the seat to the surface defining the countersink. In one example the countersink is made with the countersinking drill bit 3900 having a central bore 3902 substantially corresponding in size to the burr hole drilled in a skull. The countersinking drill bit 3900 further includes surrounding blades 3904 that extend from the central bore 3902. The central bore 3902 is inserted within the burr hole and the countersinking drill bit 3900 is spun and the surrounding blades 3904 advanced into the skull to define the countersink. In another example, the countersinking drill bit 3900 includes a depth stop flange 3906 above the surrounding blades 3904 to maintain the desired depth of the countersink.


Several variations are possible. One example includes disposing an instrument within a passage of the instrument immobilizer. Another example includes advancing a first cover piece and a second cover piece (e.g. first and second cover pieces 1710A, 1710B) toward the instrument and engaging the first cover piece and the second cover piece against the instrument to immobilize the instrument therebetween. Yet another example includes deforming the seat to fit within the burr hole and releasing the seat so it expands and engages against the surface defining the burr hole. Optionally, deforming the seat is performed without deforming the collar. In another option, disposing the seat within the burr hole is performed prior to disposing the instrument immobilizer within the collar.



FIG. 40 is a block diagram of a method 4000 for positioning an instrument immobilizer. At 4002, a seat is disposed within a burr hole. At 4004, the instrument immobilizer is coupled to a collar of the seat and the instrument immobilizer and/or the seat are flush with an upper surface around the burr hole (e.g. the outer surface of the skull). Optionally, the instrument immobilizer and/or the seat are below the upper surface. In one example, the inner perimeter of the seat defines an access lumen and the collar extends radially inward into the access lumen. In another example, the instrument immobilizer substantially covers the access lumen. One example of a seat and collar is shown in FIG. 28 including the seat 2800 and collar 2806.


Several variations are possible. One example includes snap fitting the instrument immobilizer to the collar. Another example includes screwing the seat into the burr hole. Optionally, the outer perimeter of the seat includes threading. Yet another example includes coupling the instrument immobilizer to the collar of the seat after disposing the seat within the burr hole. Another option includes engaging a flange with an upper surface around the burr hole, wherein the flange extends radially from an outer perimeter of the seat.



FIG. 41 is a block diagram of a method 4100 for positioning an instrument immobilizer. At 4102, a seat is disposed within a burr hole. Examples of seats are shown in FIGS. 31A-C including the seats 3100A-C. At 4104, the instrument immobilizer is coupled to the seat. Optionally, the instrument immobilizer has an outer perimeter substantially corresponding to an inner perimeter of the burr hole. In another example, the seat defines an access lumen. In yet another example, the instrument immobilizer and/or the seat are flush with the upper surface around the burr hole (e.g. the outer surface of the skull). Optionally, the instrument immobilizer and/or the seat are below the upper surface.


Several variations are possible. One example includes snap fitting the instrument immobilizer to an end surface of the seat. Another example includes disposing a post having a snap fitting within a socket dimensioned and configured to receive the snap fitting. Yet another example includes screwing the seat into the burr hole where the outer perimeter of the seat includes threading. Optionally, coupling the instrument immobilizer to the seat is performed after disposing the seat within the burr hole.


Although the above examples have discussed immobilizing an electrode, these examples are also applicable to immobilizing any other instrument, including, but not limited to instruments for surgical, therapeutic, or diagnostic use, including use in non-medical fields where immobilization of an instrument is advantageous. Some examples of such other medical instruments include, by way of example, but not by way of limitation, a catheter (e.g., for aspiration or for infusion of a drug, cells, or another substance), a probe for measuring pressure, temperature, or some other parameter, a biopsy or other needle. Moreover, certain of the above examples that provide a cover for a burr hole or other entry portal may be useful for serving this function as well, even without securing and immobilizing an instrument. Further, in some of the examples above, the instrument immobilizers may be positioned within a burr hole using the seat assembly. Additionally, in other examples, an instrument immobilizer and the seat assembly may be made integral. Furthermore, in the above examples, one or more of such components may be coated, impregnated, or otherwise provided with a drug or other therapeutic agent for delivery to the site at which such component(s) are located. Examples of such agents include steroids or other anti-inflammatory agents, or anti-infection agents such as antibiotics or antiviral drugs.


It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments may be used in combination with each other. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.

Claims
  • 1. An apparatus to immobilize an instrument relative to a patient, comprising: a base having an exterior wall sized and shaped to be disposed about a portal into the patient, wherein the exterior wall forms a central passage through the exterior wall to the portal and at least one hole formed through the base separate from the central passage configured to have a fastener passed therethrough to fasten the base to the patient; andan insert sized and shaped to be removably disposed within the central passage, the insert having an internal wall that forms an access opening through the insert having a fixed opening size;a first retaining member movably coupled to the insert and having a first edge, the first retaining member movable within the access opening having the fixed opening size; anda second retaining member having a second edge, the second edge moveable within the access opening having the fixed opening size;wherein the first retaining member and second retaining member maintain the first edge opposed to the second edge throughout their full range of movement relative to one another within the access opening;wherein the first retaining member and the second retaining member are configured to move to engage the instrument within the access opening and configured to hold the instrument therebetween that is extending through the central passage, the access opening, and into the portal.
  • 2. The apparatus of claim 1, wherein the insert is configured to be rotated when disposed within the central passage of the base.
  • 3. The apparatus of claim 1, wherein the insert is capable of being rotated around the instrument.
  • 4. The apparatus of claim 1, wherein the exterior wall is an annular wall of the base and forms a lateral exit groove that extends from the central passage to an exterior surface of the exterior wall.
  • 5. The apparatus of claim 4, wherein the lateral exit groove is configured to receive the instrument and shaped to retain a portion of the instrument within the lateral exit groove.
  • 6. The apparatus of claim 1, wherein the at least one hole formed through the base includes a first hole and a second hole; wherein the first hole is opposite the second hole relative to the central passage.
  • 7. The apparatus of claim 1, further comprising: a cap configured to be affixed to the base.
  • 8. The apparatus of claim 7, wherein the cap is sized and shaped to cover the insert and the central passage.
  • 9. The apparatus of claim 1, wherein the base is substantially a toroid shape.
  • 10. The apparatus of claim 1, wherein the first retaining member and the second retaining member movable within the insert engages the instrument to retain.
  • 11. The apparatus of claim 1, wherein the first retaining member has an edge that forms a first semicircular cutout and the second retaining member has an edge that forms a second semicircular cutout.
  • 12. The apparatus of claim 11, wherein the first semicircular cutout and the second semicircular cutout are configured to form a substantially circular opening when the first retaining member and the second retaining member are positioned adjacent to one another.
  • 13. The apparatus of claim 1, wherein the insert includes at least one detent and the base includes at least one grooved surface to engage the at least one detent.
  • 14. An apparatus to immobilize an instrument relative to a patient, comprising: a base having an exterior wall sized and shaped to be disposed about a portal into the patient, wherein the exterior wall forms a central passage through the exterior wall to the portal and at least one hole formed through the base separate from the central passage configured to have a fastener passed therethrough to fasten the base to the patient; andan insert sized and shaped to be disposed within the central passage, the insert having an internal wall that forms an access opening through the insert;a first retaining member having a first edge and a second retaining member having a second edge moveable relative to one another;wherein the first retaining member and second retaining member maintain the first edge opposed to the second edge throughout their full range of movement relative to one another;wherein the first retaining member and the second retaining member are configured to move to engage the instrument within the access opening configured to hold the instrument therebetween that is extending through the central passage, the access opening, and into the portal;wherein the first edge is a first beveled edge and the second edge is a second beveled edge.
  • 15. A method of immobilizing an instrument relative to a patient, comprising: positioning a base having an exterior wall about a portal into the patient;fixing the base to the patient with a fastener positioned through at least one hole in the exterior wall;positioning an insert within a central passage formed in the exterior wall;moving a first retaining member having a first edge in a fixed size access opening in the insert and a second retaining member having a second edge in the fixed size access opening in the insert;wherein the first retaining member and second retaining member maintain the first edge opposed to the second edge throughout their full range of movement in the fixed size access opening and relative to one another;holding the instrument between the first edge and the second edge; andpositioning at least a portion of the instrument within a lateral exit groove of the base.
  • 16. The method of claim 15, further comprising: selecting a first lateral exit groove or a second lateral exit groove.
  • 17. The method of claim 15, further comprising: rotating the insert within the base prior to the holding the instrument between the first edge and the second edge.
  • 18. The method of claim 15, further comprising: fixing a cap to the base after the holding the instrument between the first edge and the second edge.
  • 19. The method of claim 15, further comprising: positioning the first retaining member and the second retaining member positioned adjacent to one another to form a substantially circular opening; andpositioning the instrument within the formed circular opening.
  • 20. An apparatus to immobilize an instrument relative to a patient, comprising: a hoop-shaped base having an exterior wall that forms a central passage and a grooved surface disposed upon an intermediate surface therein, the hoop-shaped base sized and shaped to be disposed about a cranial burr hole of the patient; andan insert rotatably received within the central passage, the insert having: a body having an insert exterior wall;at least one detent extending from the insert exterior wall and projecting to a side of the body to engage the grooved surface;a first retaining member moveable relative to a fixed size access opening formed in the body; anda second retaining member moveable relative to the fixed size access opening formed in the body;wherein the first retaining member and the second retaining member are configured to move toward and move away from one another within the fixed size access opening formed in the body and the first retaining member has a first engagement face and the second retaining member has a second engagement face;wherein the instrument is operable to be held between the first engagement face and the second engagement face; anda cap configured to be affixed to the hoop-shaped base with the insert within the central passage.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/828,136 filed on Mar. 13, 2014, which is a continuation of U.S. application Ser. No. 12/730,724 filed Mar. 24, 2010, now U.S. Pat. No. 9,901,713 issued on Feb. 27, 2018, which is a divisional of U.S. application Ser. No. 11/005,907 filed Dec. 6, 2004, now U.S. Pat. No. 7,704,260 issued Apr. 27, 2010, which claims benefit of PCT/US2003/028966 filed Sep. 17, 2003, which claims benefit of U.S. Provisional Application No. 60/411,309 filed Sep. 17, 2002. The entire disclosures of each of the above applications are incorporated herein by reference.

US Referenced Citations (390)
Number Name Date Kind
431187 Foster Jul 1890 A
438801 Delehanty Oct 1890 A
873009 Baxter Dec 1907 A
1129333 Clarke Feb 1915 A
1664210 Hall Mar 1928 A
2119649 Roosen Jun 1938 A
2135160 Beekhuis Nov 1938 A
2497820 Kielland Feb 1950 A
2659371 Schnee Nov 1953 A
2686890 Davis Aug 1954 A
3010347 Kron Nov 1961 A
3016899 Stenvall Jan 1962 A
3017887 Heyer Jan 1962 A
3055370 McKinney et al. Sep 1962 A
3055371 Kulick G et al. Sep 1962 A
3115140 Volkman Dec 1963 A
3135263 Connelley, Jr. Jun 1964 A
3223087 Vladyka et al. Dec 1965 A
3262452 Hardy et al. Jul 1966 A
3273559 Evans Sep 1966 A
3282152 Myer Nov 1966 A
3402710 Paleschuck Sep 1968 A
3444861 Schulte May 1969 A
3457922 Ray Jul 1969 A
3460537 Zeis Aug 1969 A
3508552 Hainault Apr 1970 A
3672352 Summers Jun 1972 A
3760811 Andrew Sep 1973 A
3783873 Jacobs Jan 1974 A
3817249 Nicholson Jun 1974 A
3893449 Lee et al. Jul 1975 A
3981079 Lenczycki Sep 1976 A
4013080 Froning Mar 1977 A
4025964 Owens May 1977 A
4026276 Chubbuck May 1977 A
4040427 Winnie Aug 1977 A
4131257 Sterling Dec 1978 A
4230117 Anichkov et al. Oct 1980 A
4265252 Chubbuck et al. May 1981 A
4312337 Donohue Jan 1982 A
4318401 Zimmerman Mar 1982 A
4328813 Ray May 1982 A
4341220 Perry Jul 1982 A
4345606 Littleford Aug 1982 A
4350159 Gouda Sep 1982 A
4355645 Mitani et al. Oct 1982 A
4360025 Edwards Nov 1982 A
4386602 Sheldon et al. Jun 1983 A
4418894 Mailliet et al. Dec 1983 A
4448195 LeVeen et al. May 1984 A
4463758 Patil et al. Aug 1984 A
4475550 Bremer et al. Oct 1984 A
4483344 Atkov et al. Nov 1984 A
4571750 Barry Feb 1986 A
4572198 Codrington Feb 1986 A
4579120 MacGregor Apr 1986 A
4592352 Patil Jun 1986 A
4598708 Beranek Jul 1986 A
4608977 Brown Sep 1986 A
4617925 Laitinen Oct 1986 A
4618978 Cosman Oct 1986 A
4629451 Winters et al. Dec 1986 A
4638798 Shelden et al. Jan 1987 A
4638804 Jewusiak Jan 1987 A
4660563 Lees Apr 1987 A
4665928 Linial et al. May 1987 A
4699616 Nowak et al. Oct 1987 A
4705436 Robertson et al. Nov 1987 A
4706665 Gouda Nov 1987 A
4733661 Palestrant Mar 1988 A
4755642 Parks Jul 1988 A
4791934 Brunnett Dec 1988 A
4793355 Crum et al. Dec 1988 A
4798208 Faasse, Jr. Jan 1989 A
4805615 Carol Feb 1989 A
4805634 Ullrich et al. Feb 1989 A
4807620 Strut et al. Feb 1989 A
4809694 Ferrara Mar 1989 A
4824436 Wolinsky Apr 1989 A
4826487 Winter May 1989 A
4869247 Howard, III et al. Sep 1989 A
4883053 Simon Nov 1989 A
4896673 Rose et al. Jan 1990 A
4902129 Siegmund et al. Feb 1990 A
4922924 Gambale et al. May 1990 A
4955891 Carol Sep 1990 A
4956897 Speedie Sep 1990 A
4957481 Gatenby Sep 1990 A
4986280 Marcus et al. Jan 1991 A
4986281 Preves et al. Jan 1991 A
4989608 Ratner Feb 1991 A
4991579 Allen Feb 1991 A
4993425 Kronberg Feb 1991 A
4998938 Ghajar et al. Mar 1991 A
5006122 Wyatt et al. Apr 1991 A
5024236 Shapiro Jun 1991 A
5027818 Bova et al. Jul 1991 A
5030223 Anderson et al. Jul 1991 A
5050608 Watanabe et al. Sep 1991 A
5052329 Bennett Oct 1991 A
5054497 Kapp et al. Oct 1991 A
5057084 Ensminger et al. Oct 1991 A
5057106 Kasevich et al. Oct 1991 A
5065761 Pell Nov 1991 A
5078140 Kwoh Jan 1992 A
5078142 Siczek et al. Jan 1992 A
5080662 Paul Jan 1992 A
5087256 Taylor et al. Feb 1992 A
5099846 Hardy Mar 1992 A
5102402 Dror et al. Apr 1992 A
5116344 Sundqvist et al. May 1992 A
5116345 Jewell et al. May 1992 A
5120322 Davis et al. Jun 1992 A
5125888 Howard et al. Jun 1992 A
5142930 Allen et al. Sep 1992 A
5143086 Duret et al. Sep 1992 A
5154179 Ratner Oct 1992 A
5154723 Kubota et al. Oct 1992 A
5163430 Carol Nov 1992 A
5166875 Machida et al. Nov 1992 A
5171217 March et al. Dec 1992 A
5174297 Daikuzono et al. Dec 1992 A
5186174 Schlondorff et al. Feb 1993 A
5201742 Hasson Apr 1993 A
5207223 Adler May 1993 A
5207688 Carol May 1993 A
5211165 Dumoulin et al. May 1993 A
5221264 Wilk et al. Jun 1993 A
5222499 Allen et al. Jun 1993 A
5230338 Allen et al. Jul 1993 A
5230623 Guthrie et al. Jul 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5246448 Chang Sep 1993 A
5257998 Ota et al. Nov 1993 A
5263939 Wortrich Nov 1993 A
5263956 Nobles Nov 1993 A
5267970 Chin et al. Dec 1993 A
5269305 Corol Dec 1993 A
5279309 Taylor et al. Jan 1994 A
5279575 Sugarbaker Jan 1994 A
5280427 Magnusson et al. Jan 1994 A
5290266 Rohling et al. Mar 1994 A
5291890 Cline et al. Mar 1994 A
5300080 Clayman et al. Apr 1994 A
5305203 Raab Apr 1994 A
5306272 Cohen et al. Apr 1994 A
5309913 Kormos et al. May 1994 A
5330485 Clayman et al. Jul 1994 A
5354283 Bark et al. Oct 1994 A
5360020 Lee, Sr. et al. Nov 1994 A
5361763 Kao et al. Nov 1994 A
5366446 Tal et al. Nov 1994 A
5375588 Yoon Dec 1994 A
5375596 Twiss et al. Dec 1994 A
5380302 Orth Jan 1995 A
5383454 Bucholz Jan 1995 A
5387220 Pisharodi Feb 1995 A
5394457 Leibinger et al. Feb 1995 A
5405330 Zunitch et al. Apr 1995 A
5423832 Gildenberg Jun 1995 A
5423848 Washizuka et al. Jun 1995 A
5445166 Taylor Aug 1995 A
5452720 Smith et al. Sep 1995 A
5462555 Bolanos et al. Oct 1995 A
5464446 Dreessen et al. Nov 1995 A
5470307 Lindall Nov 1995 A
5474564 Clayman et al. Dec 1995 A
5483961 Kelly et al. Jan 1996 A
5494034 Schlondorff et al. Feb 1996 A
5494655 Rocklage et al. Feb 1996 A
5515160 Schulz et al. May 1996 A
5517990 Kalfas et al. May 1996 A
5528652 Smith et al. Jun 1996 A
5541377 Stuhlmacher Jul 1996 A
5572905 Cook, Jr. Nov 1996 A
5572999 Funda et al. Nov 1996 A
5575798 Koutrouvelis Nov 1996 A
5608382 Webb et al. Mar 1997 A
5618288 Calvo et al. Apr 1997 A
5622170 Schulz Apr 1997 A
5638819 Manwaring et al. Jun 1997 A
5639276 Weinstock et al. Jun 1997 A
5643286 Warner et al. Jul 1997 A
5647361 Damadian Jul 1997 A
5649936 Real Jul 1997 A
5658272 Hasson Aug 1997 A
5662600 Watson et al. Sep 1997 A
5667514 Heller Sep 1997 A
5695501 Carol et al. Dec 1997 A
5713858 Heruth et al. Feb 1998 A
5755697 Jones et al. May 1998 A
5776064 Kalfas et al. Jul 1998 A
5776143 Adams et al. Jul 1998 A
5776144 Leysieffer et al. Jul 1998 A
5788713 Dubach et al. Aug 1998 A
5807033 Benway Sep 1998 A
5809694 Postans et al. Sep 1998 A
5810712 Dunn Sep 1998 A
5817106 Real Oct 1998 A
5817116 Takahashi et al. Oct 1998 A
5823975 Stark et al. Oct 1998 A
5833627 Shmulewitz et al. Nov 1998 A
5843150 Dreessen et al. Dec 1998 A
5851183 Bucholz Dec 1998 A
5865817 Moenning et al. Feb 1999 A
5865842 Knuth et al. Feb 1999 A
5871445 Bucholz Feb 1999 A
5871487 Warner et al. Feb 1999 A
5873822 Ferre et al. Feb 1999 A
5891034 Bucholz Apr 1999 A
5891157 Day et al. Apr 1999 A
5916200 Eppley et al. Jun 1999 A
5927277 Baudino et al. Jul 1999 A
5950629 Taylor et al. Sep 1999 A
5954687 Baudino Sep 1999 A
5957933 Yanof et al. Sep 1999 A
5957934 Rapoport et al. Sep 1999 A
5964705 Truwit et al. Oct 1999 A
5980535 Barnett et al. Nov 1999 A
5984930 Maciunas et al. Nov 1999 A
5993463 Truwit Nov 1999 A
5997471 Gumb et al. Dec 1999 A
6004304 Suzuki et al. Dec 1999 A
6006126 Cosman Dec 1999 A
6018094 Fox Jan 2000 A
6021343 Foley et al. Feb 2000 A
6024729 Dehdashtian et al. Feb 2000 A
6030223 Sugimori Feb 2000 A
6039725 Moenning et al. Mar 2000 A
6042540 Johnston et al. Mar 2000 A
6044304 Baudino Mar 2000 A
6058323 Lemelson May 2000 A
6071288 Carol et al. Jun 2000 A
6076008 Bucholz Jun 2000 A
6079681 Stern et al. Jun 2000 A
6110182 Mowlai-Ashtiani Aug 2000 A
6117143 Hynes et al. Sep 2000 A
6120465 Guthrie et al. Sep 2000 A
6134477 Knuteson Oct 2000 A
6135946 Konen et al. Oct 2000 A
6179826 Aebischer et al. Jan 2001 B1
6195577 Truwit et al. Feb 2001 B1
6206890 Truwit Mar 2001 B1
6210417 Baudino et al. Apr 2001 B1
6231526 Taylor et al. May 2001 B1
6236875 Bucholz et al. May 2001 B1
6238402 Sullivan, III et al. May 2001 B1
6254532 Paolitto et al. Jul 2001 B1
6257407 Truwit et al. Jul 2001 B1
6261300 Carol et al. Jul 2001 B1
6267769 Truwit Jul 2001 B1
6267770 Truwit Jul 2001 B1
6273896 Franck et al. Aug 2001 B1
6282437 Franck et al. Aug 2001 B1
6290644 Green, II et al. Sep 2001 B1
6298262 Franck et al. Oct 2001 B1
6315770 de la Torre et al. Nov 2001 B1
6321104 Gielen et al. Nov 2001 B1
6324433 Errico Nov 2001 B1
6327491 Franklin et al. Dec 2001 B1
6356792 Errico et al. Mar 2002 B1
6368329 Truwit Apr 2002 B1
6400992 Borgersen et al. Jun 2002 B1
6457963 Tawara et al. Oct 2002 B1
6482182 Carroll et al. Nov 2002 B1
6488620 Segermark et al. Dec 2002 B1
6491699 Henderson et al. Dec 2002 B1
6529765 Franck et al. Mar 2003 B1
6537232 Kucharczyk et al. Mar 2003 B1
6546277 Franck et al. Apr 2003 B1
6546279 Bova et al. Apr 2003 B1
6547795 Schneiderman Apr 2003 B2
6554802 Pearson et al. Apr 2003 B1
6556857 Estes et al. Apr 2003 B1
6609020 Gill et al. Aug 2003 B2
6610100 Phelps et al. Aug 2003 B2
6623490 Crane et al. Sep 2003 B1
6632184 Truwit Oct 2003 B1
6655014 Babini Dec 2003 B1
6662035 Sochor Dec 2003 B2
6676669 Charles et al. Jan 2004 B2
6682538 Qiu et al. Jan 2004 B2
6706050 Giannadakis Mar 2004 B1
6726678 Nelson et al. Apr 2004 B1
6746471 Mater et al. Jun 2004 B2
6752812 Truwit Jun 2004 B1
6765122 Stout Jul 2004 B1
6773443 Truwit et al. Aug 2004 B2
6782288 Truwit et al. Aug 2004 B2
6802323 Truwit et al. Oct 2004 B1
6817995 Halpern Nov 2004 B1
6902569 Parmer et al. Jun 2005 B2
6913478 Lamirey et al. Jul 2005 B2
6944895 Truwit Sep 2005 B2
6960216 Kolb et al. Nov 2005 B2
7004948 Pianca et al. Feb 2006 B1
7094234 Lennox Aug 2006 B1
7175642 Briggs et al. Feb 2007 B2
7204840 Skakoon et al. Apr 2007 B2
7235084 Skakoon et al. Jun 2007 B2
7285287 Williams et al. Oct 2007 B2
7329262 Gill Feb 2008 B2
7366561 Mills et al. Apr 2008 B2
7454251 Rezai et al. Nov 2008 B2
7479146 Malinowski Jan 2009 B2
7497863 Solar et al. Mar 2009 B2
7532661 Batra et al. May 2009 B2
7559935 Solar et al. Jul 2009 B2
7580756 Schulte et al. Aug 2009 B2
7604644 Schulte et al. Oct 2009 B2
7636596 Solar Dec 2009 B2
7637915 Parmer et al. Dec 2009 B2
7658879 Solar Feb 2010 B2
7660621 Skakoon et al. Feb 2010 B2
7699854 Mazzocchi et al. Apr 2010 B2
7704260 Skakoon et al. Apr 2010 B2
7744606 Miller et al. Jun 2010 B2
7803163 Skakoon Sep 2010 B2
7815651 Skakoon et al. Oct 2010 B2
7828809 Skakoon et al. Nov 2010 B2
7833231 Skakoon et al. Nov 2010 B2
7857820 Skakoon et al. Dec 2010 B2
7867242 Solar et al. Jan 2011 B2
7896889 Mazzocchi et al. Mar 2011 B2
7981120 Mazzocchi et al. Jul 2011 B2
8116850 Solar Feb 2012 B2
8192445 Parmer et al. Jun 2012 B2
8845656 Skakoon et al. Sep 2014 B2
8911452 Skakoon et al. Dec 2014 B2
10058681 Skakoon et al. Aug 2018 B2
10086193 Schulte et al. Oct 2018 B2
20010003156 Gill Jun 2001 A1
20010014771 Truwit et al. Aug 2001 A1
20010027271 Franck et al. Oct 2001 A1
20010037524 Truwit Nov 2001 A1
20020010479 Skakoon et al. Jan 2002 A1
20020019641 Truwit Feb 2002 A1
20020022847 Ray et al. Feb 2002 A1
20020052610 Skakoon et al. May 2002 A1
20020077646 Truwit et al. Jun 2002 A1
20020156372 Skakoon et al. Oct 2002 A1
20030028199 Ghahremani et al. Feb 2003 A1
20030079287 Truwit May 2003 A1
20030187351 Franck et al. Oct 2003 A1
20030199831 Morris et al. Oct 2003 A1
20030208122 Melkent et al. Nov 2003 A1
20040026161 Takatsuka et al. Feb 2004 A1
20040028676 Klein et al. Feb 2004 A1
20040034367 Malinowski Feb 2004 A1
20040059260 Truwit Mar 2004 A1
20040089223 Meyer-Fredholm May 2004 A1
20040105890 Klein et al. Jun 2004 A1
20040173221 Singhal et al. Sep 2004 A1
20040176750 Nelson et al. Sep 2004 A1
20040243146 Chesbrough et al. Dec 2004 A1
20040243147 Lipow Dec 2004 A1
20040255991 Truwit et al. Dec 2004 A1
20040260323 Truwit et al. Dec 2004 A1
20040267284 Parmer et al. Dec 2004 A1
20050004602 Hart et al. Jan 2005 A1
20050054985 Mogg Mar 2005 A1
20050065535 Morris et al. Mar 2005 A1
20050125007 Gill Jun 2005 A1
20050143799 Black et al. Jun 2005 A1
20050143800 Lando et al. Jun 2005 A1
20050154297 Gill Jul 2005 A1
20050182420 Schulte et al. Aug 2005 A1
20050182421 Schulte et al. Aug 2005 A1
20050182422 Schulte et al. Aug 2005 A1
20050182423 Schulte et al. Aug 2005 A1
20050182424 Schulte et al. Aug 2005 A1
20050182425 Schulte et al. Aug 2005 A1
20050182464 Schulte et al. Aug 2005 A1
20050192594 Skakoon et al. Sep 2005 A1
20060122627 Miller et al. Jun 2006 A1
20060192319 Solar Aug 2006 A1
20060195119 Mazzocchi et al. Aug 2006 A1
20070250077 Skakoon et al. Oct 2007 A1
20070250078 Stuart Oct 2007 A1
20070299427 Yeung et al. Dec 2007 A1
20080004632 Sutherland et al. Jan 2008 A1
20080046091 Weiss et al. Feb 2008 A1
20080058837 Steinberg Mar 2008 A1
20080082108 Skakoon et al. Apr 2008 A1
20100179563 Skakoon et al. Jul 2010 A1
20110022058 Skakoon et al. Jan 2011 A1
20110022059 Skakoon et al. Jan 2011 A1
20110034981 Schulte et al. Feb 2011 A1
20130197472 Skakoon et al. Aug 2013 A1
20150100064 Skakoon et al. Apr 2015 A1
Foreign Referenced Citations (62)
Number Date Country
2405224 Oct 2001 CA
3108766 Sep 1982 DE
3937052 May 1990 DE
19726141 Jan 1999 DE
29612100 Aug 1999 DE
19808220 Sep 1999 DE
19820808 Sep 1999 DE
19826078 Nov 1999 DE
0386936 May 1990 EP
0427358 May 1991 EP
0724865 May 1991 EP
0609085 Aug 1994 EP
0822844 Feb 1998 EP
0832611 Apr 1998 EP
0904741 Mar 1999 EP
1016432 Jul 2000 EP
1048318 Nov 2000 EP
1048320 Nov 2000 EP
1272120 Jan 2003 EP
1549241 Jul 2005 EP
1575440 Sep 2005 EP
1841378 Oct 2007 EP
1853191 Nov 2007 EP
1853192 Nov 2007 EP
2237993 May 1991 GB
2329473 Apr 1998 GB
2330080 Apr 1999 GB
2342583 Apr 2000 GB
2346573 Aug 2000 GB
2355665 May 2001 GB
2357700 Jul 2001 GB
8809151 Dec 1988 WO
9721380 Dec 1988 WO
9522297 Aug 1995 WO
9610368 Apr 1996 WO
9633766 Oct 1996 WO
9703609 Feb 1997 WO
9742870 Nov 1997 WO
9808554 Mar 1998 WO
9817191 Apr 1998 WO
9825535 Jun 1998 WO
9851229 Nov 1998 WO
9955408 Nov 1999 WO
0001316 Jan 2000 WO
0018306 Jan 2000 WO
0013743 Mar 2000 WO
0020048 Apr 2000 WO
0124709 Apr 2001 WO
0149197 Jul 2001 WO
0176498 Jul 2001 WO
2001076676 Mar 2002 WO
2001013714 Aug 2002 WO
03068304 Aug 2003 WO
2001076498 Oct 2003 WO
03090820 Nov 2003 WO
2004026161 Apr 2004 WO
2004058086 Jul 2004 WO
2005079903 Sep 2005 WO
2005079912 Sep 2005 WO
2006062892 Jun 2006 WO
2006062806 Dec 2007 WO
2006062824 Apr 2009 WO
Non-Patent Literature Citations (96)
Entry
Leggett, W.B., et al. “Surgical Technology—The Viewing Wand: A New System for Three-Dimensional Computed Tomography-Correlated Intraoperative Localization”, Current Surgery, (Dec. 1991), 674-678.
Malison, R. T., et al., “Computer-Assisted Coregistration of Multislice SPECT and MR Brain Images by Fixed External Fiducials”, Journal of Computer Assisted Tomography, 17 (6) (1993) pp. 952-960.
Mannervik, M., “Target genes of homeodomain proteins”, BioEssays vol. 21.4 (Apr. 1999) pp. 267-270.
McHugh, Thomas M., et al. “The Sensitive Detection and Quantitation of Antibody to HCV by Using a Microsphere-Based Immunoassay and Flow Cytometry.” (1997) Cytometry 29:106-112.
McNeil., R., et al., “Characteristics of an Improved Magnetic-Implant Guidance System”, IEEE Transactions on Biomedical Engineering, 42 (8), (Aug. 1995), 802-808.
McNeil., R., et al., “Functional Design Features and Initial Performance Characteristics of a Magnetic-Implant Guidance System for Stereotactic Neurosurgery”, IEEE Transactions on Biomedical Engineering, 42 (8), (1995), 793-801.
Meeker, D., et al., “Optimal Realization of Arbitrary Forces in a Magnetic Stereotaxis System,” IEEE Transactions on Magnetics, 32 (2), (Mar. 1996), 320-328.
Molloy, J., et al., “Experimental Determination of the Force Required for Insertion of a Thermoseed into Deep Brain Tissues”, Annals of Biomedical Engineering, 18, (1990), 299-313.
Molly, J., et al., “Thermodynamics of Movable Inductively Heated Seeds for the Treatment of Brain Tumors”, Medical Physics, 18 (4), (1991), 794-803.
Notice of Allowance dated Jul. 9, 2010 for U.S. Appl. No. 11/768,077, filed Jun. 25, 2007.
Notice of Allowance dated Jul. 6, 2010 for U.S. Appl. No. 11/768,554, filed Jun. 26, 2007.
Office Action dated Apr. 12, 2011 for U.S. Appl. No. 11/054,649, filed Feb. 9, 2005.
Office Action dated Apr. 29, 2008 for U.S. Appl. No. 11/054,649, filed Feb. 9, 2005.
Office Action dated Apr. 7, 2008 for U.S. Appl. No. 11/054,583, filed Feb. 9, 2005.
Office Action dated Aug. 22, 2016 for U.S. Appl. No. 12/730,724, filed Mar. 24, 2010.
Office Action dated Aug. 25, 2009 for U.S. Appl. No. 11/054,649, filed Feb. 9, 2005.
Office Action dated Aug. 30, 2010 for U.S. Appl. No. 11/054,199, filed Feb. 9, 2005.
Office Action dated Dec. 23, 2009 for U.S. Appl. No. 11/768,077, filed Jun. 25, 2007.
Office Action dated Dec. 9, 2008 for U.S. Appl. No. 11/054,649, filed Feb. 9, 2005.
Office Action dated Feb. 18, 2010 for U.S. Appl. No. 11/054,199, filed Feb. 9, 2005.
Office Action dated Feb. 9, 2016 for U.S. Appl. No. 12/730,724, filed Mar. 24, 2010.
Office Action dated Feb. 9, 2017 for U.S. Appl. No. 12/899,679, filed Oct. 7, 2010.
Office Action dated Jul. 19, 2012 for U.S. Appl. No. 12/899,677, filed Oct. 7, 2010.
Office Action dated Jul. 2, 2013 for U.S. Appl. No. 12/899,674, filed Oct. 7, 2010.
Office Action dated Jul. 23, 2008 for U.S. Appl. No. 11/054,073, filed Feb. 9, 2005.
Office Action dated Jul. 29, 2016 for U.S. Appl. No. 12/899,679, filed Oct. 7, 2010.
Office Action dated Mar. 9, 2016 for U.S. Appl. No. 13/828,136, filed Mar. 14, 2013.
Office Action dated Nov. 10, 2010 for U.S. Appl. No. 11/054,649, filed Feb. 9, 2005.
Office Action dated Nov. 23, 2009 for U.S. Appl. No. 11/768,554, filed Jun. 26, 2007.
Office Action dated Nov. 6, 2013 for U.S. Appl. No. 12/730,724, filed Mar. 24, 2010.
Oliver, L., “Cup-And-Ball Chemopallidectomy Apparatus”, (1958), p. 401.
Patikoglou, G. et al., “Eukaryotic Transcription Factor-DNA Complexes”, Annual Review of Biophysics and Biomolecular Structure vol. 26 (1997) pp. 289-325.
Quate, E., et al., “Goniometric Motion Controller for the Superconducting Coil in a Magnetic Stereotaxis System”, IEEE Transactions on Biomedical Engineering, 38 (9), (Sep. 1991), 899-905.
Ramos, P., et al., “Electro-Optic Imaging Chain for a Biplanar Fluoroscope for Neurosurgery: Magnetic Field Sensitivity and Contrast Measurements”, Optical Engineering 32, (7), (1993), 1644-1656.
Ramos, P., et al., “Low-Dose, Magnetic Field-Immune, Bi-Planar Fluoroscopy for Neurosurgery”, Proc. SPIE, 1443 (Medical Imaging V: Image Physics), (1991), 160-170.
Ramos, P., et al., “Microchannel Plate Image Intensifier Electron Dynamics in Magnetic Field”, Electronics Letters, 27 (18), (Aug. 29, 1991), pp. 1636-1638.
Ritter, R., et al., “Magnetic Stereotaxis: Computer-Assisted, Image-Guided Remote Movement of Implants in the Brain”, Ch. 26 in: Computer-Integrated Technology and Clinical Applications, MIT Press, Cambridge, MA., Taylor, R., et al., eds., (1996), 363-369.
Ritter, R., et al., “Magnetic Sterotaxis: An Application of Magnetic Control Technology to the Needs of Clinical Medicine”, Proc. Of the MAG'95 Industrial Conf. and Exhibition, Technomic Pub. Co., Lancaster, PA., Allaire, P., ed., (1995), 186-193.
Ritter, R., et al., “Stereotaxie Magnetique: Deplacement D'Implants dans le Cerveau, Assistes par Ordinateur et Guides par Imagerie”, Innovation et Technologie en Biologie et Medecine, 13, (1992), 437-449.
Sandeman, D.S., et al., “Advances in image-directed neurosurgery: Preliminary experience with the ISG Viewing Wand compared with the Leksell G frame”, British Journal of Neurosurgery, 8 (199), pp. 529-544.
Stein, S. et al., “Checklist: Vertebrate homeobox genes”, Mechanisms of Development, vol. 55, No. 1 (Mar. 1996) pp. 91-108.
Supplementary European Search Report dated Oct. 26, 2009 for EP05852969 filed Dec. 6, 2005 claiming benefit of U.S. Appl. No. 11/005,907, filed Dec. 5, 2004.
Szikora, I., et al., “Endovascular Treatment of Experimental Aneurysms with Liquid Polymers: The Protective Potential of Stents”, Neurosurgery, 38, (Feb. 1996), 339-347.
Vollmer, J. et al., “Homeobox Genes in the Developing Mouse Brain”, Journal of Neurochemistry, vol. 71, No. 1 (Jul. 1998) pp. 1-19.
Wolberger, C., “Homeodomain Interactions”, Current Opinion in Structural Biology vol. 6, No. 1 (Feb. 1996) pp. 62-68.
Yeh, H.S., et al., “Implantation of intracerebral depth electrodes for monitoring seizures using the Pelorus stereotactic system guided by magnetic resonance imaging”, J. Neurosurg., 78 (1993), pp. 138-141.
Zinreich, S.J., et al., “Frameless Sterotaxic Integration of CT Imaging Data: Accuracy and Initial Applications”, Radiology, 188 (3), (1993), pp. 735-742.
“Cross-Hairs Kit”, Elekta Instruction for Use Brochure, pp. 2-5.
“CRW™—Tyco Healthcare Radionics”, Tyco Product Brochure, pp. 1-7.
“Fathom Remote Introducer”, Image-Guided Neurologics, Inc., CNS Hynes Convention Center, 2p., (Oct. 30-Nov. 4, 1999).
“Inomed Competence in Neurophysologic Monitoring”, http://www.inomed.com/english/index.htm, (observed Mar. 23, 2004), 2 pgs.
“Leksell Stereotactic System”, Elekta Product Brochure, pp. 1-6.
“MicroTargeting® Precision Guidance Using Microelectrode Recording”, (Aug. 15, 2003), 5 pgs.
“Possible Existence of Common Internalization Mechanisms among Arginine-rich Peptides”, Suzuki, T. et al., Journal of Biological Chemistry, vol. 277, No. 4 (2002) pp. 2437-2443.
“STIMLOC™ by ign,” datasheet, NAVIGUS, Image Guided Neurologics, Inc. 2004 (2 pages).
“The ISG Viewing Wand: an application to atlanto-axial cervical surgery using the Le Fort I maxilary osteotomy”, British Journal of Oral and Maxillofacial Surgery, 33, (1995) pp. 370-374.
Allison, S., et al., “Microchannel Plate Intensifier Response in Traverse Magnetic Field”, Electronic Letters, 26,(Jun. 7, 1990), 770-771.
Beld, Marcel, et al. “Quantitative Antibody Responses to Structural (Core) and Nonstructural (NS3, NS4, and NS5) Hepatitis C Virus Proteins Among Seroconverting Injecting Drug Users: Impact of Epitope Variation and Relationship to Detection of HCV RNA in Blood.” (1999) Hepatology vol. 29, No. 4. pp. 1288-1298.
Drake, J.M., et al. “ISG Viewing Wand System”, Neurosurgery, 34 (6), (Jun. 1994), 1094-1097.
Dyer, P.V., et al., “The ISG Viewing Wand: an Application to Atlanto-Axial Cervical Surgery Using the Le For I Maxillary Osteotomy”, British Journal of Oral and Maxillofacial Surgery, 33, (1995), 370-374.
European Office Action dated Jan. 22, 2010 for European Application No. 05 852 969.4.
Franck Joel, et al., “microTargetingÒ Platform System incorporating StarFix™ guidance”, microTargeting, pp. 1-44.
Franck, Joel, et al., “microTargeting® Platform incorporating StarFix™ guidance”, microTargeting, 3 pgs.
Gehring, W. J., “Homeodomain Proteins”, Annu. Rev. Biochem., vol. 63 (1997) pp. 487-526.
Gillies, G., et al., “Magnetic Manipulation Instrumentation for Medical Physics Research”, Review of Scientific Instruments, 65 (3), Review Article, (Mar. 1994), 533-562
Grady, M., “Nonlinear Magnetic Stereotaxis:Three-Dimensional, in vivo Remote Magnetic Manipulation of a Small Object in Canine Brain”, Medical Physics, 17 (3), (May/Jun. 1990), pp. 405-415.
Grady, M., et al., “Initial Experimental Results of a New Stereotaxic Hyperthermia System”, American College of Surgeons: 1998 Clinical Congress: Surgical Forum, 39, (1998), 507-509.
Grady, M., et al., “Magnetic Stereotaxis System for Neurosurgical Procedures”, Proc. 37th International Instrumentation Symp., Sand Diego, CA (May 1991), 665-675.
Grady, M., et al., “Magnetic Stereotaxis: A Technique to Deliver Stereotactic Hyperthermia”, Neurosurgery, 27 (6), Technical Note, (Dec. 1990), pp. 1010-1016.
Grady, M., et al., “Preliminary Experimental Investigation of in vivo Magnetic Manipulation: Results and Potential Application in Hyperthermia”, medical Physics, 16 (2), (Mar./Apr. 1989), pp. 263-272.
Guardian™ Cranial Burr Hole Cover System—Clinician's Manual. ANS A St. Jude Medical Companybrochure. Apr. 2009. pp. 1 -15.
Hata, N., et al., “Needle Insertion Manipulator for CT-and MR-Guided Stereotactic Neurosurgery”, Interventional MR: Techniques and Clinical Experience, St. Louis: London: Mosby; Martin Dunitz, F. Jolesz and I. Young, eds., (1998), 99-106.
Hirschberg, H., et al., “Image-Guided Neurosurgery—MR compatible stereotactic equipment”, http:www.medinnova.no/English/P51466ster.html. (Mar. 29, 2001), 1p.
Hirschberg, Henry, et al., “Image-guided neurosurgery”, stereotactic equipment for MR imaging, http://www.medinnova.no/English/P51466ster.html, (Observed Mar. 8, 2002), 1 page.
Howard, M., et al., “Magnetic Movement of a Brain Thermocepter”, Neurosurgery, 24 (3), (1989), 444-448.
Howard, M., et al., “Magnetic Neurosurgery”, Stereotactic and Functional Neurosurgery, 66, (1996), 102-107.
Howard, M., et al., “Magnetic Neurosurgery: Image-Guided, Remote-Controlled Movement of Neurosurgical Implants”, Ch. 26 in: Clinical Neurosurgery: Proceedings of the Congress of Neurological Surgeons, San Francisco, CA, (1995), 382-391.
Howard, M., et al., “Review of Magnetic Neurosurgery Research”, J. Image Guided Surgery, 1, (Nov. 1995), 295-299.
International Preliminary Examination Report for PCT/US01/11178 completed Jul. 18, 2002, claiming benefit of U.S. Appl. No. 60/195,663, filed Apr. 7, 2000.
International Preliminary Examination Report dated Nov. 25, 2002 for PCT/US01/25904 filed Aug. 17, 2001 claiming benefit of U.S. Appl. No. 60/225,952, filed Aug. 17, 2000.
International Preliminary Report on Patentability and Written Opinion dated Aug. 14, 2006 for PCT/US2005/003970 which claims benefit of U.S. Appl. No. 60/544,456; U.S. Appl. No. 60/563,787; U.S. Appl. No. 60/587,356; U.S. Appl. No. 60/602,749; as does U.S. Appl. No. 12/899,679, filed Oct. 7, 2010.
International Preliminary Report on Patentability and Written Opinion dated Feb. 10, 2009 for PCT/US2005/004141 which claims benefit of U.S. Appl. No. 60/544,456; U.S. Appl. No. 60/563,787; U.S. Appl. No. 60/587,356; U.S. Appl. No. 60/602,749; as does U.S. Appl. No. 11/054,199, filed Feb. 9, 2005 and U.S. Appl. No. 12/899,679, filed Oct. 7, 2010.
International Preliminary Report on Patentability for PCT/US2005/043913 dated Mar. 17, 2009, claiming benefit of U.S. Appl. No. 11/005,907, filed Dec. 6, 2004.
International Search Report and Written Opinion for PCT/US05/43651 dated May 8, 2008.
International Search Report and Written Opinion dated Jun. 21, 2005 for PCT/US2005/004141 which claims benefit of U.S. Appl. No. 60/544,456; U.S. Appl. No. 60/563,787; U.S. Appl. No. 60/587,356; U.S. Appl. No. 60/602,749; as does U.S. Appl. No. 11/054,199, filed Feb. 9, 2005 and U.S. Appl. No. 12/899,679, filed Oct. 7, 2010.
International Search Report and Written Opinion dated Jun. 3, 2005 for PCT/US2005/003970 which claims benefit of U.S. Appl. No. 60/544,456; U.S. Appl. No. 60/563,787; U.S. Appl. No. 60/587,356; U.S. Appl. No. 60/602,749; as does U.S. Appl. No. 11/054,199, filed Feb. 9, 2005 and U.S. Appl. No. 12/899,679, filed Oct. 7, 2010.
International Search Report and Written Opinion dated May 8, 2008 for PCT/US05/43651 claiming benefit of U.S. Appl. No. 11/262,298, filed Oct. 28, 2005 and U.S. Appl. No. 11/005,607, filed Dec. 4, 2004.
International Search Report and Written Opinion dated Nov. 5, 2007 for PCT/US05/43532 claiming benefit of U.S. Appl. No. 11/005,605, filed Dec. 4, 2004.
International Search Report for PCT/US01/11178 dated Feb. 13, 2002, claiming benefit of U.S. Appl. No. 60/195,663, filed Apr. 7, 2004.
International Search Report for PCT/US05/43913 dated Oct. 3, 2008, claiming benefit of U.S. Appl. No. 11/005,907, filed Dec. 6, 2004.
International Search Report dated Dec. 19, 2001 for PCT/US01/25904 claiming benefit of U.S. Appl. No. 60/225,952, filed Aug. 17, 2000.
International Search Report dated May 28, 2004 for PCT/US03/40610 claiming benefit of U.S. Appl. No. 10/325,615, filed Dec. 20, 2002.
International Search Report dated May 3, 2004 for PCT/US03/28966 claiming benefit of U.S. Appl. No. 60/411,309, filed Sep. 17, 2002.
International Search Report dated Oct. 24, 2001 for PCT/US01/40458 claiming benefit of U.S. Appl. No. 60/195,663, filed Apr. 7, 2000.
Invitation to Pay Additional Fees dated Jan. 15, 2004 for PCT/US03/028966 filed Sep. 17, 2003 claiming benefit of U.S. Appl. No. 60/411,309, filed Sep. 17, 2002.
Lawson, M., et al., “Near Real-Time Bi-planar Fluoroscopic Tracking System for the Video Tumor Fighter”, SPIE, 1445, (1991), 265-275.
Related Publications (1)
Number Date Country
20190001102 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
60411309 Sep 2002 US
Divisions (1)
Number Date Country
Parent 11005907 Dec 2004 US
Child 12730724 US
Continuations (2)
Number Date Country
Parent 13828136 Mar 2013 US
Child 16105075 US
Parent 12730724 Mar 2010 US
Child 13828136 US
Continuation in Parts (1)
Number Date Country
Parent PCT/US03/28966 Sep 2003 US
Child 11005907 US