The present invention generally relates to antennas, and in particular, it concerns a low-profile antenna with full elevation and multi-band transmit and receive.
Low-profile antennas are smaller in height than typical full-sized antennas, typically enclosed under radomes of height of 25 cm. For example, the industry standard (Boeing) 24 cm, or even (Airbus) 20 cm low-profile radomes. Conventional low-profile antennas have limited elevation (altitude, up/down) and/or frequency bandwidth and/or high-power use, and/or cumbersome waveguide arrays. The low-profile capability is desired by the industry in order to minimize aerodynamic drag (reducing fuel consumption) in airborne applications, and in order to minimize radome silhouette in ground mobile systems.
An innovative antenna system includes a variable axis to deploy a main-reflector at a variable distance from a sub-reflector while synchronizing the variable distance with the tilt of the main-reflector.
According to the teachings of the present embodiment there is provided a system including: a main-reflector: having a first parabolic shape in a first direction, and having a second parabolic shape in a second direction, the first shape different from the second shape, the first and second directions orthogonal, a sub-reflector: having a first concave shape in the first direction, and a feed, the main-reflector and the sub-reflector cooperating to focus an incoming target-beam of radiation on the feed.
In an optional embodiment, the first direction corresponds to an elevation direction and the second direction corresponds to an azimuth direction.
In another optional embodiment, the main-reflector in the azimuth plane is arranged in a Cassegrain configuration, and in the elevation plane is arranged in a Gregorian configuration.
In another optional embodiment, the main-reflector in the azimuth plane is arranged in a Cassegrain configuration, and in the elevation plane is arranged in a Cassegrain configuration.
In another optional embodiment, the main-reflector first parabolic shape having a corresponding first focus of an incoming target beam, the main-reflector second parabolic shape having a corresponding second focus of an incoming target beam, the sub-reflector concave shape is effectively elliptical and in the elevation direction having corresponding third focus and fourth focus, and the feed having a feed horn ISO phase center, the first focus coincident with the fourth focus, and the third focus coincident with the feed horn ISO phase center.
In another optional embodiment, the main-reflector first parabolic shape having a corresponding first focus of an incoming target beam, the main-reflector second parabolic shape having a corresponding second focus of an incoming target beam, and the sub-reflector concave shape is effectively elliptical and in the elevation direction having corresponding third focus and fourth focus, the feed having a feed horn ISO phase center, the first focus coincident with the feed horn ISO phase center.
In another optional embodiment, the main-reflector has a main-reflector height in the first direction, and a main-reflector width in the second direction, the main-reflector height less than the main-reflector width, and the sub-reflector has a sub-reflector height in the first direction, and a sub-reflector width in the second direction, the sub-reflector height less than the sub-reflector width.
In another optional embodiment, the sub-reflector has a planar shape in the second direction.
In an optional embodiment, further including: a controller operational for: tilting the main-reflector relative to the sub-reflector, and positioning the main-reflector relative to the sub-reflector, the positioning determined based on the tilting.
In another optional embodiment, the tilting of the main-reflector is at a tilt angle, the tilt angle relative to a linear axis and a main-reflector normal line, the linear axis is parallel to a line from the main-reflector mechanical center to the sub-reflector mechanical center, and the main-reflector normal line being perpendicular to the first parabolic shape at the main-reflector mechanical center, and the positioning being at a spacing distance between an origin and an axis normal, the origin being a normal line from the linear axis at a sub-reflector mechanical center, the axis normal being a normal line from the linear axis at the main-reflector mechanical center, and the spacing distance determined based on the tilt angle.
In another optional embodiment, the positioning of the main-reflector is also relative to the feed, the feed in a fixed relation to the sub-reflector.
In another an embodiment, further including a linear axis, the main-reflector operationally connected to the linear axis and the sub-reflector operationally connected to the linear axis, the main-reflector and the sub-reflector deployed on a top side of the linear axis, and the feed deployed on a bottom side of the linear axis, the top side opposite from the bottom side.
In another optional embodiment, the a main-reflector mechanical center is an area of connection between the main-reflector and mechanics, the mechanics deployed to move the main-reflector along a linear axis at least reversibly in the direction of the sub-reflector.
In another optional embodiment, a sub-reflector mechanical center is an area of connection between the sub-reflector and a linear axis.
According to the teachings of the present embodiment there is provided a system including: a main-reflector: having a first parabolic shape in an elevation direction, and having a second parabolic shape in an azimuth direction, the first shape different from the second shape, a sub-reflector: having a first concave shape in the elevation direction, and a feed, the main-reflector in an azimuth plane is focused on the sub-reflector in a Cassegrain configuration, and in an elevation plane is focused on the sub-reflector in a Gregorian configuration, the main-reflector and the sub-reflector cooperating to focus an incoming target-beam of radiation on the feed.
According to the teachings of the present embodiment there is provided a system including: a main-reflector: having a first parabolic shape in an elevation direction, and having a second parabolic shape in an azimuth direction, the first shape different from the second shape, a sub-reflector: having a first concave shape in the elevation direction, and a feed, the main-reflector in an azimuth plane is focused on the sub-reflector in a Cassegrain configuration, and in an elevation plane is focused on the sub-reflector in a Cassegrain configuration, the main-reflector and the sub-reflector cooperating to focus an incoming target-beam of radiation on the feed.
According to the teachings of the present embodiment there is provided a method for antenna positioning including: tilting a main-reflector relative to a sub-reflector, and positioning the main-reflector relative to the sub-reflector, the positioning determined based on the tilting, the main-reflector and the sub-reflector cooperating to focus an incoming target-beam of radiation on a feed, the main-reflector: having a first parabolic shape in a first direction, and having a second parabolic shape in a second direction, the first shape different from the second shape, the first and second directions orthogonal, the sub-reflector: having a first concave shape in the first direction.
In an optional embodiment, the first direction corresponds to an elevation direction and the second direction corresponds to an azimuth direction.
In another optional embodiment, the main-reflector in the azimuth plane is arranged in a Cassegrain configuration, and in the elevation plane is arranged in a Gregorian configuration.
In another optional embodiment, the main-reflector in the azimuth plane is arranged in a Cassegrain configuration, and in the elevation plane is arranged in a Cassegrain configuration.
In another optional embodiment, the main-reflector first parabolic shape having a corresponding first focus of an incoming target beam, the main-reflector second parabolic shape having a corresponding second focus of an incoming target beam, the sub-reflector concave shape is effectively elliptical and in the elevation direction having corresponding third focus and fourth focus, and the feed having a feed horn ISO phase center, the first focus coincident with the fourth focus, and the third focus coincident with the feed horn ISO phase center.
In another optional embodiment, the main-reflector first parabolic shape having a corresponding first focus of an incoming target beam, the main-reflector second parabolic shape having a corresponding second focus of an incoming target beam, and the sub-reflector concave shape is effectively elliptical and in the elevation direction having corresponding third focus and fourth focus, the feed having a feed horn ISO phase center, the first focus coincident with the feed horn ISO phase center.
In another optional embodiment, the tilting of the main-reflector is at a tilt angle, the tilt angle relative to a linear axis and a main-reflector normal line, the linear axis is parallel to a line from the main-reflector mechanical center to the sub-reflector mechanical center, and the main-reflector normal line being perpendicular to the first parabolic shape at the main-reflector mechanical center, and the positioning being at a spacing distance between an origin and an axis normal, the origin being a normal line from the linear axis at a sub-reflector mechanical center, the axis normal being a normal line from the linear axis at the main-reflector mechanical center, and the spacing distance determined based on the tilt angle.
In another optional embodiment, the positioning of the main-reflector is also relative to the feed, the feed in a fixed relation to the sub-reflector.
According to the teachings of the present embodiment there is provided a controller operational for: tilting a main-reflector, the tilting at a tilt angle, the tilt angle relative to a linear axis and a main-reflector normal line, and positioning the main-reflector relative to a sub-reflector, the positioning being a spacing between an origin and an axis normal, the spacing being a distance determined based on the tilting, the tilting and positioning configurating the main-reflector and the sub-reflector to cooperate to focus an incoming target-beam of radiation on a feed.
According to the teachings of the present embodiment there is provided a non-transitory computer-readable storage medium having embedded thereon computer-readable code for antenna positioning the computer-readable code including program code for: tilting a main-reflector relative to a sub-reflector, and positioning the main-reflector relative to the sub-reflector, the positioning determined based on the tilting, the main-reflector and the sub-reflector cooperating to focus an incoming target-beam of radiation on a feed, the main-reflector: having a first parabolic shape in a first direction, and having a second parabolic shape in a second direction, the first shape different from the second shape, the first and second directions orthogonal, the sub-reflector: having a first concave shape in the first direction.
The embodiment is herein described, by way of example only, with reference to the accompanying drawings, wherein:
The principles and operation of the system according to a present embodiment may be better understood with reference to the drawings and the accompanying description. A present invention is a system for transmission (Tx) and reception (Rx) of electromagnetic signals. The system facilitates a low-profile solution with special optics for full elevation (el) in Tx and Rx. This system is cost effective, with better performance mainly in the compliance with Satcom regulations (as compared to other low-profile antennas), dual band capability, and accurate polarization compensation (at linear polarizations).
A current embodiment of a system and method for positioning an antenna is referred to in the context of this document as a “low profile antenna system” or “airborne low-profile antenna”.
A current embodiment is a multi-band antenna system for transmission and reception of electromagnetic signals in a low-profile dual reflector configuration with position-controlled main-reflector, and fixed sub-reflector and feed horn. An added linear slide of the main-reflector with respect to the sub-reflector synchronized with variable tilt angle of the main-reflector for compensation for the varied focal length in the main-reflector to the beam due the varied main-reflector tilt. The system achieves a beam elevation of 10° to 100° (full elevation), minimum gain variations over the full elevation travel, swept volume as per ARINC 791 (e.g. Boeing Radome or Airbus Radome), and can be used to meet wide-Tx/Rx bands requirements.
The system facilitates:
The system is a low-profile dual reflector configuration with adjustable main-reflector, and fixed sub-reflector and feed horn. In this system, a unique design for low profile antennas, the minimum system height is limited only by the main-reflector height, e.g. 10 cm and higher (as the sub-reflector is typically shorter and lower than the main-reflector). This main-reflector height is compatible with the industry standard radomes, for example, from Boeing, Airbus, and ViaSat. This low-profile of the main-reflector is achieved in part by rotation in azimuth (az) together with varied tilt angle in the main-reflector only, typically at approx. 5° to +50° tilt, which corresponds to antenna beam elevation travel of 10° to 100°.
In addition, a feature of the current embodiment is a provision of a linear slide, the sliding synchronized with the varied tilt angle of the main-reflector for compensation for the focal length variations due to main-reflector tilt. The linear slide is used to compensate (move) the main-reflector location (in relation to the sub-reflector) to keep good performance of the antenna Gain, G/T, EIRPsd (EIRP Spectral Density), Cross-polarization, and side lobes level (for compliance with the worldwide Satcom regulations) over the entire elevation range and frequency used bandwidth.
The system can use RF front-end circuitry based on proven airborne operating systems, for example, a waveguide chain that includes:
Features of the current embodiment include:
In a preferred design for the low-profile antenna system, the maximum system height should be limited by the parabolic-oval main-reflector height only, which is limited by the low-profile aircraft radome, e.g. as low as 10 cm above the base plate of the antenna system at the radome base where the low profile radome should enclose at least the parabolic-oval main-reflector, the plano-concave (planar-concave) sub reflector. A standard corrugated feed (feed horn 100) can be inside the radome or below the radome. This enables a stable solution such as Cassegrain configuration in the azimuth (left-right/width) direction and Gregorian ray tracing configuration in the elevation (up-down/height) direction.
Accordingly, the innovative implementation for this low-profile antenna system the movement can be restricted to the parabolic-oval main-reflector 104 tilt synchronized with the main-reflector 104 linear slide (along the linear axis 108) for compensation of focal length variations as a result of the main-reflector 104 tilt (the tilt angle 126).
The plano-concave sub-reflector 102 and the standard corrugated feedhorn 100 can be fixed relative to each other and at fixed position relative to the antenna base plate (for example, the linear axis 108), for assuring that both beam focal spot distance and beam focal spot position will stay at a fixed center point (iso phase center 90F) within the standard corrugated feedhorn 100, while at the same time keeping that the parallel satellite beam 132 should evenly heat (impinge on, illuminate) the main-reflector 104 surface, which then being evenly reflected (beam 134) toward the sub-reflector 102, then focusing all the beam energy (beam 136) within the feedhorn 100 at the fixed point in the feed horn 100 center (iso phase center 90F).
The current embodiment is an innovative solution to the above constraints, at least in part assuring that in all beam elevation angles (beam angle 128) of interest the ray at the satellite beam 132 that heats the center point of the main-reflector 104 surface, should be then be reflected (as beam 134) preferably as exactly as possible, to the center point (typically implemented as the sub-reflector center 90S) of the sub reflector 102 surface. The beam should be then reflected (as beam 136) to the fixed point (iso phase center 90F) within the standard corrugated feedhorn 100 on the feed center, yielding a stable solution of Cassegrain configuration in the azimuth (left-right) direction and Gregorian ray tracing configuration in the elevation (up-down) direction, as stated above.
Note that in the context of this document, references to a “Cassegrain” configuration uses the general definition of an antenna system having a single focal point. A main characteristic is that the optical path (beam path) folds back onto itself, relative to the antenna (optical) system's main-reflector. In a configuration of two antennas, for example a main-reflector and sub-reflector, an input target beam to the main-reflector has a single focal point to a feed. This should not be confused with the “classic” definition of a Cassegrain as a combination of a primary concave mirror and a secondary convex mirror, as a preferred embodiment is described herein using a concave (secondary) sub-reflector.
Similarly, in the context of this document, references to a “Gregorian” configuration uses the general definition of an antenna system having two focal points. In a configuration of two antennas, for example a main-reflector and a sub-reflector, the main-reflector has a focal point between the main-reflector and the sub-reflector and the sub-reflector, has a focal point on a feed.
Referring to
Referring to
Referring to
Referring to
Referring to
Note, elements in the figures are drawn for clarity, and may not be sized or positioned accurately. Based on this description, one skilled in the art will understand the relation and implementation of elements. In the figures, for clarity, generally, elements associated with a first position are suffixed with an “A” and elements associated with a second position are suffixed with a “B”. Reference to the elements in general are not suffixed.
Referring to
For reference in this description, the linear axis 108 is shown with a top side 108T and a bottom side 108B. The top side 108T is on an opposite side of the linear axis 108 from the bottom side 108B. In a typical configuration, the feed 100 is configured on the bottom side 108B and the sub-reflector 102 and main reflector 104 are deployed on the top side 108T of the linear axis 108.
For reference, an origin 120 is shown normal to the linear axis 108 at the position of the sub-reflector 102. Typically, the normals to the linear axis are at the mechanical centers where the elements are connected and/or moved (positioned). For example, the constructed origin line 120 is typically defined at the sub-reflector at a sub-reflector (mechanical) center 90S, where the sub-reflector is operationally attached in relation to the linear axis 108. Similarly, an axis normal 122A is a first normal to the linear axis 108 at the first position main-reflector 104A, typically at the main reflector center 90M where the main-reflector 104 is attached in relation to the linear axis 108. Similarly, an axis normal 122B is a second normal is to the linear axis 108 at the second position main-reflector 104B. Similar to the notation used with the main-reflector being positioned far or near, the first normal 122A is also referred to as the far normal 122A, or the far position, and the second normal 122B is also referred to as the near normal 122B, or the near position. A first spacing 124A is a distance between the origin normal line 120 and the far normal 122A. Similarly, a second spacing 124B is a distance between the origin 120 and the near normal 122B.
A target beam 132 is shown as a representation of the signal of interest for the system to receive and/or transmit. The target beam 132 is an exemplary middle ray from the actual width of the received/transmitted signal. Typically, the target beam 132 is from the main reflector center 90M toward the target of interest 650, such as an orbiting satellite. A beam angle 128 is defined as an angle between (relative to) the target beam 132 and the linear axis 108. Exemplary target beam 132A is shown at the far position of the main-reflector 104A at a 90-degree beam angle 128A. Similarly, exemplary target beam 132B is shown at the near position of the main-reflector 104B at a 70-degree beam angle 128B.
An elevation, or tilt angle 126 of the main-reflector 104 is relative to the linear axis 108, and as described in detail elsewhere synchronized for tilt angle 126 of the main-reflector 104 with the spacing distance between the main-reflector 104 and the sub-reflector 102. A main-reflector normal 104N is defined being perpendicular to the main-reflector 104 at the main-reflector mechanical center 90M. The tilt angle 126 is between (relative to) the linear axis 108 and the main-reflector normal 104N. In the current exemplary cases, in the far position the main reflector 104A has a corresponding tilt angle 126A between the main-reflector normal 104NA and the linear axis 108. Similarly, in the near position the main reflector 104B has a corresponding tilt angle 126B between the main-reflector normal 104NB and the linear axis 108.
A main beam 134 is between the main-reflector 104 and the sub-reflector 102. The main beam 134 is an exemplary middle ray from the actual width of the received/transmitted signal between the reflectors. The main beam is typically centered on (middle ray aligned with) the mechanical centers (90S, 90M) of the sub- and main-reflectors.
Similarly, the feed beam 136 is between the sub-reflector 102 and the feed 100. The feed beam 136 is an exemplary middle ray from the actual width of the received/transmitted signal between the sub-reflector 102 and the feed 100. The feed beam is typically centered on (middle ray aligned with) the mechanical center 90S of the sub-reflector and the feed horn iso phase center 90F.
A controller 600 is operationally connected to the various elements of the system. The controller 600 can control functions including, but not limited to the moving and positioning of the main reflector 104 along the linear axis 108 to change the spacing 124. The controller 600 can also rotate and position the main reflector 104 at the desired tilt angle 126. Typically, the entire system 660 (not including the controller 600) is mounted on a turntable (670, not shown in the current figure, see
The feed horn 100 can be a conventional feed horn typically in a fixed relation to the sub-reflector 102 and used to Tx/Rx signals to/from the fixed sub-reflector 102. The feed horn 100 can be chosen as appropriate for the desired application. The feed horn may be a single-band feed, or a multi-band feed such as disclosed in U.S. Pat. No. 8,994,473 to Orbit Communication Ltd for “Multi-band feed assembly for linear and circular polarization”.
The sub-reflector 102 can also be chosen as appropriate, for example, the size, angle, and shape (parabolic, hyperbolic, flat, etc.) can be chosen as appropriate for the application. In the current figure, the current embodiment of a low-profile system uses a planar-concave shaped sub-reflector. In the current figure, the feed horn 100 is configured below the sub-reflector 102 and below the linear axis 108. An opening 130 in the linear axis is shown as the area between dashed lines, providing a communication path between the feed horn 100 and the sub-reflector 102.
The main-reflector can be adjusted in elevation (up/down) and azimuth (left/right) by the mechanics 106, as is known in the art. Conventional implementations at a typical beam elevation angle 128 of 70° is achieved by tilting the main-reflector elevation axis at 35° tilt angle 126 relative to the normal direction 122A or 122B, then adjusting the elevation angle down to 10° by tilting the main-reflector elevation axis down to 5° relative to the normal direction 122A or 122B, i.e. tilting down the main-reflector at 30° relative to the initial tilt of 35°, or adjusting the elevation angle up to 100° by tilting the main-reflector elevation axis to 50° relative to the normal direction 122A or 122B, i.e. tilting up the main-reflector at 15° relative to the initial tilt of 35°. This results in providing a conventional elevation range from 10° to 100°.
A feature of the current embodiment is the innovative addition of moving the main-reflector 104 to change a spacing between the main-reflector 104 and the sub-reflector 102. A second feature of the current implementation is adjusting the tilt angle 126 of the main-reflector elevation axis relative to the normal direction 122 or 122 by exemplary ±22.5°, which adjusts the beam angle 128 by ±45° or 90° peak to peak, thus providing by this combination of features beam elevation range of 10° to 100°.
A third feature of the current embodiment is the combination of the planar-concave sub-reflector 102 and the main-reflector 104 being a parabolic-oval, having two perpendicular parabolic shapes, one (a first) parabolic shape 104HP in the elevation direction, and another (a second) parabolic shape 104WP in the azimuth direction. The parabolic shapes (104HP, 104WP) are curvature profiles, a first curvature profile (104HP) and second curvature profile (104WP) each having respective foci on respective normals defining the curvature (parabola) and respective off-axis foci from incident beams.
In the current implementation example, the mechanics 106 are additionally configured to provide movement of the main-reflector 104, for example a linear slide, reversibly in the direction of the sub-reflector 102. The main-reflector 104 can be reversibly moved in a direction of the linear axis 108, substantially parallel and/or aligned with the linear axis 108. Based on the current description, one skilled in the art will be able to implement mechanics 106 to provide movement of the main-reflector 104 and adjust the spacing 124 for the desired Tx/Rx parameters. Refer again to
Based on this description, the linear axis 108 can be implemented by one skilled in the art to satisfy system design requirements and operational parameters. For example,
The movement of the main-reflector 104 can be between the first spacing 124A and the second spacing 124B. This movement of the main-reflector 104 is not limited to the two exemplary positions (far and near), and other positions along the linear axis 108 can be used as appropriate. If the first spacing 124A is the maximum distance from the sub-reflector 102, and the second spacing 124B is the minimum distance from the sub-reflector 102, then the available movement, or range of compensation is the difference between the spacings (124A minus 124B). For example, a compensation range may be 14 cm (±7 cm from an intermediate position between the far position and the near position). The current example of 14 cm (±7 cm) is non-limiting, and other ranges are possible, for example +16 cm to −8 cm. In an example of use, the main-reflector 104 is located as the first position main-reflector (far reflector) 104A at the first spacing 124A from the sub-reflector 102. The main-reflector 104 can be moved toward the sub-reflector 102 to be located as the second position main-reflector (near reflector) 104B at the second spacing 124B from the sub-reflector 102. If the far position 122A is at the maximum spacing (distance), and the near position 122B is at the minimum spacing (distance), then the main-reflector can be moved to a position anywhere between and including the far position 122A and near position 122B.
The current implementation has been described as adjusting the main-reflector 104 with respect to the sub-reflector 102. While the opposite can be done—adjusting the sub-reflector 102 together with the feed horn 100 with respect to the main-reflector 104, this generally introduces more complexity to the system. The feed 100 may also be moved at the same time or at a different time as the main-reflector 104 if desired/required.
Referring to
Refer also to
Referring to
Referring to
In other words, the first parabolic shape 104HP is a first shape that is a first parabola, and similarly the second parabolic shape 104WP is a second shape that is a second parabola.
Typically, the main-reflector 104 is asymmetric, the first and second parabolic shapes being different. Parabolic surfaces can be described in three dimensions by following typical parabolic surface equation for a surface height ‘z’ above the x-y plane:
z=x
2/(4fa)+y2/(4fb)
Where ‘fa’ in this equation is the focal distances of the parabolic surface (second parabolic shape 104WP) on the normal to the azimuth axis, which together with the horizontal planar shape (planar shape 102WP) of the sub-reflector 102 focuses the feed beam 136 on the iso-phase center 90F inside the feed horn 100, thus forming a Cassegrain configuration that is characterized by one focal point (90C Cassegrain az focus). In addition, ‘fb’ in this equation is the focal distances of the parabolic surface (first parabolic shape 104HP) of the main-reflector 104 on the normal to the elevation axis forming the focal line (90G Gregorian line focus) between the main- and sub-reflector centers, which then illuminates the concave shape (concave shape 102HP) of the sub-reflector 102, which in turn focuses the satellite beam (target beam 132) in the elevation direction also the feed beam 136 on the iso-phase center 90F inside the feed horn 100, thus forming a Gregorian configuration, which is characterized by more than one focal point/line.
Normally a symmetric, parabolic dish reflector has a corresponding single focus point. In contrast, the sub-reflector 102 has a planar shape 102WP in the azimuth direction resulting in a corresponding focus line 90G (Gregorian line focus, shown in
Referring to
Referring to
Referring to
Referring to
Referring to
Note that in the context of this description, the focus being discussed may not be the mathematical focus defining the parabolic shape (that is on a normal to the curvature of the parabola). Typically, the focus being discussed is an “off-axis” focus of the beam direction, an angle other than normal to the curvature of the parabolic shape. For example, in the current figure, the main reflector normal 104N is shown perpendicular to the mechanical center 90M of the main-reflector. However, the Cassegrain elevation focus 90E is related to the target beam 132 reflecting toward the main beam 134 and is located on the main beam 134, not the main reflector normal 104N. Similarly, with the sub-reflector 102, the feed beam 136, and the ray optics point focus 90T. In some configurations, the focus may coincide with the mathematical focus on a normal to the parabola.
The main-reflector 104 is on a first side of the sub-reflector 102 and the main-reflector elevation direction first focus 90E is on the second side of the sub-reflector 102. The sub-reflector 102 optics together with the main-reflector 104 optics focuses the incoming/outgoing satellite beam at the ray optics point focus 90T.
Referring to
Given the above configurations, the main-reflector 104 is tilted to the desired/required tilt angle 126 to operate with the beam angle 128 from the main reflector 104 to the target 650. As described above, the tilt angle 126 is relative to the linear axis 108 and the main-reflector normal 104N. Typically, the tilt angle 126 is approximately half of the beam angle 128 (half of the global elevation range).
Before, after, or during tilting of the main-reflector, the main-reflector 104 is also positioned relative to the sub-reflector 102.
As described above, the sub-reflector 102 has a first concave shape 102HP in a direction of the sub-reflector height 102H. The first concave shape 102HP having corresponding third focus 90T and fourth focus (90G or 90E, depending on configuration). The sub-reflector 102 has a planar shape 102WP in a direction of said sub-reflector width 102W.
Refer to
In a case (described above) where the linear axis 108 is described as a line from the main-reflector mechanical center 90M to the sub-reflector mechanical center 90S, the main-reflector first focus 90N can be substantially on the linear axis, and the sub-reflector fourth focus 90G is substantially on the linear axis 108.
The positioning of the main-reflector 104 can also be relative to the feed 100. The feed 100 is typically in a fixed relation to the sub-reflector 102, so the sub-reflector third focus 90T is substantially aligned with the iso phase center 90F of the feed 100.
Referring now to
Referring now to
In
In
In
In
Referring to
Referring to
Referring to
Mass storage device 608 is a non-limiting example of a non-transitory computer-readable storage medium bearing computer-readable code for implementing the antenna positioning methodology described herein. Other examples of such computer-readable storage media include read-only memories such as CDs bearing such code.
Controller 600 may have an operating system stored on the memory devices, the ROM may include boot code for the system, and the processor may be configured for executing the boot code to load the operating system to RAM 604, executing the operating system to copy computer-readable code to RAM 604 and execute the code.
Network connection 620 provides communications to and from controller 600. Typically, a single network connection provides one or more links, including virtual connections, to other devices on local and/or remote networks. Alternatively, controller 600 can include more than one network connection (not shown), each network connection providing one or more links to other devices and/or networks.
Controller 600 can be implemented as a server or client respectively connected through a network to a client or server.
Note that a variety of implementations for modules and processing are possible, depending on the application. Modules are preferably implemented in software, but can also be implemented in hardware and firmware, on a single processor or distributed processors, at one or more locations. Module functions, for example on the controller, can be combined and implemented as fewer modules or separated into sub-functions and implemented as a larger number of modules. Based on the above description, one skilled in the art will be able to design an implementation for a specific application.
Note that the above-described examples, numbers used, and exemplary calculations are to assist in the description of this embodiment. Inadvertent typographical errors, mathematical errors, and/or the use of simplified calculations do not detract from the utility and basic advantages of the invention.
To the extent that the appended claims have been drafted without multiple dependencies, this has been done only to accommodate formal requirements in jurisdictions that do not allow such multiple dependencies. Note that all possible combinations of features that would be implied by rendering the claims multiply dependent are explicitly envisaged and should be considered part of the invention.
It will be appreciated that the above descriptions are intended only to serve as examples, and that many other embodiments are possible within the scope of the present invention as defined in the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2019/051226 | 11/10/2019 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62757188 | Nov 2018 | US |