Low profile plate

Abstract
The present application generally relates to orthopedic systems, and in particular, to systems including independent plates and spacers. A plating system can include a spacer and a plate that is independent from the spacer. A number of locking mechanisms can be provided to secure the plate to the spacer. In some cases, the spacer includes a pair of notches that extend on an outer surface of the spacer. The plate can include a pair of lateral extensions that can engage the notches to secure the plate to the spacer. In other cases, the spacer includes an opening including a pair of inlets. The plate can include an enclosed posterior extension that can be received in the pair of inlets to secure the plate to the spacer.
Description
FIELD OF THE INVENTION

The present application is generally directed to orthopedic systems, and in particular, to systems including plates and spacers.


BACKGROUND

Spinal discs and/or vertebral bodies of a spine can be displaced or damaged due to trauma, disease, degenerative defects, or wear over an extended period of time. One result of this displacement or damage may be chronic back pain. In some cases, to alleviate back pain, the disc can be removed and replaced with an implant, such as a spacer, that promotes fusion. In addition to providing one or more spacers, a plating system can be used to further stabilize the spine during the fusion process. Such a plating system can include one or more plates and screws for aligning and holding vertebrae in a fixed position with respect to one another.


Accordingly, there is a need for improved systems involving plating systems and spacers for spinal fusion and stabilization.


SUMMARY OF THE INVENTION

Various systems, devices and methods related to plating systems are provided. In some embodiments, a spinal system comprises a spacer for inserting into an intervertebral space and a plate configured to abut the spacer. The spacer can include an upper surface, a lower surface and an opening that extends between the upper surface to the lower surface, wherein the spacer further includes a tapered leading end. The plate for abutting the spacer can include a plate body, a first opening formed in the plate body for receiving a first bone screw, a second opening formed in the plate body for receiving a second bone screw, a set screw, and a pair of extensions that extend from the plate body that are configured to engage the spacer. The first opening can angled in an upward direction, while the second opening can be angled in a downward direction. The set screw can be configured to prevent back-out of both the first and the second bone screws, wherein the set screw has a first position whereby the first and second bone screws can be inserted past the set screw and into the first and second openings and a second position following rotation of the set screw whereby the first and second bone screws are prevented from backing out by the set screw. A first bone screw is provided for inserting into the first opening in the plate body, wherein the first bone screw is configured to be inserted into a first vertebral body. A second bone screw is provided for inserting into the second opening in the plate body, wherein the second bone screw is configured to be inserted into a second vertebral body different from the vertebral body.


In other embodiments, a spinal system comprises a spacer for inserting into an intervertebral space and a plate configured to abut the spacer. The spacer can include an upper surface, a lower surface and an opening that extends between the upper surface to the lower surface, wherein the spacer further includes a concave leading end. The plate for abutting the spacer can include a plate body, a first opening formed in the plate body for receiving a first bone screw, a second opening formed in the plate body for receiving a second bone screw, a set screw, and a pair of extensions that extend from the plate body that are configured to engage the spacer. The first opening can angled in an upward direction, while the second opening can be angled in a downward direction. The set screw can be configured to prevent back-out of at least one of the first and the second bone screws, wherein the set screw has a first position whereby at least one of the first and second bone screws can be inserted past the set screw and into at least one of the first and second openings and a second position following rotation of the set screw whereby at least one of the first and second bone screws are prevented from backing out by the set screw. Each of the pair of extensions can include a window that extends along a length of the extension. A first bone screw is provided for inserting into the first opening in the plate body, wherein the first bone screw is configured to be inserted into a first vertebral body. A second bone screw is provided for inserting into the second opening in the plate body, wherein the second bone screw is configured to be inserted into a second vertebral body different from the vertebral body.


In some embodiments, a spinal system comprises a spacer for inserting into an intervertebral space and a plate configured to abut the spacer. The spacer can include an upper surface, a lower surface and an opening that extends between the upper surface to the lower surface. The plate for abutting the spacer can include a plate body, a first opening formed in the plate body for receiving a first bone screw, a second opening formed in the plate body for receiving a second bone screw, a set screw, and a pair of extensions that extend from the plate body that are configured to engage the spacer. The first opening can angled in an upward direction, while the second opening can be angled in a downward direction. The set screw can be configured to prevent back-out of at least one of the first and the second bone screws, wherein the set screw has a first position whereby at least one of the first and second bone screws can be inserted past the set screw and into at least one of the first and second openings and a second position following rotation of the set screw whereby at least one of the first and second bone screws are prevented from backing out by the set screw. Each of the pair of extensions can include a window that extends along a length of the extension. A first bone screw is provided for inserting into the first opening in the plate body, wherein the first bone screw is configured to be inserted into a first vertebral body. A second bone screw is provided for inserting into the second opening in the plate body, wherein the second bone screw is configured to be inserted into a second vertebral body different from the vertebral body. The spacer and the plate are independent from one another such that the spacer can be inserted into a desired spinal location prior to abutting the spacer with the plate.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1D illustrate different views of a low profile plate attached to a spacer according to some embodiments.



FIGS. 2A-2D illustrate different views of the low profile plate shown in FIGS. 1A-1D.



FIGS. 3A-3D illustrate different views of a PEEK spacer to be used with the low profile plate shown in FIGS. 2A-2D.



FIGS. 4A-4D illustrate different views of an allograft spacer to be used with the low profile plate shown in FIGS. 2A-2D.



FIGS. 5A-5D illustrate different views of a second alternative embodiment of a low profile plate attached to a spacer according to some embodiments.



FIGS. 6A-6D illustrate different views of the low profile plate shown in FIGS. 5A-5D.



FIGS. 7A-7D illustrate different views of a PEEK spacer to be used with the low profile plate in FIGS. 6A-6D.



FIGS. 8A-8D illustrate different views of an allograft spacer to be used with the low profile plate in FIGS. 6A-6D.



FIGS. 9A-9D illustrate different views of a third alternative embodiment of a low profile plate attached to a spacer according to some embodiments.



FIGS. 10A-10D illustrate different views of the low profile plate shown in FIGS. 9A-9D.



FIGS. 11A-11D illustrate different views of a fourth alternative embodiment of a low profile plate attached to a spacer according to some embodiments.



FIGS. 12A-12D illustrate different views of the low profile plate shown in FIGS. 11A-11D.



FIGS. 13A-13D illustrate different views of a multi-piece allograft spacer to be used with the low profile plates discussed above according to some embodiments.



FIGS. 14A-14D illustrate different views of an alternative multi-piece allograft spacer to be used with the lower profile plates discussed above according to some embodiments.





DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

The present application is generally directed to orthopedic systems, and in particular, to systems including plates and spacers.


The present application discloses orthopedic plating systems that can be used in spinal surgeries, such as spinal fusions. The plating systems disclosed herein include a plate and a spacer that are independent from one another. In some cases, the plate and the spacer can be pre-attached to one another before positioning them in a desired location of the spine. In other cases, the spacer can first be inserted into a desired location of the spine, and then the plate can be inserted thereafter. Advantageously, the plating systems disclosed herein are of low-profile. For example, they can provide a very small, anterior footprint cervical plate solution for fusion procedures. One skilled in the art will appreciate that while the plating systems can be used with cervical procedures, the plating systems are not limited to such areas, and can be used with other regions of the spine.



FIGS. 1A-1D illustrate different views of a plating system comprising a low profile plate attached to a spacer according to some embodiments. The plating system 5 includes a spacer 10 attached to a low-profile plate 50. Advantageously, the plating system 5 can be inserted through an anterior approach into a spine, and can desirably provide a small anterior footprint.


The spacer 10 is configured to have an upper surface 12, a lower surface 14, and a leading end 22. In some embodiments, the upper surface 12 and/or lower surface 14 includes texturing 16, such as teeth, ribs, ripples, etc. to assist in providing frictional contact with adjacent vertebral bodies. In some embodiments, the leading end 22 of the spacer 10 can be slightly tapered, as shown in FIG. 1A. With the taper, the leading end 22 can serve as a distraction surface that helps the spacer to be inserted into an intervertebral space. As shown in FIG. 1B, the leading end 22 can be concave, though in other embodiments, the leading end 22 can be straight or convex.


The spacer 10 can be substantially C-shaped (as shown in FIG. 3B), whereby it includes two side arms 13 that surround an inner opening 20. Adjacent the side arms 13 is a convex wall 19. In some embodiments, the convex wall 19 is substantially parallel to the concave surface of the leading end 22. The opening 20, which is configured to receive natural or synthetic graft material therein to assist in a fusion procedure, has an open side that is opposite convex wall 19, thereby giving the spacer 10 its C-shape.


The spacer 10 has a number of unique features that accommodate the attachment of a plate 50 thereto. Each of the side arms 13 of the spacer 10 includes a notch 17 (shown in FIG. 3B) for receiving a corresponding protrusion 71 of a lateral arm or extension 70 of the plate 50, thereby advantageously forming a first locking mechanism between the spacer 10 and the plate 50. In addition, in some embodiments, each of the side arms 13 of the spacer 10 can also include a hump region 26 (shown in FIG. 3B) that can extend in part into a window 72 of an attached plate 50 (shown in FIG. 2A), thereby advantageously providing a second locking mechanism between the spacer 10 and the plate 50. Advantageously, by providing secure first and second locking mechanisms between the spacer 10 and the plate 50, the plate and spacer will be kept securely together during any type of impaction of the plating system within the body. Furthermore, each of the side arms 13 of the spacer 10 can include a cut-away portion or chamfer 18, 19 (shown in FIG. 3C) to advantageously accommodate screws which pass through the plate. In embodiments that involve a pair of screws through the plate 50—one of which passes in an upward direction, and the other of which passes in a downward direction—one side arm 13 of the spacer 10 will include an upper chamfer 18 formed on an upper surface to accommodate the upwardly directed screw, while the second side arm 13 of the spacer will include a lower chamfer 19 formed on a lower surface to accommodate the downwardly directed screw.


The spacer 10 can be formed of any material. In some embodiments, the spacer 10 is formed of a polymer, such as PEEK, as shown in FIG. 3A. In some embodiments, the spacer 10 is formed of allograft bone, as shown in FIG. 4A. In some instances, to form an allograft implant, allograft bone may be cut or shaved from a desired bone member. The cut allograft bone will then be assembled together, using an adhesive or mechanical fastener (e.g., bone pins). Accordingly, in some embodiments, an allograft spacer 10 is formed of two, three, four or more layers that are assembled together, such as by one or more bone pins. One particular advantage of the invention is that the plate 50 can work with a variety of different spacers 10, as the plate 50 is independently removable from and attachable to the spacer 10. Regardless of whether a surgeon chooses to implant an allograft spacer or PEEK spacer 10 into an intervertebral space, the surgeon can simply attach the low-profile plate 50 to the spacer 10 following implantation into the intervertebral space.


The plate 50 is configured to have a plate body and a pair of lateral extensions 70 that extend from the plate body, each of which has a protrusion 71, for inserting into a corresponding notch 17 of the spacer 10. These lateral extensions 70 help form the first locking mechanism between the plate 50 and the spacer 10, as discussed above. In addition, the lateral extensions 70 of the plate 50 each include a window 72 (shown in FIG. 2A) for receiving a hump region 26 on the arms 17 of the spacer 10, thereby helping to form the second locking mechanism between the plate 50 and the spacer 10, as discussed above.


In addition to attaching to the spacer 10, the plate 50 is also configured to attach into one or more vertebral bodies via one or more bone screws. As shown in FIG. 1A, the plate 50 includes a first screw hole 52 and a second screw hole 54 for receiving bone screws therein. In some embodiments, screw hole 52 is angled upwardly such that an inserted bone screw passes upward into an upper vertebral body, while screw hole 54 is angled downwardly such that an inserted bone screw passes downward into a lower vertebral body. While the illustrated embodiment illustrates a pair of screw holes for receiving a pair of bone screws, it is possible to have one, three, four, five or more screw holes for receiving a different number of bone screws.


Over time, it is possible for bone screws to back-out. The plate 50 thus has a blocking or set screw 56 (shown in FIG. 1C) that assists in preventing back-out of inserted bone screws. As shown in FIG. 1C, the set screw 56 can be in an initial position that allows first and second bone screws to pass through holes 52, 54. Once the bone screws have been inserted through the holes 52, 54, the set screw 56 can be rotated (e.g., 90 degrees), to thereby block the bone screws and prevent back out of the bone screws. In some embodiments, the set screw 56 abuts a side of the head of the bone screws to prevent back-out of the bone screws, while in other embodiments, the set screw 56 rests over a top of the head of the bone screws to prevent back-out of the bone screws. In some embodiments, the set screw 56 comes pre-fixed with the plate 50. As shown in FIG. 1C, a single set screw 56 can be used to conveniently block a pair of bone screws. In other embodiments, each bone screw can be assigned its own set screw, which can operate independently of one another, to prevent back-out of the bone screw.


The plate 50 can also include one or more knife-like edges 63 that provide additional torsional stabilization when the plate 50 rests against a bone member. As shown in FIG. 1C, the knife-like edges 63 can be formed on both the upper and lower surfaces of the plate 50 body. While the illustrated embodiment shows a pair of knife-like edges 63 on an upper surface of the plate body and a pair of knife-like edges 63 on a lower surface of the plate body, one skilled in the art will appreciate that a different number of knife-like edges 63 can be provided.



FIGS. 2A-2D illustrate different views of the low profile plate shown in FIGS. 1A-1D. From these views, one can see the pair of lateral extensions 70 that extend from the body of the plate 50. At the distal end of each of the lateral extensions 70 is an inwardly-facing protrusion 71 that is configured to fit into a corresponding notch in the spacer 10. In addition, from these views, one can see the windows 72 that are formed in each of the lateral extensions 70. The windows 72 advantageously receive hump regions 26 of the spacer to provide a locking mechanism, and also help to improve desirable radiolucency. Advantageously, the windows 72 can have rounded edges to accommodate the spacer 10 therein. While the illustrated windows 72 are shown as rectangular with rounded edges, in other embodiments, the windows 72 can have a different shape, such as circular or oval. In some embodiments, the plate 50 is assembled axially to the spacer 10.


In some embodiments, the low profile plate 50 can also include indented gripping sections 73 (shown in FIGS. 2A and 2B). These indented gripping sections 73 advantageously provide a gripping surface for an insertion instrument, thereby facilitating easy delivery of the plate to a spacer body during surgery.



FIGS. 3A-3D illustrate different views of a PEEK spacer to be used with the low profile plate shown in FIGS. 2A-2D. From these views, one can see how the spacer 10a includes an upper surface 12a and a lower surface 14a with texturing 16a; a generally C-shaped body including a pair of arms 13a each having a notch 17a formed therein and an upper chamfer 18a or lower chamfer 19a; and a tapered leading edge 22a. In addition, one skilled in the art can appreciate the substantially symmetric shape of the inner opening 20a, which serves as a graft hole for receiving graft material therein.



FIGS. 4A-4D illustrate different views of an allograft spacer to be used with the lower profile plate shown in FIGS. 2A-2D. While the allograft spacer 10b shares similar features to the PEEK spacer 10a shown in previous figures, such as the notches 17b, hump surfaces 26b, and chamfers 18b,19b, the allograft spacer 10b need not be the same. For example, the shape of the graft opening 20b can be more of an arch, as shown in FIG. 4B.



FIGS. 5A-5D illustrate different views of a second alternative embodiment of a low profile plate attached to a spacer according to some embodiments. Rather than having a plate 50 with lateral extensions 70 that extend around the outer surface of a spacer 10, the present embodiment of the plating system 105 includes a plate 150 with an enclosed posterior extension 155 that fits within the body of the spacer 110. The enclosed posterior extension 155 includes extending surfaces 166, 167 that are fitted into corresponding inlets 121, 123 formed in the body of the spacer 120, thereby forming a first locking mechanism between the plate 150 and the spacer 110. In addition, the enclosed posterior extension 155 of the plate 50 includes one or more deformable locking tabs 160 (shown in FIG. 6B) that securely lock into tab holes 181a in the spacer body 110, thereby forming a second locking mechanism between the plate 150 and the spacer 110. While in some embodiments, the plate 150 can be attached to the spacer 110 after inserting the spacer 110 into a desired location in the body, in other embodiments, the plate 150 can be pre-assembled with the spacer 110 prior to inserting the plating system 105 into the desired location.


Like the spacer 10 in FIG. 1A, the spacer 110 is configured to have an upper surface 112, a lower surface 114, and a leading end 122. In some embodiments, the upper surface 112 and/or lower surface 114 includes texturing 116, such as teeth, ribs, ripples, etc. to assist in providing frictional contact with adjacent vertebral bodies. In some embodiments, the leading end 122 of the spacer 110 can be slightly tapered, as shown in FIG. 7D. With the taper, the leading end 122 can serve as a distraction surface that helps the spacer 110 to be inserted into an intervertebral space. As shown in FIG. 1B, the leading end 122 can be concave, though in other embodiments, the leading end 122 can be straight or convex.


The spacer 110 can be substantially C-shaped (as shown in FIG. 7B), whereby it includes two side arms 113 that surround an inner opening 120. Adjacent the side arms 113 is a straight wall 119 that forms the border of the graft opening 120. The straight wall 119 can include one or more tab holes 181 (shown in FIG. 7A) for receiving deformable tab locks 160 therein. The graft opening 20, which is configured to receive natural or synthetic graft material therein to assist in a fusion procedure, has an open side that is opposite the straight wall 119, thereby giving the spacer 110 its C-shape.


In some embodiments, the graft opening 120 (shown in FIG. 7B) has a different shape from the opening 20 of the spacer 10 of the prior embodiment, as the graft opening 120 is configured to not only receive graft material, but also the enclosed posterior extension 155 of the plate 150. For example, the graft opening 120 includes two inlets—a first inlet 121 formed at the junction between the first arm 113 and wall 119 and a second inlet 123 formed at the junction between the second arm 113 and wall 119 (shown in FIG. 7B)—for receiving outwardly extending surfaces 166, 167 of the plate 150 (shown in FIG. 6B). In addition, the graft opening 120 includes two outwardly tapering walls 111 that provide enough space to accommodate any bone screws inserted in the plate 150. As such, additional chamfers 18, 19 (as shown in FIG. 3B) are optional.


Like spacer 10, the spacer 110 can be formed of a variety of materials. In some embodiments, the spacer 110 comprises PEEK, as shown in FIG. 7A, while in other embodiments, the spacer 110 comprises allograft bone, as shown in FIG. 8A.


The plate 150 is configured to have a plate body, and an enclosed posterior extension 155 that extends from the plate body, which is received within and retains the spacer 110. The enclosed posterior extension 155 includes first and second outwardly extending surfaces 166, 167 that fit into inlets 121, 123 formed within the spacer 110 body to form a first locking mechanism. In addition, one or more deformable tab locks 160 extend from an exterior surface of the enclosed posterior extension 155 and are received in corresponding tab holes 181 in the spacer 150 to form a second locking mechanism. In some embodiments, the side walls of the enclosed posterior extension 155 can include one or more windows 172 (shown in FIG. 6A) for improving radiolucency of the plating system. In some embodiments, the plate 150 is assembled axially to the spacer 110.


In addition to attaching to the spacer 110, the plate 150 is also configured to attach into one or more vertebral bodies via one or more bone screws 88, 89. As shown in FIG. 5A, the plate 150 includes a first screw hole 152 and a second screw hole 154 for receiving bone screws 88, 89 therein. In some embodiments, screw hole 152 is angled upwardly such that an inserted bone screw 88 passes upward into an upper vertebral body, while screw hole 154 is angled downwardly such that an inserted bone screw 89 passes downward into a lower vertebral body. While the illustrated embodiment illustrates a pair of screw holes for receiving a pair of bone screws, it is possible to have one, three, four, five or more screw holes for receiving a different number of bone screws.


Over time, it is possible for bone screws to back-out. The plate 150 thus has a blocking or set screw 156 (shown in FIG. 5C) that assists in preventing back-out of inserted bone screws. As shown in FIG. 5C, the set screw 156 can be in an initial position that allows first and second bone screws to pass through holes 152, 154. Once the bone screws have been inserted through the holes 152, 154, the set screw 156 can be rotated (e.g., 90 degrees), to thereby block the bone screws and prevent back out of the bone screws. In some embodiments, the set screw 156 abuts a side of the head of the bone screws to prevent back-out of the bone screws, while in other embodiments, the set screw 156 rests over a top of the head of the bone screws to prevent back-out of the bone screws. In some embodiments, the set screw 156 comes pre-fixed with the plate 150. As shown in FIG. 5C, a single set screw 156 can be used to conveniently block a pair of bone screws. In other embodiments, each bone screw can be assigned its own set screw, which can operate independently of one another, to prevent back-out of the bone screw.


The plate 150 can also include one or more knife-like edges 163 that provide additional torsional stabilization when the plate 150 rests against a bone member. As shown in FIG. 5C, the knife-like edges 163 can be formed on both the upper and lower surfaces of the plate 150 body. While the illustrated embodiment shows a pair of knife-like edges 163 on an upper surface of the plate body and a pair of knife-like edges 163 on a lower surface of the plate body, one skilled in the art will appreciate that a different number of knife-like edges 163 can be provided.



FIGS. 6A-6D illustrate different views of the low profile plate shown in FIGS. 5A-5D. From these views, one can see the enclosed posterior extension 155 that extends from the body of the plate 150. At the distal end of the enclosed posterior extension 155 are a pair of outwardly extending surfaces 166, 167 that are configured to fit within inlets 121, 123 formed in the spacer. From these views, one can also see the deformable tab lock 160 (FIG. 6B) that can help secure the plate 150 to the spacer 110. In addition, from these views, one can see the windows 172 that are formed in each of the arms of the enclosed posterior extension 155. The windows 172 advantageously help to improve desirable radiolucency, and are of large size to provide a large viewing surface area. While the illustrated windows 172 are shown as triangular with rounded edges, in other embodiments, the windows 172 can have a different shape, such as circular or oval. In some embodiments, the plate 150 is assembled axially to the spacer 110.


In some embodiments, the low profile plate 150 can also include indented gripping sections 173 (shown in FIGS. 6A and 6B). These indented gripping sections 173 advantageously provide a gripping surface for an insertion instrument, thereby facilitating easy delivery of the plate to a spacer body during surgery.



FIGS. 7A-7D illustrate different views of a PEEK spacer to be used with the low profile plate shown in FIGS. 5A-5D. From these views, one can see how the spacer 110a includes an upper surface 112a and a lower surface 114a with texturing 116a; a generally C-shaped body including a pair of arms 113a each having an inner inlet 121, 123a formed therein; and a tapered leading edge 122a. In addition, one skilled in the art can appreciate the substantially symmetric shape of the inner opening 120a, which serves as a graft hole for receiving graft material therein.



FIGS. 8A-8D illustrate different views of an allograft spacer to be used with the lower profile plate shown in FIGS. 5A-5D. While the allograft spacer 110b shares similar features to the PEEK spacer 110a shown in previous figures, such as the C-shaped body including a pair of arms 113b each having an inlet 121b, 123b formed therein, the allograft spacer 110b need not be the same.



FIGS. 9A-9D illustrate different views of a third alternative embodiment of a low profile plate attached to a spacer according to some embodiments. In the present embodiment, the plating system 205 includes a plate 250 having lateral arms or extensions 270 that extend around an exterior surface of a spacer 210. The lateral extensions 270 extend wider than the lateral extensions 70 in the first embodiment, and do not necessarily have to interlock with the spacer 210. While in some embodiments, the plate 250 can be attached to the spacer 210 after inserting the spacer 210 into a desired location in the body, in other embodiments, the plate 250 can be pre-assembled with the spacer 210 prior to inserting the plating system 205 into the desired location.


Like the spacer 10 in FIG. 1A, the spacer 210 is configured to have an upper surface 212, a lower surface 214, and a leading end 222. In some embodiments, the upper surface 212 and/or lower surface 214 includes texturing 216, such as teeth, ribs, ripples, etc. to assist in providing frictional contact with adjacent vertebral bodies. In some embodiments, the leading end 222 of the spacer 210 can be slightly tapered, as shown in FIG. 9D. With the taper, the leading end 222 can serve as a distraction surface that helps the spacer 210 to be inserted into an intervertebral space. As shown in FIG. 9B, the leading end 222 can be slightly concave, though in other embodiments, the leading end 122 can be straight or convex. Unlike previously illustrated spacers, the spacer 210 can have a graft hole 220 that is completely enclosed. As shown in FIG. 9B, the graft hole 220 can surrounded by four walls. In addition, the spacer 210 can include four outer walls: two straight walls, a convex wall and a concave wall.


In some embodiments, the graft opening 220 (shown in FIG. 9B) has a different shape from the openings of prior embodiments, as the graft opening 220 is enclosed. While the graft opening 220 is rectangular with rounded edges, in other embodiments, the graft opening 220 can have a different shape. For example, in some embodiments, the graft opening 220 can have curved walls, instead of straight walls, or can have tapered walls, instead of straight walls.


Like spacer 10, the spacer 210 can be formed of a variety of materials. In some embodiments, the spacer 210 comprises allograft bone, while in other embodiments, the spacer 210 comprises PEEK.


The plate 250 is configured to have a pair of lateral extensions 270 that receive the spacer 220. As shown in FIG. 9A, in some embodiments, the lateral extensions 270 include one or more windows 272 for improving radiolucency of the plating system. In some embodiments, the plate 250 is assembled axially to the spacer 210.


In addition to capturing the spacer 210, the plate 250 is also configured to attach into one or more vertebral bodies via one or more bone screws 88, 89. As shown in FIG. 9A, the plate 250 includes a first screw hole 252 and a second screw hole 254 for receiving bone screws 88, 89 therein. In some embodiments, screw hole 252 is angled upwardly such that an inserted bone screw 88 passes upward into an upper vertebral body, while screw hole 254 is angled downwardly such that an inserted bone screw 89 passes downward into a lower vertebral body. While the illustrated embodiment illustrates a pair of screw holes for receiving a pair of bone screws, it is possible to have one, three, four, five or more screw holes for receiving a different number of bone screws.


Over time, it is possible for bone screws to back-out. The plate 250 thus has a blocking or set screw 256 (shown in FIG. 9C) that assists in preventing back-out of inserted bone screws. As shown in FIG. 9C, the set screw 256 can be in an initial position that allows first and second bone screws to pass through holes 252, 254. Once the bone screws have been inserted through the holes 252, 254, the set screw 256 can be rotated (e.g., 90 degrees), to thereby block the bone screws and prevent back out of the bone screws. In some embodiments, the set screw 256 abuts a side of the head of the bone screws to prevent back-out of the bone screws, while in other embodiments, the set screw 256 rests over a top of the head of the bone screws to prevent back-out of the bone screws. In some embodiments, the set screw 256 comes pre-fixed with the plate 250. As shown in FIG. 9C, a single set screw 256 can be used to conveniently block a pair of bone screws. In other embodiments, each bone screw can be assigned its own set screw, which can operate independently of one another, to prevent back-out of the bone screw.



FIGS. 10A-10D illustrate different views of the low profile plate shown in FIGS. 9A-9D. From these views, one can see the lateral extensions 270 that extend from the body of the plate 250. From these views, one can also see the windows 272 (FIG. 10A) that extend along a substantial length of the lateral extensions 270. In some embodiments, each window 272 has a length greater than half the length of each lateral extension 270, thereby advantageously increasing the radiolucency of the plating system. In some embodiments, the plate 250 is assembled axially to the spacer 210.


In some embodiments, the low profile plate 250 can also include indented gripping sections 273 (shown in FIGS. 10A and 10B). These indented gripping sections 273 advantageously provide a gripping surface for an insertion instrument, thereby facilitating easy delivery of the plate to a spacer body during surgery.



FIGS. 11A-11D illustrate different views of a fourth alternative embodiment of a low profile plate attached to a spacer according to some embodiments. Like the previous embodiment, the plating system 305 includes a plate 350 having lateral arms or extensions 370 that extend around an exterior surface of a spacer 310. The lateral extensions 370 extend wider than the lateral extensions 70 in the first embodiment, and do not necessarily have to interlock with the spacer 310. While in some embodiments, the plate 350 can be attached to the spacer 310 after inserting the spacer 310 into a desired location in the body, in other embodiments, the plate 350 can be pre-assembled with the spacer 310 prior to inserting the plating system 305 into the desired location.


Like the spacer 10 in FIG. 1A, the spacer 310 is configured to have an upper surface 312, a lower surface 314, and a leading end 322. In some embodiments, the upper surface 312 and/or lower surface 314 includes texturing 316, such as teeth, ribs, ripples, etc. to assist in providing frictional contact with adjacent vertebral bodies. In some embodiments, the leading end 322 of the spacer 310 can be slightly tapered, as shown in FIG. 11D. With the taper, the leading end 322 can serve as a distraction surface that helps the spacer 310 to be inserted into an intervertebral space. As shown in FIG. 11B, the leading end 322 can be slightly concave, though in other embodiments, the leading end 322 can be straight or convex. In some embodiments, the spacer 310 can have a graft hole 320 that is completely enclosed. As shown in FIG. 11B, the graft hole 320 can surrounded by four walls. In addition, the spacer 320 can be comprised of four outer walls: two straight, one concave and one convex.


In some embodiments, the graft opening 320 (shown in FIG. 11B) of the spacer 310 is enclosed. While the graft opening 320 is rectangular with rounded edges, in other embodiments, the graft opening 320 can have a different shape. For example, in some embodiments, the graft opening 320 can have curved walls, instead of straight walls, or can have tapered walls, instead of straight walls.


Like spacer 10, the spacer 310 can be formed of a variety of materials. In some embodiments, the spacer 210 comprises allograft bone, while in other embodiments, the spacer 310 comprises PEEK.


The plate 350 is configured to have a pair of lateral extensions 370 that receive the spacer 320. As shown in FIG. 11A, in some embodiments, the lateral extensions 370 include one or more windows 372 for improving radiolucency of the plating system. In some embodiments, the plate 350 is assembled axially to the spacer 310.


In addition to capturing the spacer 310, the plate 350 is also configured to attach into one or more vertebral bodies via one or more bone screws 88, 89. As shown in FIG. 9A, the plate 350 includes a first screw hole 351, a second screw hole 352 and a third screw hole 354 for receiving bone screws 87, 88, 89 therein. In some embodiments, screw holes 352 and 354 are angled upwardly such that inserted bone screws 87, 88 pass upward into an upper vertebral body, while screw hole 351 is angled downwardly such that inserted bone screw 89 passes downward into a lower vertebral body. While the illustrated embodiment illustrates three screw holes for receiving three bone screws, it is possible to have one, two, four, five or more screw holes for receiving a different number of bone screws.


Over time, it is possible for bone screws to back-out. The plate 350 thus has blocking or set screws 356, 357, 358 (shown in FIG. 12C), each of which corresponds to one of screw holes 351, 352, 354. As shown in FIG. 12C, the set screws 356, 357, 358 can be in an initial position that allows first, second and third bone screws to pass through holes 351, 352, 354. Once the bone screws have been inserted through the holes 351, 352, 354, the set screws 356, 357, 358 can be rotated (e.g., 90 degrees), to thereby block the bone screws and prevent back out of the bone screws. In some embodiments, the set screws 356, 357, 358 abut a side of the head of the bone screws to prevent back-out of the bone screws, while in other embodiments, the set screws 356, 357, 358 rest over a top of the head of the bone screws to prevent back-out of the bone screws. In some embodiments, the set screws 356, 357, 358 come pre-fixed with the plate 350. As shown in FIG. 12C, a single set screw 356, 357, 358 can be used to conveniently block a single bone screws. In other embodiments, each set screw can be designed to block more than one set screw to prevent back-out of the bone screw.



FIGS. 12A-12D illustrate different views of the low profile plate shown in FIGS. 11A-11D. From these views, one can see the lateral extensions 370 that extend from the body of the plate 350. From these views, one can also see the windows 372 (FIG. 12A) that extend along a substantial length of the lateral extensions 370. In some embodiments, each window 372 has a length greater than half the length of each lateral extension 370, thereby advantageously increasing the radiolucency of the plating system. In some embodiments, the plate 350 is assembled axially to the spacer 310.


The plating systems describe include a plate that is independent from a spacer. The plate is low-profile and can be used with any type of spacer, such as allograft or PEEK.



FIGS. 13A-13D illustrate different views of a multi-piece allograft spacer to be used with the low profile plates discussed above according to some embodiments. The multi-piece allograft spacer 410 can be formed of an upper member 436 and a lower member 438 that are connected together via one or more pins 475. The upper member 436 and the lower member 438 each include cut-out portions that help form a graft opening 420 in the spacer 410.


The upper member 436 can include an upper surface having bone engagement surfaces (e.g., ridges, teeth, ribs) and a lower interfacing surface 446. The lower member 438 can include a lower surface having bone engagement surfaces (e.g., ridges, teeth, ribs) and an upper interfacing surface 448. In some embodiments, the upper member 436 can include one or more holes 462, while the lower member 438 can include one or more holes 464 which align with the one or more holes 462 of the upper member. The aligned holes are configured to receive one or more pins 475 to keep the upper and lower members of the allograft spacer together. In some embodiments, the pins 475 are also formed of bone material, such as allograft.


As shown best in FIG. 13C, the lower interfacing surface 446 of the upper member 436 is directly engaged with the upper interfacing surface 448 of the lower member 438. While the lower interfacing surface 446 and the upper interfacing surface 448 can be flat-on-flat, as both surfaces are planar, in some embodiments (as shown in FIG. 13C), the interface between the two surfaces is at an angle relative to the holes for receiving the pins 475. In other words, the pins 475 are received at an angle to the interface between the upper member 436 and the lower member 438. In addition, as shown in FIG. 13C, holes 462 and 464 need not go through the entirety of their respective members. For example, as shown in FIG. 13C, while hole 462 goes entirely through the upper and lower surface of the upper member 436, hole 464 goes only through the upper surface of the lower member 438, and does not go through to the lower surface. Accordingly, in some embodiments, aligned holes 462 and 464 create a “blind” pin-hole, whereby the hole does not go through the uppermost and lowermost surfaces of the spacer 410. Advantageously, in some embodiments, the use of such blind holes for receiving pins helps to maintain the pins within the spacer body.



FIGS. 14A-14D illustrate different views of an alternative multi-piece allograft spacer to be used with the lower profile plates discussed above according to some embodiments. The multi-piece allograft spacer 510 can be formed of a left member 536 and a right member 538 that are connected together in series or side-by-side (e.g., laterally) via one or more pins 575. The left member 536 and the right member 538 each include cut-out portions that help form a graft opening 520 in the spacer 510.


The left member 536 can include upper and lower surfaces having bone engagement surfaces (e.g., ridges, teeth, ribs). In addition, the left member 536 further includes a right interfacing surface 546. The right member 538 can also include upper and lower surfaces having bone engagement surfaces (e.g., ridges, teeth, ribs). In addition, the right member 538 further includes a left interfacing surface 548. In some embodiments, the left member 536 can include one or more holes 562, while the right member 538 can include one or more holes 564 which align with the one or more holes 562 of the left member. The aligned holes are configured to receive one or more pins 575 to keep the left and right members of the allograft spacer together.


As shown best in FIG. 14A, the right interfacing surface 546 of the left member 536 is directly engaged with the left interfacing surface 548 of the right member 538. While the right interfacing surface 546 and the left interfacing surface 548 can be flat-on-flat, as both surfaces are planar, in some embodiments (as shown in FIG. 14A), the interface between the two surfaces is at an angle relative to the holes for receiving the pins 575. In other words, the pins 575 are received at an angle to the interface between the left member 536 and the right member 538. In addition, as shown in FIG. 14B, holes 562 and 564 need not go through the entirety of their respective members. In other words, one or more of the holes (e.g., holes 562, 564 or combined) can be blind holes, whereby the holes do not go through the left and right surfaces of the lateral implants.


By having multi-piece allograft spacers that are either stacked or aligned side-by-side, it is possible to have spacers of increased height and width. While the embodiments herein show two piece spacers, one skilled in the art will appreciate that three or more members can be combined to form multi-piece allograft spacers for use with any of the plate members described above.


It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Moreover, the improved bone screw assemblies and related methods of use need not feature all of the objects, advantages, features and aspects discussed above. Thus, for example, those skilled in the art will recognize that the invention can be embodied or carried out in a manner that achieves or optimizes one advantage or a group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein. In addition, while a number of variations of the invention have been shown and described in detail, other modifications and methods of use, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is contemplated that various combinations or subcombinations of these specific features and aspects of embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the discussed bone screw assemblies. Thus, it is intended that the present invention cover the modifications and variations of this invention provided that they come within the scope of the appended claims or their equivalents.

Claims
  • 1. A spinal system comprising: a spacer for inserting into an intervertebral space, the spacer including: an upper surface,a lower surface, andan opening that extends between the upper surface to the lower surface, anda projection that extends between the upper surface to the lower surface along and outwardly from an outer sidewall of the spacer;a plate for abutting the spacer, the plate including:a plate body,a first opening formed in the plate body for receiving a first bone screw, wherein the first opening is angled in an upward direction;a second opening formed in the plate body for receiving a second bone screw, wherein the second opening is angled in a downward direction;a set screw for preventing back-out of both the first and the second bone screws, wherein the set screw has a first position whereby the first and second bone screws can be inserted past the set screw and into the first and second openings and a second position following rotation of the set screw whereby the first and second bone screws are prevented from backing out by the set screw, anda pair of extensions that extend from the plate body, wherein the extensions are configured to engage the spacer, wherein one of the extensions is received completely around a periphery of the projection on the outer sidewall of the spacer to secure the plate to the spacer;a first bone screw for inserting into the first opening in the plate body, wherein the first bone screw is configured to be inserted into a first vertebral body; anda second bone screw for inserting into the second opening in the plate body, wherein the second bone screw is configured to be inserted into a second vertebral body.
  • 2. The system of claim 1, wherein the spacer is a C-shaped spacer.
  • 3. The system of claim 1, wherein the spacer comprises an upper chamfer and a lower chamfer.
  • 4. The system of claim 1, wherein the pair of extensions that extend from the plate body extend around the outer surface of the spacer.
  • 5. The system of claim 4, wherein the pair of extensions include inward protrusions for inserting into outer sidewalls of the spacer.
  • 6. The system of claim 5, wherein the spacer includes a pair of notches that correspond to the pair of extension of the plate to form a first locking mechanism between the plate and the spacer.
  • 7. The system of claim 1, wherein the opening in the spacer is bounded by at least one convex surface.
  • 8. A spinal system comprising: a spacer for inserting into an intervertebral space, the spacer including: an upper surface,a lower surface,an opening that extends between the upper surface to the lower surface, anda projection that extends between the upper surface to the lower surface along and outwardly from an outer sidewall of the spacer;a plate for abutting the spacer, the plate including:a plate body,a first opening formed in the plate body for receiving a first bone screw, wherein the first opening is angled in an upward direction,a second opening formed in the plate body for receiving a second bone screw, wherein the second opening is angled in a downward direction,a set screw for preventing back out of at least one of the first and second bone screws, anda pair of extensions that extend from the plate body, wherein the extensions are configured to engage the spacer, and wherein each extension includes a window that extends along a length of the extension, wherein one of the extensions is received completely around a periphery of the projection on the outer sidewall of the spacer to secure the plate to the spacer;a first bone screw for inserting into the first opening in the plate body, wherein the first bone screw is configured to be inserted into a first vertebral body; anda second bone screw for inserting into the second opening in the plate body, wherein the second bone screw is configured to be inserted into a second vertebral body.
  • 9. The system of claim 8, wherein the pair of extensions of the plate comprise lateral extensions that engage an outer surface of the spacer.
  • 10. The system of claim 8, wherein the pair of extensions of the plate comprise inward protrusions that extend into notches formed on an outer surface of the spacer.
  • 11. The system of claim 8, wherein the set screw is configured to prevent back-out of both the first and the second bone screws in the plate.
  • 12. The system of claim 11, wherein upon rotation of the set screw, the set screw abuts side surfaces of heads of the first and second bone screws.
  • 13. The system of claim 8, wherein the leading end of the spacer is tapered.
  • 14. A spinal system comprising: a spacer for inserting into an intervertebral space, wherein the spacer is formed of a first member attached to a second member, wherein the spacer comprises an upper surface and a lower surface, wherein a projection extends between the upper surface to the lower surface along and outwardly an outer sidewall of the spacer;a plate for abutting the spacer, the plate including:a plate body,a first opening formed in the plate body for receiving a first bone screw;a second opening formed in the plate body for receiving a second bone screw; anda pair of extensions that extend from the plate body, wherein the extensions are configured to engage the spacer, and wherein each extension includes a window that extends along a length of the extension, wherein one of the extensions is received completely around a periphery of the projection on the outer sidewall of the spacer to secure the plate to the spacer;a first bone screw for inserting into the first opening in the plate body, wherein the first bone screw is configured to be inserted into a first vertebral body; anda second bone screw for inserting into the second opening in the plate body, wherein the second bone screw is configured to be inserted into a second vertebral body different from the vertebral body.
  • 15. The system of claim 14, wherein the spacer comprises an allograft spacer.
  • 16. The system of claim of claim 15, wherein the allograft spacer includes at least one chamfer for accommodating either the first bone screw or the second bone screw.
  • 17. The system of claim 14, wherein the spacer comprises a blind pin hole for receiving a pin that secures the first member and the second member.
  • 18. The system of claim 14, wherein the first member is attached to the second member via a pin made of bone.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. Ser. No. 14/190,948, filed Feb. 26, 2014, which is a continuation-in-part application of (i) U.S. Ser. No. 13/785,434, filed Mar. 5, 2013, now U.S. Pat. No. 9,149,365 and of (ii) U.S. Ser. No. 14/085,318, filed Nov. 20, 2013, which is a continuation-in-part application of U.S. patent application Ser. No. 13/785,856, filed Mar. 5, 2013, now U.S. Pat. No. 9,204,975, which is a continuation-in-part of U.S. patent application Ser. No. 13/559,917, filed Jul. 27, 2012, now U.S. Pat. No. 8,961,606, which is a continuation-in-part of Ser. No. 13/267,119, filed Oct. 6, 2011, which claims priority to U.S. Provisional Application 61/535,726, filed on Sep. 16, 2011, the entire contents of which are incorporated by reference.

US Referenced Citations (500)
Number Name Date Kind
1673630 Madge Jun 1928 A
2363405 Eichelberger Nov 1944 A
2596957 Olson May 1952 A
4599086 Doty Jul 1986 A
4743256 Brantigan May 1988 A
4955908 Frey Sep 1990 A
5002576 Fuhrmann Mar 1991 A
5163949 Bonutti Nov 1992 A
5163960 Bonutti Nov 1992 A
5197971 Bonutti Mar 1993 A
5269785 Bonutti Dec 1993 A
5295994 Bonutti Mar 1994 A
5329846 Bonutti Jul 1994 A
5331975 Bonutti Jul 1994 A
5345927 Bonutti Sep 1994 A
5364399 Lowery Nov 1994 A
5397364 Kozak et al. Mar 1995 A
5403317 Bonutti Apr 1995 A
5403348 Bonutti Apr 1995 A
5441538 Bonutti Aug 1995 A
5454365 Bonutti Oct 1995 A
5458641 Jimenez Oct 1995 A
5464426 Bonutti Nov 1995 A
5496348 Bonutti Mar 1996 A
5514153 Bonutti May 1996 A
5514180 Heggeness May 1996 A
5522846 Bonutti Jun 1996 A
5527343 Bonutti Jun 1996 A
5534012 Bonutti Jul 1996 A
5545222 Bonutti Aug 1996 A
5549612 Yapp et al. Aug 1996 A
5549630 Bonutti Aug 1996 A
5549631 Bonutti Aug 1996 A
5569305 Bonutti Oct 1996 A
5577517 Bonutti Nov 1996 A
5584862 Bonutti Dec 1996 A
5593425 Bonutti Jan 1997 A
5609635 Michelson Mar 1997 A
5624462 Bonutti Apr 1997 A
5662710 Bonutti Sep 1997 A
5667520 Bonutti Sep 1997 A
5685826 Bonutti Nov 1997 A
5694951 Bonutti Dec 1997 A
5707390 Bonutti Jan 1998 A
5716325 Bonutti Feb 1998 A
5728159 Stroever Mar 1998 A
5733306 Bonutti Mar 1998 A
5735875 Bonutti Apr 1998 A
5741253 Michelson Apr 1998 A
5814084 Grivas Sep 1998 A
5827318 Bonutti Oct 1998 A
5845645 Bonutti Dec 1998 A
5860997 Bonutti Jan 1999 A
5861041 Tienboon Jan 1999 A
5888196 Bonutti Mar 1999 A
5888219 Bonutti Mar 1999 A
5888223 Bray, Jr. Mar 1999 A
5888227 Cottle Mar 1999 A
5899939 Boyce May 1999 A
5928267 Bonutti Jul 1999 A
5935131 Bonutti Aug 1999 A
5941900 Bonutti Aug 1999 A
5954739 Bonutti Sep 1999 A
5972368 McKay Oct 1999 A
5989289 Coates Nov 1999 A
6010525 Bonutti Jan 2000 A
6017305 Bonutti Jan 2000 A
6025538 Yaccarino, III Feb 2000 A
6033438 Bianchi Mar 2000 A
6042596 Bonutti Mar 2000 A
6045579 Hochshuler Apr 2000 A
6059817 Bonutti May 2000 A
6066175 Henderson et al. May 2000 A
6077292 Bonutti Jun 2000 A
6086593 Bonutti Jul 2000 A
6096081 Grivas Aug 2000 A
6099531 Bonutti Aug 2000 A
6102928 Bonutti Aug 2000 A
6132472 Bonutti Oct 2000 A
RE36974 Bonutti Nov 2000 E
6143033 Paul Nov 2000 A
6146421 Gordon Nov 2000 A
6156037 LeHuec et al. Dec 2000 A
6159234 Bonutti Dec 2000 A
6171236 Bonutti Jan 2001 B1
6171299 Bonutti Jan 2001 B1
6174311 Branch Jan 2001 B1
6174313 Bonutti Jan 2001 B1
6187023 Bonutti Feb 2001 B1
6200347 Anderson et al. Mar 2001 B1
6203565 Bonutti Mar 2001 B1
6206922 Zdeblick et al. Mar 2001 B1
6206923 Boyd Mar 2001 B1
6217617 Bonutti Apr 2001 B1
6231592 Bonutti May 2001 B1
6231610 Geisler May 2001 B1
6235059 Benezech May 2001 B1
6245108 Biscup Jun 2001 B1
6258089 Campbell et al. Jul 2001 B1
6258125 Paul Jul 2001 B1
6261586 McKay Jul 2001 B1
6270528 McKay Aug 2001 B1
6277136 Bonutti Aug 2001 B1
6287325 Bonutti Sep 2001 B1
6294187 Boyce Sep 2001 B1
6342074 Simpson Jan 2002 B1
6350283 Michelson Feb 2002 B1
6358266 Bonutti Mar 2002 B1
6361565 Bonutti Mar 2002 B1
6364880 Michelson Apr 2002 B1
6368343 Bonutti Apr 2002 B1
6371988 Pafford Apr 2002 B1
6379385 Kalas Apr 2002 B1
6383186 Michelson May 2002 B1
6398811 McKay Jun 2002 B1
6409765 Bianchi Jun 2002 B1
6432106 Fraser Aug 2002 B1
6432436 Gertzman Aug 2002 B1
6447516 Bonutti Sep 2002 B1
6451042 Bonutti Sep 2002 B1
6458158 Anderson Oct 2002 B1
6464713 Bonutti Oct 2002 B2
6468289 Bonutti Oct 2002 B1
6468293 Bonutti Oct 2002 B2
6468311 Boyd Oct 2002 B2
6471724 Zdeblick Oct 2002 B2
6475230 Bonutti Nov 2002 B1
6482233 Aebi Nov 2002 B1
6500195 Bonutti Dec 2002 B2
6503267 Bonutti Jan 2003 B2
6503277 Bonutti Jan 2003 B2
6511509 Ford Jan 2003 B1
6520993 James Feb 2003 B2
6540785 Gill et al. Apr 2003 B1
6543455 Bonutti Apr 2003 B2
6548080 Gertzman Apr 2003 B1
6554863 Paul Apr 2003 B2
6558387 Errico May 2003 B2
6558423 Michelson May 2003 B1
6558424 Thalgott May 2003 B2
6562073 Foley May 2003 B2
6569187 Bonutti May 2003 B1
6575982 Bonutti Jun 2003 B1
6579318 Varga Jun 2003 B2
6585750 Bonutti Jul 2003 B2
6592531 Bonutti Jul 2003 B2
6592609 Bonutti Jul 2003 B1
6607534 Bonutti Aug 2003 B2
6610065 Branch Aug 2003 B1
6620181 Bonutti Sep 2003 B1
6629998 Lin Oct 2003 B1
6630000 Bonutti Oct 2003 B1
6632247 Boyer, II Oct 2003 B2
6635073 Bonutti Oct 2003 B2
6638309 Bonutti Oct 2003 B2
6638310 Lin Oct 2003 B2
6652532 Bonutti Nov 2003 B2
6652593 Boyer, II Nov 2003 B2
6660038 Boyer, II Dec 2003 B2
6666889 Commarmond Dec 2003 B1
6666890 Michelson Dec 2003 B2
6676703 Biscup Jan 2004 B2
6682563 Scharf Jan 2004 B2
6695882 Bianchi Feb 2004 B2
6702821 Bonutti Mar 2004 B2
6702856 Bonutti Mar 2004 B2
6706067 Shimp Mar 2004 B2
6709458 Michelson Mar 2004 B2
6719794 Gerber Apr 2004 B2
6719803 Bonutti Apr 2004 B2
6730127 Michelson May 2004 B2
6736853 Bonutti May 2004 B2
6740118 Eisermann et al. May 2004 B2
6761738 Boyd Jul 2004 B1
6761739 Shepard Jul 2004 B2
6764491 Frey Jul 2004 B2
6767369 Boyer, II Jul 2004 B2
6770078 Bonutti Aug 2004 B2
6776800 Boyer, II Aug 2004 B2
6776938 Bonutti Aug 2004 B2
6793658 LeHuec Sep 2004 B2
RE38614 Paul Oct 2004 E
6805714 Sutcliffe Oct 2004 B2
6808585 Boyce Oct 2004 B2
6827740 Michelson Dec 2004 B1
6830570 Frey Dec 2004 B1
6835198 Bonutti Dec 2004 B2
6835206 Jackson Dec 2004 B2
6849093 Michelson Feb 2005 B2
6852126 Ahlgren Feb 2005 B2
6855167 Shimp Feb 2005 B2
6855169 Boyer, II Feb 2005 B2
6860885 Bonutti Mar 2005 B2
6860904 Bonutti Mar 2005 B2
6887272 Shinomiya May 2005 B2
6899735 Coates et al. May 2005 B2
6902578 Anderson Jun 2005 B1
6905517 Bonutti Jun 2005 B2
6908466 Bonutti Jun 2005 B1
6929662 Messerli Aug 2005 B1
6932835 Bonutti Aug 2005 B2
6972019 Michelson Dec 2005 B2
6974480 Messerli Dec 2005 B2
6986788 Paul Jan 2006 B2
6989029 Bonutti Jan 2006 B2
6990982 Bonutti Jan 2006 B1
7001432 Keller et al. Feb 2006 B2
7014659 Boyer, II Mar 2006 B2
7018412 Ferreira Mar 2006 B2
7018413 Krüger Mar 2006 B2
7022137 Michelson Apr 2006 B2
7025787 Bryan et al. Apr 2006 B2
7044968 Yaccarino, III May 2006 B1
7044972 Mathys May 2006 B2
7048755 Bonutti May 2006 B2
7048762 Sander May 2006 B1
7048765 Grooms May 2006 B1
7060073 Frey Jun 2006 B2
7060096 Schopf Jun 2006 B1
7070557 Bonutti Jul 2006 B2
7087073 Bonutti Aug 2006 B2
7087082 Paul Aug 2006 B2
7087087 Boyer, II Aug 2006 B2
7094251 Bonutti Aug 2006 B2
7104996 Bonutti Sep 2006 B2
7112222 Fraser Sep 2006 B2
7114500 Bonutti Oct 2006 B2
7115146 Boyer, II Oct 2006 B2
7128753 Bonutti Oct 2006 B1
7134437 Bonutti Nov 2006 B2
7137997 Paul Nov 2006 B2
7147652 Bonutti Dec 2006 B2
7147665 Bryan et al. Dec 2006 B1
7153325 Kim et al. Dec 2006 B2
7163561 Michelson Jan 2007 B2
7172627 Fiere et al. Feb 2007 B2
7192447 Rhoda Mar 2007 B2
7208013 Bonutti Apr 2007 B1
7217273 Bonutti May 2007 B2
7217290 Bonutti May 2007 B2
7223292 Messerli May 2007 B2
7226482 Messerli Jun 2007 B2
7226483 Gerber Jun 2007 B2
7229477 Biscup Jun 2007 B2
7232464 Mathieu et al. Jun 2007 B2
7238203 Bagga Jul 2007 B2
7276082 Zdeblick et al. Oct 2007 B2
7300465 Paul Nov 2007 B2
7309357 Kim Dec 2007 B2
7309359 Trieu Dec 2007 B2
7311719 Bonutti Dec 2007 B2
7320708 Bernstein Jan 2008 B1
7323011 Shepard Jan 2008 B2
7329263 Bonutti Feb 2008 B2
7347873 Paul Mar 2008 B2
7429266 Bonutti Sep 2008 B2
7435262 Michelson Oct 2008 B2
7462200 Bonutti Dec 2008 B2
7473277 Boyer, II Jan 2009 B2
7479160 Branch Jan 2009 B2
7481812 Frey Jan 2009 B2
7481831 Bonutti Jan 2009 B2
7491237 Randall Feb 2009 B2
7510557 Bonutti Mar 2009 B1
7594931 Louis Sep 2009 B2
7601173 Messerli Oct 2009 B2
7615054 Bonutti Nov 2009 B1
7618456 Mathieu et al. Nov 2009 B2
7618460 Boyd Nov 2009 B2
7635390 Bonutti Dec 2009 B1
7637953 Branch Dec 2009 B2
7662184 Edwards Feb 2010 B2
7662185 Alfaro Feb 2010 B2
7708740 Bonutti May 2010 B1
7708741 Bonutti May 2010 B1
7726002 Shimp Jun 2010 B2
7727283 Bonutti Jun 2010 B2
7749229 Bonutti Jul 2010 B1
7753963 Boyer, II Jul 2010 B2
7771475 Michelson Aug 2010 B2
7780670 Bonutti Aug 2010 B2
7794502 Michelson Sep 2010 B2
7806896 Bonutti Oct 2010 B1
7806897 Bonutti Oct 2010 B1
7815682 Peterson Oct 2010 B1
7828852 Bonutti Nov 2010 B2
7833271 Mitchell Nov 2010 B2
7837736 Bonutti Nov 2010 B2
7846207 Lechmann et al. Dec 2010 B2
7850731 Brittan Dec 2010 B2
7854750 Bonutti Dec 2010 B2
7862616 Lechmann et al. Jan 2011 B2
7875076 Mathieu et al. Jan 2011 B2
7875080 Puno Jan 2011 B2
7879072 Bonutti Feb 2011 B2
7879103 Gertzman Feb 2011 B2
7892236 Bonutti Feb 2011 B1
7892261 Bonutti Feb 2011 B2
7896880 Bonutti Mar 2011 B2
7918888 Hamada Apr 2011 B2
7931690 Bonutti Apr 2011 B1
7931692 Sybert Apr 2011 B2
7938857 Garcia-bengochea May 2011 B2
7959635 Bonutti Jun 2011 B1
7967867 Barreiro Jun 2011 B2
7972381 Michelson Jul 2011 B2
8002833 Fabris Monterumici Aug 2011 B2
8100976 Bray Jan 2012 B2
8105383 Michelson Jan 2012 B2
8114162 Bradley Feb 2012 B1
8128669 Bonutti Mar 2012 B2
8133229 Bonutti Mar 2012 B1
8162977 Bonutti Apr 2012 B2
8273127 Jones Sep 2012 B2
8323343 Michelson Dec 2012 B2
8328872 Duffield Dec 2012 B2
8343222 Cope Jan 2013 B2
8366776 Heinz Feb 2013 B2
8425522 Bonutti Apr 2013 B2
8435300 Messerli May 2013 B2
8486066 Bonutti Jul 2013 B2
8623030 Bonutti Jan 2014 B2
8632552 Bonutti Jan 2014 B2
8641726 Bonutti Feb 2014 B2
8690928 Walkenhorst Apr 2014 B1
8690944 Bonutti Apr 2014 B2
8709085 Lechmann Apr 2014 B2
8728165 Parry May 2014 B2
8739797 Bonutti Jun 2014 B2
8747439 Bonutti Jun 2014 B2
8784495 Bonutti Jul 2014 B2
8795363 Bonutti Aug 2014 B2
8814902 Bonutti Aug 2014 B2
8834490 Bonutti Sep 2014 B2
8840629 Bonutti Sep 2014 B2
8845699 Bonutti Sep 2014 B2
8858557 Bonutti Oct 2014 B2
8900309 James Dec 2014 B2
8956417 Bonutti Feb 2015 B2
9044322 Bonutti Jun 2015 B2
9044341 Bonutti Jun 2015 B2
9050152 Bonutti Jun 2015 B2
9149365 Lawson Oct 2015 B2
20010010021 Boyd Jul 2001 A1
20010023371 Bonutti Sep 2001 A1
20020010511 Michelson Jan 2002 A1
20020016595 Michelson Feb 2002 A1
20020029055 Bonutti Mar 2002 A1
20020040246 Bonutti Apr 2002 A1
20020095160 Bonutti Jul 2002 A1
20020106393 Bianchi Aug 2002 A1
20020138143 Grooms Sep 2002 A1
20030009147 Bonutti Jan 2003 A1
20030023260 Bonutti Jan 2003 A1
20030045939 Casutt Mar 2003 A1
20030105528 Shimp et al. Jun 2003 A1
20030125739 Bagga et al. Jul 2003 A1
20030167091 Scharf Sep 2003 A1
20040010287 Bonutti Jan 2004 A1
20040078078 Shepard Apr 2004 A1
20040097794 Bonutti May 2004 A1
20040098016 Bonutti May 2004 A1
20040122518 Rhoda Jun 2004 A1
20040138689 Bonutti Jul 2004 A1
20040138690 Bonutti Jul 2004 A1
20040143270 Zucherman et al. Jul 2004 A1
20040143285 Bonutti Jul 2004 A1
20040143332 Krueger et al. Jul 2004 A1
20040172033 Bonutti Sep 2004 A1
20040172133 Gerber Sep 2004 A1
20040176853 Sennett et al. Sep 2004 A1
20040193181 Bonutti Sep 2004 A1
20040210219 Bray Oct 2004 A1
20040230223 Bonutti Nov 2004 A1
20050055098 Zdeblick et al. Mar 2005 A1
20050065607 Gross Mar 2005 A1
20050149192 Zuchermann et al. Jul 2005 A1
20050149193 Zuchermann et al. Jul 2005 A1
20050159819 McCormack et al. Jul 2005 A1
20050171607 Michelson Aug 2005 A1
20050177236 Mathieu et al. Aug 2005 A1
20050187625 Wolek et al. Aug 2005 A1
20050216059 Bonutti Sep 2005 A1
20050240267 Randall et al. Oct 2005 A1
20050240271 Zubok et al. Oct 2005 A1
20050256574 Paul et al. Nov 2005 A1
20050267534 Bonutti Dec 2005 A1
20060030851 Bray Feb 2006 A1
20060085071 Lechmann Apr 2006 A1
20060129240 Lessar et al. Jun 2006 A1
20060142828 Schorr Jun 2006 A1
20060167495 Bonutti Jul 2006 A1
20060217809 Albert et al. Sep 2006 A1
20060235470 Bonutti Oct 2006 A1
20060241760 Randall Oct 2006 A1
20060265009 Bonutti Nov 2006 A1
20070088441 Duggal et al. Apr 2007 A1
20070106388 Michelson May 2007 A1
20070123987 Bernstein May 2007 A1
20070135923 Peterman et al. Jun 2007 A1
20070162130 Rashbaum et al. Jul 2007 A1
20070168032 Muhanna et al. Jul 2007 A1
20070208378 Bonutti Sep 2007 A1
20070225806 Squires et al. Sep 2007 A1
20070225812 Gill Sep 2007 A1
20070233253 Bray et al. Oct 2007 A1
20070250167 Bray et al. Oct 2007 A1
20070255414 Melkent Nov 2007 A1
20070270961 Ferguson Nov 2007 A1
20080039873 Bonutti Feb 2008 A1
20080046090 Paul Feb 2008 A1
20080047567 Bonutti Feb 2008 A1
20080051890 Waugh et al. Feb 2008 A1
20080051907 Marik Feb 2008 A1
20080058822 Bonutti Mar 2008 A1
20080065140 Bonutti Mar 2008 A1
20080103519 Bonutti May 2008 A1
20080108916 Bonutti May 2008 A1
20080114399 Bonutti May 2008 A1
20080125865 Abdelgany May 2008 A1
20080133013 Duggal et al. Jun 2008 A1
20080140117 Bonutti Jun 2008 A1
20080154379 Steiner Jun 2008 A1
20080177307 Moskowitz Jul 2008 A1
20080188940 Cohen Aug 2008 A1
20080249569 Waugh Oct 2008 A1
20080249625 Waugh Oct 2008 A1
20080269806 Zhang Oct 2008 A1
20080281425 Thalgott Nov 2008 A1
20080306596 Jones Dec 2008 A1
20090076608 Gordon et al. Mar 2009 A1
20090088849 Armstrong Apr 2009 A1
20090099661 Bhattacharya Apr 2009 A1
20090101582 Liu Apr 2009 A1
20090105831 Jones Apr 2009 A1
20090210062 Thalgott Aug 2009 A1
20090234455 Moskowitz Sep 2009 A1
20100057206 Duffield Mar 2010 A1
20100145459 McDonough Jun 2010 A1
20100145460 McDonough Jun 2010 A1
20100305704 Messerli Dec 2010 A1
20100312345 Duffield Dec 2010 A1
20100312346 Kueenzi Dec 2010 A1
20110087327 Lechmann Apr 2011 A1
20110160864 Messerli Jun 2011 A1
20110160866 Laurence Jun 2011 A1
20110230971 Donner Sep 2011 A1
20110251689 Seifert Oct 2011 A1
20120010623 Bonutti Jan 2012 A1
20120078373 Gamache Mar 2012 A1
20120130495 Duffield May 2012 A1
20120130496 Duffield May 2012 A1
20120179259 McDonough Jul 2012 A1
20120197401 Duncan Aug 2012 A1
20120209385 Aferzon Aug 2012 A1
20120215226 Bonutti Aug 2012 A1
20120215233 Bonutti Aug 2012 A1
20120215313 Saidha Aug 2012 A1
20120221017 Bonutti Aug 2012 A1
20120277867 Kana Nov 2012 A1
20120277870 Wolters Nov 2012 A1
20120277872 Kana Nov 2012 A1
20120277873 Kana Nov 2012 A1
20120323330 Kueenzi Dec 2012 A1
20130018470 Moskowitz Jan 2013 A1
20130073046 Zaveloff Mar 2013 A1
20130073047 Laskowitz Mar 2013 A1
20130166032 McDonough Jun 2013 A1
20130211523 Southard Aug 2013 A1
20130218276 Fiechter Aug 2013 A1
20130226185 Bonutti Aug 2013 A1
20130237989 Bonutti Sep 2013 A1
20130289729 Bonutti Oct 2013 A1
20130297029 Kana Nov 2013 A1
20140012380 Laurence Jan 2014 A1
20140012384 Kana Jan 2014 A1
20140018854 Bonutti Jan 2014 A1
20140025110 Bonutti Jan 2014 A1
20140025111 Bonutti Jan 2014 A1
20140025112 Bonutti Jan 2014 A1
20140039623 Iott Feb 2014 A1
20140052258 Ball Feb 2014 A1
20140058520 Crozet Feb 2014 A1
20140180422 Klimek Jun 2014 A1
20140214166 Theofilos Jul 2014 A1
20140214167 Theofilos Jul 2014 A1
20140228963 Bonutti Aug 2014 A1
20140243985 Lechmann Aug 2014 A1
20140257380 Bonutti Sep 2014 A1
20140257487 Lawson Sep 2014 A1
20140277456 Kirschman Sep 2014 A1
20140277488 Davenport Sep 2014 A1
20140277489 Davenport Sep 2014 A1
20140277497 Bennett Sep 2014 A1
20104030956 Bonutti Oct 2014
20140330383 Wimberley Nov 2014 A1
20140330385 Carlson Nov 2014 A1
20140336770 Petersheim Nov 2014 A1
20140343573 Bonutti Nov 2014 A1
20140371859 Petersheim Dec 2014 A1
Foreign Referenced Citations (6)
Number Date Country
2727003 May 1996 FR
9723175 Jul 1997 WO
9963914 Dec 1999 WO
2005007040 Jan 2005 WO
2007098288 Aug 2007 WO
2008014258 Jan 2008 WO
Non-Patent Literature Citations (8)
Entry
U.S. Appl. No. 60/777,663, filed Feb. 27, 2006, Messerli.
U.S. Appl. No. 60/777,732, filed Feb. 27, 2006, Messerli et al.
U.S. Appl. No. 60/838,229, filed Aug. 16, 2006, Hunziker et al.
Guidance Document: Intervertebral Body Fusion Device, U.S. Dept. of Health and Human Services, Food and Drug Administration (Jun. 12, 2007).
M. Spruit et al., The in vitro stabilizing effect of polyether-etherketone cages versus a titanium cage of similar design for anterior lumbar interbody fusion, 14(8) Eur. Spine J. 752, 752-758 (2005).
P. Schleicher et al., Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion, 17(12) Eur. Spine J. 1757, 1757-1765 (2008).
P.W. Pavlov et al., Anterior lumbar interbody fusion with threaded fusion cages and autologous bone grafts, 9 Eur. Spine J. 224, 224-229 (2000).
Synthes' SynFix Technique Guide device (“SynFix Technique Guide”).
Related Publications (1)
Number Date Country
20160089246 A1 Mar 2016 US
Provisional Applications (1)
Number Date Country
61535726 Sep 2011 US
Continuations (1)
Number Date Country
Parent 14190948 Feb 2014 US
Child 14963302 US
Continuation in Parts (5)
Number Date Country
Parent 13785434 Mar 2013 US
Child 14190948 US
Parent 14085318 Nov 2013 US
Child 13785434 US
Parent 13785856 Mar 2013 US
Child 14085318 US
Parent 13559917 Jul 2012 US
Child 13785856 US
Parent 13267119 Oct 2011 US
Child 13559917 US