Low profile plate

Abstract
The present application generally relates to orthopedic systems, and in particular, to systems including independent plates and spacers. A plating system can include a spacer and a plate that is independent from the spacer. A number of locking mechanisms can be provided to secure the plate to the spacer. In some cases, the spacer includes a pair of notches that extend on an outer surface of the spacer. The plate can include a pair of lateral extensions that can engage the notches to secure the plate to the spacer. In other cases, the spacer includes an opening including a pair of inlets. The plate can include an enclosed posterior extension that can be received in the pair of inlets to secure the plate to the spacer.
Description
FIELD OF THE INVENTION

The present application is generally directed to orthopedic systems, and in particular, to systems including plates and spacers.


BACKGROUND

Spinal discs and/or vertebral bodies of a spine can be displaced or damaged due to trauma, disease, degenerative defects, or wear over an extended period of time. One result of this displacement or damage may be chronic back pain. In some cases, to alleviate back pain, the disc can be removed and replaced with an implant, such as a spacer, that promotes fusion. In addition to providing one or more spacers, a plating system can be used to further stabilize the spine during the fusion process. Such a plating system can include one or more plates and screws for aligning and holding vertebrae in a fixed position with respect to one another.


Accordingly, there is a need for improved systems involving plating systems and spacers for spinal fusion and stabilization.


SUMMARY OF THE INVENTION

Various systems, devices and methods related to plating systems are provided. In some embodiments, a spinal system comprises a spacer for inserting into an intervertebral space and a plate configured to abut the spacer. The spacer can include an upper surface, a lower surface and an opening that extends between the upper surface to the lower surface, wherein the spacer further includes a tapered leading end. The plate for abutting the spacer can include a plate body, a first opening formed in the plate body for receiving a first bone screw, a second opening formed in the plate body for receiving a second bone screw, a set screw, and a pair of extensions that extend from the plate body that are configured to engage the spacer. The first opening can angled in an upward direction, while the second opening can be angled in a downward direction. The set screw can be configured to prevent back-out of both the first and the second bone screws, wherein the set screw has a first position whereby the first and second bone screws can be inserted past the set screw and into the first and second openings and a second position following rotation of the set screw whereby the first and second bone screws are prevented from backing out by the set screw. A first bone screw is provided for inserting into the first opening in the plate body, wherein the first bone screw is configured to be inserted into a first vertebral body. A second bone screw is provided for inserting into the second opening in the plate body, wherein the second bone screw is configured to be inserted into a second vertebral body different from the vertebral body.


In other embodiments, a spinal system comprises a spacer for inserting into an intervertebral space and a plate configured to abut the spacer. The spacer can include an upper surface, a lower surface and an opening that extends between the upper surface to the lower surface, wherein the spacer further includes a concave leading end. The plate for abutting the spacer can include a plate body, a first opening formed in the plate body for receiving a first bone screw, a second opening formed in the plate body for receiving a second bone screw, a set screw, and a pair of extensions that extend from the plate body that are configured to engage the spacer. The first opening can angled in an upward direction, while the second opening can be angled in a downward direction. The set screw can be configured to prevent back-out of at least one of the first and the second bone screws, wherein the set screw has a first position whereby at least one of the first and second bone screws can be inserted past the set screw and into at least one of the first and second openings and a second position following rotation of the set screw whereby at least one of the first and second bone screws are prevented from backing out by the set screw. Each of the pair of extensions can include a window that extends along a length of the extension. A first bone screw is provided for inserting into the first opening in the plate body, wherein the first bone screw is configured to be inserted into a first vertebral body. A second bone screw is provided for inserting into the second opening in the plate body, wherein the second bone screw is configured to be inserted into a second vertebral body different from the vertebral body.


In some embodiments, a spinal system comprises a spacer for inserting into an intervertebral space and a plate configured to abut the spacer. The spacer can include an upper surface, a lower surface and an opening that extends between the upper surface to the lower surface. The plate for abutting the spacer can include a plate body, a first opening formed in the plate body for receiving a first bone screw, a second opening formed in the plate body for receiving a second bone screw, a set screw, and a pair of extensions that extend from the plate body that are configured to engage the spacer. The first opening can angled in an upward direction, while the second opening can be angled in a downward direction. The set screw can be configured to prevent back-out of at least one of the first and the second bone screws, wherein the set screw has a first position whereby at least one of the first and second bone screws can be inserted past the set screw and into at least one of the first and second openings and a second position following rotation of the set screw whereby at least one of the first and second bone screws are prevented from backing out by the set screw. Each of the pair of extensions can include a window that extends along a length of the extension. A first bone screw is provided for inserting into the first opening in the plate body, wherein the first bone screw is configured to be inserted into a first vertebral body. A second bone screw is provided tor inserting into the second opening in the plate body, wherein the second bone screw is configured to be inserted into a second vertebral body different from the vertebral body. The spacer and the plate are independent from one another such that the spacer can be inserted into a desired spinal location prior to abutting the spacer with the plate.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1D illustrate different views of a low profile plate attached to a spacer according to some embodiments.



FIGS. 2A-2D illustrate different views of the low profile plate shown in FIGS. 1A-1D.



FIGS. 3A-3D illustrate different views of a PEEK spacer to be used with the low profile plate shown in FIGS. 2A-2D.



FIGS. 4A-4D illustrate different views of an allograft spacer to be used with the low profile plate shown in FIGS. 2A-2D.



FIGS. 5A-5D illustrate different views of a second alternative embodiment of a low profile plate attached to a spacer according to some embodiments.



FIGS. 6A-6D illustrate different views of the low profile plate shown in FIGS. 5A-5D.



FIGS. 7A-7D illustrate different views of a PEEK spacer to be used with the low profile plate in FIGS. 6A-6D.



FIGS. 8A-8D illustrate different views of an allograft spacer to be used with the low profile plate in FIGS. 6A-6D.



FIGS. 9A-9D illustrate different views of a third alternative embodiment of a low profile plate attached to a spacer according to some embodiments.



FIGS. 10A-10D illustrate different views of the low profile plate shown in FIGS. 9A-9D.



FIGS. 11A-11D illustrate different views of a fourth alternative embodiment of a low profile plate attached to a spacer according to some embodiments.



FIGS. 12A-12D illustrate different views of the low profile plate shown in FIGS. 11A-11D.



FIGS. 13A-13D illustrate different views of a multi-piece allograft spacer to be used with the low profile plates discussed above according to some embodiments.



FIGS. 14A-14D illustrate different views of an alternative multi-piece allograft spacer to be used with the lower profile plates discussed above according to some embodiments.



FIGS. 15A-15D illustrate different views of an alternative low profile plate attached to a spacer according to some embodiments.



FIGS. 16A-16D illustrate different views of a low profile plate shown in FIGS. 15A-15D.



FIGS. 17A-17C illustrate different views of a spacer shown in FIGS. 15A-15D.



FIGS. 18A-18D illustrate different views of another alternative low profile plate attached to a spacer according to some embodiments.



FIG. 19 illustrates a lordotic version of the low profile plate and spacer shown in FIGS. 18A-18D.



FIGS. 20A-20D illustrate different views of another alternative low profile plate attached to multiple spacers according to some embodiments.



FIGS. 21A and 21B illustrate different views of another alternative low profile plate attached to multiple spacers according to some embodiments.



FIG. 22 illustrates another alternative low profile plate attached to multiple spacers according to some embodiments.



FIG. 23 illustrates another alternative low profile plate attached to multiple spacers according to some embodiments.



FIGS. 24A-24C illustrate another alternative low profile plate attached to a multi-piece spacer having three pieces according to some embodiments.



FIGS. 25A and 25B illustrate another alternative low profile plate attached to a multi-piece spacer having a metal insert according to some embodiments.



FIGS. 26A-26D illustrate another alternative plate having raised and lowered screw openings in attachment with a spacer according to some embodiments.



FIGS. 27A-27D illustrate another alternative plate having raised and lowered screw openings in attachment with a spacer according to some embodiments.



FIG. 28 illustrates the plate and spacer in FIGS. 26A-26D in use within a vertebral space.



FIGS. 29A-29C illustrate the plate in FIGS. 26A-26D.



FIG. 30 illustrates one example of an allograft spacer that can be used with the plate in FIGS. 26A-26D.



FIG. 31 illustrates one example of a PEEK spacer that can be used with the plate in FIGS. 26A-26D.





DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

The present application is generally directed to orthopedic systems, and in particular, to systems including plates and spacers.


The present application discloses orthopedic plating systems that can be used in spinal surgeries, such as spinal fusions. The plating systems disclosed herein include a plate and a spacer that are independent from one another. In some cases, the plate and the spacer can be pre-attached to one another before positioning them in a desired location of the spine. In other cases, the spacer can first be inserted into a desired location of the spine, and then the plate can be inserted thereafter. Advantageously, the plating systems disclosed herein are of low-profile. For example, they can provide a very small, anterior footprint cervical plate solution for fusion procedures. One skilled in the art will appreciate that while the plating systems can be used with cervical procedures, the plating systems are not limited to such areas, and can be used with other regions of the spine.



FIGS. 1A-1D illustrate different views of a plating system comprising a low profile plate attached to a spacer according to some embodiments. The plating system 5 includes a spacer 10 attached to a low-profile plate 50. Advantageously, the plating system 5 can be inserted through an anterior approach into a spine, and can desirably provide a small anterior footprint.


The spacer 10 is configured to have an upper surface 12, a lower surface 14, and a leading end 22. In some embodiments, the upper surface 12 and/or lower surface 14 includes texturing 16, such as teeth, ribs, ripples, etc. to assist in providing frictional contact with adjacent vertebral bodies. In some embodiments, the leading end 22 of the spacer 10 can be slightly tapered, as shown in FIG. 1A. With the taper, the leading end 22 can serve as a distraction surface that helps the spacer to be inserted into an intervertebral space. As shown in FIG., 1B, the leading end 22 can be concave, though in other embodiments, the leading end 22 can be straight or convex.


The spacer 10 can be substantially C-shaped (as shown in FIG. 3B), whereby it includes two side arms 13 that surround an inner opening 20. Adjacent the side arms 13 is a convex wall 19. In some embodiments, the convex wall 19 is substantially parallel to the concave surface of the leading end 22. The opening 20, which is configured to receive natural or synthetic graft material therein to assist in a fusion procedure, has an open side that is opposite convex wall 19, thereby giving the spacer 10 its C-shape.


The spacer 10 has a number of unique features that accommodate the attachment of a plate 50 thereto. Each of the side arms 13 of the spacer 10 includes a notch 17 (shown in FIG. 3B) for receiving a corresponding protrusion 71 of a lateral arm or extension 70 of the plate 50, thereby advantageously forming a first locking mechanism between the spacer 10 and the plate 50. In addition, in some embodiments, each of the side arms 13 of the spacer 10 can also include a hump region 26 (shown in FIG. 3B) that can extend in part into a window 72 of an attached plate 50 (shown in FIG. 2A), thereby advantageously providing a second locking mechanism between the spacer 10 and the plate 50. Advantageously, by providing secure first and second locking mechanisms between the spacer 10 and the plate 50, the plate and spacer will be kept securely together during any type of impaction of the plating system within the body. Furthermore, each of the side arms 13 of the spacer 10 can include a cut-away portion or chamfer 18, 19 (shown in FIG. 3C) to advantageously accommodate screws which pass through the plate. In embodiments that involve a pair of screws through the plate 50—one of which passes in an upward direction, and the other of which passes in a downward direction—one side arm 13 of the spacer 10 will include an upper chamfer 18 formed on an upper surface to accommodate the upwardly directed screw, while the second side arm 13 of the spacer wilt include a lower chamfer 19 formed on a lower surface to accommodate the downwardly directed screw.


The spacer 10 can be formed of any material. In some embodiments, the spacer 10 is formed of a polymer, such as PEEK, as shown in FIG. 3A. In some embodiments, the spacer 10 is formed of allograft bone, as shown in FIG. 4A. In some instances, to form an allograft implant, allograft bone may be cut or shaved from a desired bone member. The cut allograft bone will then be assembled together, using an adhesive or mechanical fastener (e.g., bone pins). Accordingly, in some embodiments, an allograft spacer 10 is formed of two, three, four or more layers that are assembled together, such as by one or more bone pins. One particular advantage of the invention is that the plate 50 can work with a variety of different spacers 10, as the plate 50 is independently removable from and attachable to the spacer 10. Regardless of whether a surgeon chooses to implant an allograft spacer or PEEK spacer 10 into an intervertebral space, the surgeon can simply attach the low-profile plate 50 to the spacer 10 following implantation into the intervertebral space.


The plate 50 is configured to have a plate body and a pair of lateral extensions 70 that extend from the plate body, each of which has a protrusion 71, for inserting into a corresponding notch 17 of the spacer 10. These lateral extensions 70 help form the first locking mechanism between the plate 50 and the spacer 10, as discussed above. In addition, the lateral extensions 70 of the plate 50 each include a window 72 (shown in FIG. 2A) for receiving a hump region 26 on the arms 17 of the spacer 10, thereby helping to form the second locking mechanism between the plate 50 and the spacer 10, as discussed above.


In addition to attaching to the spacer 10, the plate 50 is also configured to attach into one or more vertebral bodies via one or more bone screws. As shown in FIG. 1A, the plate 50 includes a first screw hole 52 and a second screw hole 54 for receiving bone screws therein. In some embodiments, screw hole 52 is angled upwardly such that an inserted bone screw passes upward into an upper vertebral body, while screw hole 54 is angled downwardly such that an inserted bone screw passes downward into a lower vertebral body. While the illustrated embodiment illustrates a pair of screw holes for receiving a pair of bone screws, it is possible to have one, three, four, five or more screw holes for receiving a different number of bone screws.


Over time, it is possible for bone screws to back-out. The plate 50 thus has a blocking or set screw 56 (shown in FIG. 1C) that assists in preventing back-out of inserted bone screws. As shown in FIG. 1C, the set screw 56 can be in an initial position that allows first and second bone screws to pass through holes 52, 54. Once the bone screws have been inserted through the holes 52, 54, the set screw 56 can be rotated (e.g., 90 degrees), to thereby block the bone screws and prevent back out of the bone screws. In some embodiments, the set screw 56 abuts a side of the head of the bone screws to prevent back-out of the bone screws, while in other embodiments, the set screw 56 rests over a top of the head of the bone screws to prevent back-out of the bone screws. In some embodiments, the set screw 56 comes pre-fixed with the plate 50. As shown in FIG. 1C, a single set screw 56 can be used to conveniently block a pair of bone screws. In other embodiments, each bone screw can be assigned its own set screw, which can operate independently of one another, to prevent back-out of the bone screw.


The plate 50 can also include one or more knife-like edges 63 that provide additional torsional stabilization when the plate 50 rests against a bone member. As shown in FIG. 1C, the knife-like edges 63 can be formed on both the upper and lower surfaces of the plate 50 body. While the illustrated embodiment shows a pair of knife-like edges 63 on an upper surface of the plate body and a pair of knife-like edges 63 on a lower surface of the plate body, one skilled in the art will appreciate that a different number of knife-like edges 63 can be provided.



FIGS. 2A-2D illustrate different views of the low profile plate shown in FIGS. 1A-1D. From these views, one can see the pair of lateral extensions 70 that extend from the body of the plate 50. At the distal end of each of the lateral extensions 70 is an inwardly-facing protrusion 71 that is configured to fit into a corresponding notch in the spacer 10. In addition, from these views, one can see the windows 72 that are formed in each of the lateral extensions 70. The windows 72 advantageously receive hump regions 26 of the spacer to provide a locking mechanism, and also help to improve desirable radiolucency. Advantageously, the windows 72 can have rounded edges to accommodate the spacer 10 therein. While the illustrated windows 72 are shown as rectangular with rounded edges, in other embodiments, the windows 72 can have a different shape, such as circular or oval. In some embodiments, the plate 50 is assembled axially to the spacer 10.


In some embodiments, the low profile plate 50 can also include indented gripping sections 73 (shown in FIGS. 2A and 2B). These indented gripping sections 73 advantageously provide a gripping surface for an insertion instrument, thereby facilitating easy delivery of the plate to a spacer body during surgery.



FIGS. 3A-3D illustrate different views of a PEEK spacer to be used with the low profile plate shown in FIGS. 2A-2D. From these views, one can see how the spacer 10a includes an upper surface 12a and a lower surface 14a with texturing 16a; a generally C-shaped body including a pair of arms 13a each having a notch 17a formed therein and an upper chamfer 18a or lower chamfer 19a; and a tapered leading edge 22a. In addition, one skilled in the art can appreciate the substantially symmetric shape of the inner opening 20a, which serves as a graft hole for receiving graft material therein.



FIGS. 4A-4D illustrate different views of an allograft spacer to be used with the lower profile plate shown in FIGS. 2A-2D. While the allograft spacer lab shares similar features to the PEEK spacer 10a shown in previous figures, such as the notches 17b, hump surfaces 26b, and chamfers 18b,19b, the allograft spacer 10 need not be the same. For example, the shape of the graft opening 20b can be more of an arch, as shown in FIG. 4B.



FIGS. 5A-5D illustrate different views of a second alternative embodiment of a low profile plate attached to a spacer according to some embodiments. Rather than having a plate 50 with lateral extensions 70 that extend around the outer surface of a spacer 10, the present embodiment of the plating system 105 includes a plate 150 with an enclosed posterior extension 155 that fits within the body of the spacer 110. The enclosed posterior extension 155 includes extending surfaces 166, 167 that are fitted into corresponding inlets 121, 123 formed in the body of the spacer 120, thereby forming a first locking mechanism between the plate 150 and the spacer 110. In addition, the enclosed posterior extension 155 of the plate 50 includes one or more deformable locking tabs 160 (shown in FIG. 6B) that securely lock into tab holes 181a in the spacer body 110, thereby forming a second locking mechanism between the plate 150 and the spacer 110. While in some embodiments, the plate 150 can be attached to the spacer 110 after inserting the spacer 110 into a desired location in the body, in other embodiments, the plate 150 can be pre-assembled with the spacer 110 prior to inserting the plating system 105 into the desired location.


Like the spacer 10 in FIG. 1A, the spacer 110 is configured to have an upper surface 112, a lower surface 114, and a leading end 122. In some embodiments, the upper surface 112 and/or lower surface 114 includes texturing 116, such as teeth, ribs, ripples, etc. to assist in providing frictional contact with adjacent vertebral bodies. In some embodiments, the leading end 122 of the spacer 110 can be slightly tapered, as shown in FIG. 7D. With the taper, the leading end 122 can serve as a distraction surface that helps the spacer 110 to be inserted into an intervertebral space. As shown in FIG. 1B, the leading end 122 can be concave, though in other embodiments, the leading end 122 can be straight or convex.


The spacer 110 can be substantially C-shaped (as shown in FIG. 7B), whereby it includes two side arms 113 that surround an inner opening 120. Adjacent the side aims 113 is a straight wall 119 that forms the border of the graft opening 120. The straight wall 119 can include one or more tab holes 181 (shown in FIG. 7A) for receiving deformable tab locks 160 therein. The graft opening 20, which is configured to receive natural or synthetic grail material therein to assist in a fusion procedure, has an open side that is opposite the straight wall 119, thereby giving the spacer 110 its C-shape.


In some embodiments, the graft opening 120 (shown in FIG. 7B) has a different shape from the opening 20 of the spacer 10 of the prior embodiment, as the graft opening 120 is configured to not only receive graft material, but also the enclosed posterior extension 155 of the plate 150. For example, the graft opening 120 includes two inlets—a first inlet 121 formed at the junction between the first arm 113 and wall 119 and a second inlet 123 formed at the junction between the second arm 113 and wall 119 (shown in FIG. 7B)—for receiving outwardly extending surfaces 166, 167 of the plate 150 (shown in FIG. 6B). In addition, the graft opening 120 includes two outwardly tapering walls 111 that provide enough space to accommodate any bone screws inserted in the plate 150. As such, additional chamfers 18, 19 (as shown in FIG. 3B) are optional.


Like spacer 10, the spacer 110 can be formed of a variety of materials. In some embodiments, the spacer 110 comprises PEEK, as shown in FIG. 7A, while in other embodiments, the spacer 110 comprises allograft bone, as shown in FIG. 8A.


The plate 150 is configured to have a plate body, and an enclosed posterior extension 155 that extends from the plate body, which is received within and retains the spacer 110. The enclosed posterior extension 155 includes first and second outwardly extending surfaces 166, 167 that fit into inlets 121, 123 formed within the spacer 110 body to form a first locking mechanism. In addition, one or more deformable tab locks 160 extend from an exterior surface of the enclosed posterior extension 155 and are received in corresponding tab holes 181 in the spacer 150 to form a second locking mechanism. In some embodiments, the side walls of the enclosed posterior extension 155 can include one or more windows 172 (shown in FIG. 6A) for improving radiolucency of the plating system. In some embodiments, the plate 150 is assembled axially to the spacer 110.


In addition to attaching to the spacer 110, the plate 150 is also configured to attach into one or more vertebral bodies via one or more bone screws 88, 89. As shown in FIG. 5A, the plate 150 includes a first screw hole 152 and a second screw hole 154 for receiving bone screws 88, 89 therein. In some embodiments, screw hole 152 is angled upwardly such that an inserted bone screw 88 passes upward into an upper vertebral body, while screw hole 154 is angled downwardly such that an inserted bone screw 89 passes downward into a lower vertebral body. While the illustrated embodiment illustrates a pair of screw holes for receiving a pair of bone screws, it is possible to have one, three, four, five or more screw holes for receiving a different number of bone screws.


Over time, it is possible for bone screws to back-out. The plate 150 thus has a blocking or set screw 156 (shown in FIG. 5C) that assists in preventing back-out of inserted bone screws. As shown in FIG. 5C, the set screw 156 can be in an initial position that allows first and second bone screws to pass through holes 152, 154. Once the bone screws have been inserted through the holes 152, 154, the set screw 156 can be rotated (e.g., 90 degrees), to thereby block the bone screws and prevent back out of the bone screws. In some embodiments, the set screw 156 abuts a side of the head of the bone screws to prevent back-out of the bone screws, while in other embodiments, the set screw 156 rests over a top of the head of the bone screws to prevent back-out of the bone screws. In some embodiments, the set screw 156 comes pre-fixed with the plate 150. As shown in FIG. 5C, a single set screw 156 can be used to conveniently block a pair of bone screws. In other embodiments, each bone screw can be assigned its own set screw, which can operate independently of one another, to prevent back-out of the bone screw.


The plate 150 can also include one or more knife-like edges 163 that provide additional torsional stabilization when the plate 150 rests against a bone member. As shown in FIG. 5C, the knife-like edges 163 can be formed on both the upper and lower surfaces of the plate 150 body. While the illustrated embodiment shows a pair of knife-like edges 163 on an upper surface of the plate body and a pair of knife-like edges 163 on a lower surface of the plate body, one skilled in the art will appreciate that a different number of knife-like edges 163 can be provided.



FIGS. 6A-6D illustrate different views of the low profile plate shown in FIGS. 5A-5D. From these views, one can see the enclosed posterior extension 155 that extends from the body of the plate 150. At the distal end of the enclosed posterior extension 155 are a pair of outwardly extending surfaces 166, 167 that are configured to fit within inlets 121, 123 formed in the spacer. From these views, one can also see the deformable tab lock 160 (FIG. 6B) that can help secure the plate 150 to the spacer 110. In addition, from these views, one can see the windows 172 that are formed in each of the arms of the enclosed posterior extension 155. The windows 172 advantageously help to improve desirable radiolucency, and are of large size to provide a large viewing surface area. While the illustrated windows 172 are shown as triangular with rounded edges, in other embodiments, the windows 172 can have a different shape, such as circular or oval In some embodiments, the plate 150 is assembled axially to the spacer 110.


In some embodiments, the low profile plate 150 can also include indented gripping sections 173 (shown in FIGS. 6A and 6B). These indented gripping sections 173 advantageously provide a gripping surface for an insertion instrument, thereby facilitating easy delivery of the plate to a spacer body during surgery.



FIGS. 7A-7D illustrate different views of a PEEK spacer to be used with the low profile plate shown in FIGS. 5A-5D. From these views, one can see how the spacer 110a includes an upper surface 112a and a lower surface 114a with texturing 116a; a generally C-shaped body including a pair of arms 113a each having an inner inlet 121, 123a formed therein; and a tapered leading edge 122a. In addition, one skilled in the art can appreciate the substantially symmetric shape of the inner opening 120a, which serves as a graft hole for receiving graft material therein.



FIGS. 8A-8D illustrate different views of an allograft spacer to be used with the lower profile plate shown in FIGS. 5A-5D. While the allograft spacer 110b shares similar features to the PEEK spacer 110a shown in previous figures, such as the C-shaped body including a pair of arms 113b each having an inlet 121b, 123b formed therein, the allograft spacer 110b need not be the same.



FIGS. 9A-9D illustrate different views of a third alternative embodiment of a low profile plate attached to a spacer according to some embodiments. In the present embodiment, the plating system 205 includes a plate 250 having lateral arms or extensions 270 that extend around an exterior surface of a spacer 210. The lateral extensions 270 extend wider than the lateral extensions 70 in the first embodiment, and do not necessarily have to interlock with the spacer 210. While in some embodiments, the plate 250 can be attached to the spacer 210 after inserting the spacer 210 into a desired location in the body, in other embodiments, the plate 250 can be pre-assembled with the spacer 210 prior to inserting the plating system 205 into the desired location.


Like the spacer 10 in FIG. 1A, the spacer 210 is configured to have an upper surface 212, a lower surface 214, and a leading end 222. In some embodiments, the upper surface 212 and/or lower surface 214 includes texturing 216, such as teeth, ribs, ripples, etc. to assist in providing frictional contact with adjacent vertebral bodies. In some embodiments, the leading end 222 of the spacer 210 can be slightly tapered, as shown in FIG. 9D. With the taper, the leading end 222 can serve as a distraction surface that helps the spacer 210 to be inserted into an intervertebral space. As shown in FIG. 9B, the leading end 222 can be slightly concave, though in other embodiments, the leading end 122 can be straight or convex. Unlike previously illustrated spacers, the spacer 210 can have a graft hole 220 that is completely enclosed. As shown in FIG. 913, the graft hole 220 can surrounded by four walls. In addition, the spacer 210 can include four outer walls: two straight walls, a convex wall and a concave wall.


In some embodiments, the graft opening 220 (shown in FIG. 9B) has a different shape from the openings of prior embodiments, as the graft opening 220 is enclosed. While the graft opening 220 is rectangular with rounded edges, in other embodiments, the graft opening 220 can have a different shape. For example, in some embodiments, the graft opening 220 can have curved walls, instead of straight walls, or can have tapered walls, instead of straight walls.


Like spacer 10, the spacer 210 can be formed of a variety of materials. In some embodiments, the spacer 210 comprises allograft bone, while in other embodiments, the spacer 210 comprises PEEK.


The plate 250 is configured to have a pair of lateral extensions 270 that receive the spacer 220. As shown in FIG. 9A, in some embodiments, the lateral extensions 270 include one or more windows 272 for improving radiolucency of the plating system. In some embodiments, the plate 250 is assembled axially to the spacer 210.


In addition to capturing the spacer 210, the plate 250 is also configured to attach into one or more vertebral bodies via one or more bone screws 88, 89. As shown in FIG. 9A, the plate 250 includes a first screw hole 252 and a second screw hole 254 for receiving bone screws 88, 89 therein. In some embodiments, screw hole 252 is angled upwardly such that an inserted bone screw 88 passes upward into an upper vertebral body, while screw hole 254 is angled downwardly such that an inserted bone screw 89 passes downward into a lower vertebral body. While the illustrated embodiment illustrates a pair of screw holes for receiving a pair of bone screws, it is possible to have one, three, four, five or more screw holes for receiving a different number of bone screws.


Over time, it is possible for bone screws to back-out. The plate 250 thus has a blocking or set screw 256 (shown in FIG. 9C) that assists in preventing back-out of inserted bone screws. As shown in FIG. 9C, the set screw 256 can be in an initial position that allows first and second bone screws to pass through holes 252, 254. Once the bone screws have been inserted through the holes 252, 254, the set screw 256 can be rotated (e.g., 90 degrees), to thereby block the bone screws and prevent back out of the bone screws. In some embodiments, the set screw 256 abuts a side of the head of the bone screws to prevent back-out of the bone screws, white in other embodiments, the set screw 256 rests over a top of the head of the bone screws to prevent back-out of the bone screws. In some embodiments, the set screw 256 comes pre-fixed with the plate 250. As shown in FIG. 9C, a single set screw 256 can be used to conveniently block a pair of bone screws. In other embodiments, each bone screw can be assigned its own set screw, which can operate independently of one another, to prevent back-out of the bone screw.



FIGS. 10A-10D illustrate different views of the low profile plate shown in FIGS. 9A-9D. From these views, one can see the lateral extensions 270 that extend from the body of the plate 250. From these views, one can also see the windows 272 (FIG. 10A) that extend along a substantial length of the lateral extensions 270. In some embodiments, each window 272 has a length greater than half the length of each lateral extension 270, thereby advantageously increasing the radiolucency of the plating system. In some embodiments, the plate 250 is assembled axially to the spacer 210.


In some embodiments, the low profile plate 250 can also include indented gripping sections 273 (shown in FIGS. 10A and 10B). These indented gripping sections 273 advantageously provide a gripping surface for an insertion instrument, thereby facilitating easy delivery of the plate to a spacer body during surgery.



FIGS. 11A-11D illustrate different views of a fourth alternative embodiment of a low profile plate attached to a spacer according to some embodiments. Like the previous embodiment, the plating system 305 includes a plate 350 having lateral arms or extensions 370 that extend around an exterior surface of a spacer 310. The lateral extensions 370 extend wider than the lateral extensions 70 in the first embodiment, and do not necessarily have to interlock with the spacer 310. While in some embodiments, the plate 350 can be attached to the spacer 310 after inserting the spacer 310 into a desired location in the body, in other embodiments, the plate 350 can be pre-assembled with the spacer 310 prior to inserting the plating system 305 into the desired location.


Like the spacer 10 in FIG. 1A, the spacer 310 is configured to have an upper surface 312, a lower surface 314, and a leading end 322. In some embodiments, the upper surface 312 and/or lower surface 314 includes texturing 316, such as teeth, ribs, ripples, etc, to assist in providing frictional contact with adjacent vertebral bodies. In some embodiments, the leading end 322 of the spacer 310 can be slightly tapered, as shown in FIG. 11D. With the taper, the leading end 322 can serve as a distraction surface that helps the spacer 310 to be inserted into an intervertebral space. As shown in FIG. 11B, the leading end 322 can be slightly concave, though in other embodiments, the leading end 322 can be straight or convex. In some embodiments, the spacer 310 can have a graft hole 320 that is completely enclosed. As shown in FIG. 11B, the graft hole 320 can surrounded by four walls. In addition, the spacer 320 can be comprised of four outer walls: two straight, one concave and one convex.


In some embodiments, the graft opening 320 (shown in FIG. 11B) of the spacer 310 is enclosed. While the graft opening 320 is rectangular with rounded edges, in other embodiments, the graft opening 320 can have a different shape. For example, in some embodiments, the graft opening 320 can have curved walls, instead of straight walls, or can have tapered walls, instead of straight walls.


Like spacer 10, the spacer 310 can be formed of a variety of materials. In some embodiments, the spacer 210 comprises allograft bone, while in other embodiments, the spacer 310 comprises PEEK.


The plate 350 is configured to have a pair of lateral extensions 370 that receive the spacer 320. As shown in FIG. 11A, in some embodiments, the lateral extensions 370 include one or more windows 372 for improving radiolucency of the plating system. In some embodiments, the plate 350 is assembled axially to the spacer 310.


In addition to capturing the spacer 310, the plate 350 is also configured to attach into one or more vertebral bodies via one or more bone screws 88, 89. As shown in FIG. 9A, the plate 350 includes a first screw hole 351, a second screw hole 352 and a third screw hole 354 for receiving bone screws 87, 88, 89 therein. In some embodiments, screw holes 352 and 354 are angled upwardly such that inserted bone screws 87, 88 pass upward into an upper vertebral body, while screw hole 351 is angled downwardly such that inserted bone screw 89 passes downward into a lower vertebral body. While the illustrated embodiment illustrates three screw holes for receiving three bone screws, it is possible to have one, two, four, five or more screw holes for receiving a different number of bone screws.


Over time, it is possible for bone screws to back-out. The plate 350 thus has blocking or set screws 356, 357, 358 (shown in FIG. 2C), each of which corresponds to one of screw holes 351, 352, 354. As shown in FIG. 12C, the set screws 356, 357, 358 can be in an initial position that allows first, second and third bone screws to pass through holes 351, 352, 354. Once the bone screws have been inserted through the holes 351, 352, 354, the set screws 356, 357, 358 can be rotated (e.g., 90 degrees), to thereby block the bone screws and prevent back out of the bone screws. In some embodiments, the set screws 356, 357, 358 abut a side of the head of the bone screws to prevent back-out of the bone screws, while in other embodiments, the set screws 356, 357, 358 rest over a top of the head of the bone screws to prevent back-out of the bone screws. In some embodiments, the set screws 356, 357, 358 come pre-fixed with the plate 350. As shown in FIG. 12C, a single set screw 356, 357, 358 can be used to conveniently block a single bone screws. In other embodiments, each set screw can be designed to block more than one set screw to prevent back-out of the bone screw.



FIGS. 12A-12D illustrate different views of the low profile plate shown in FIGS. 11A-11D. From these views, one can see the lateral extensions 370 that extend from the body of the plate 350. From these views, one can also see the windows 372 (FIG. 12A) that extend along a substantial length of the lateral extensions 370. In some embodiments, each window 372 has a length greater than half the length of each lateral extension 370, thereby advantageously increasing the radiolucency of the plating system. In some embodiments, the plate 350 is assembled axially to the spacer 310.


The plating systems describe include a plate that is independent from a spacer. The plate is low-profile and can be used with any type of spacer, such as allograft or PEEK.



FIGS. 13A-13D illustrate different views of a multi-piece allograft spacer to be used with the low profile plates discussed above according to some embodiments. The multi-piece allograft spacer 410 can be formed of an upper member 436 and a lower member 438 that are connected together via one or more pins 475. The upper member 436 and the lower member 438 each include cut-out portions that help form a graft opening 420 in the spacer 410.


The upper member 436 can include an upper surface having bone engagement surfaces (e.g., ridges, teeth, ribs) and a lower interfacing surface 446. The lower member 438 can include a lower surface having bone engagement surfaces (e.g., ridges, teeth, ribs) and an upper interfacing surface 448. In some embodiments, the upper member 436 can include one or more holes 462, while the lower member 438 can include one or more holes 464 which align with the one or more holes 462 of the upper member. The aligned holes are configured to receive one or more pins 475 to keep the upper and lower members of the allograft spacer together. In some embodiments, the pins 475 are also formed of bone material, such as allograft.


As shown best in FIG. 13C, the lower interfacing surface 446 of the upper member 436 is directly engaged with the upper interfacing surface 448 of the lower member 438. While the lower interfacing surface 446 and the upper interfacing surface 448 can be flat-on-flat, as both surfaces are planar, in some embodiments (as shown in FIG. 13C), the interface between the two surfaces is at an angle relative to the holes for receiving the pins 475. In other words, the pins 475 are received at an angle to the interface between the upper member 436 and the lower member 438. In addition, as shown in FIG. 13C, holes 462 and 464 need not go through the entirety of their respective members. For example, as shown in FIG. 13C, while hole 462 goes entirely through the upper and lower surface of the upper member 436, hole 464 goes only through the upper surface of the lower member 438, and does not go through to the lower surface. Accordingly, in some embodiments, aligned holes 462 and 464 create a “blind” pin-hole, whereby the hole does not go through the uppermost and lowermost surfaces of the spacer 410. Advantageously, in some embodiments, the use of such blind holes for receiving pins helps to maintain the pins within the spacer body.



FIGS. 14A-14D illustrate different views of an alternative multi-piece allograft spacer to be used with the lower profile plates discussed above according to some embodiments. The multi-piece allograft spacer 510 can be formed of a left member 536 and a right member 538 that are connected together in series or side-by-side (e.g., laterally) via one or more pins 575. The left member 536 and the right member 538 each include cut-out portions that help form a graft opening 520 in the spacer 510.


The left member 536 can include upper and lower surfaces having bone engagement surfaces (e.g., ridges, teeth, ribs). In addition, the left member 536 further includes a right interfacing surface 546. The right member 538 can also include upper and lower surfaces having bone engagement surfaces (e.g., ridges, teeth, ribs). In addition, the right member 538 further includes a left interfacing surface 548. In some embodiments, the left member 536 can include one or more holes 562, white the right member 538 can include one or more holes 564 which align with the one or more holes 562 of the left member. The aligned holes are configured to receive one or more pins 575 to keep the left and right members of the allograft spacer together.


As shown best in FIG. 14A, the right interfacing surface 546 of the left member 536 is directly engaged with the left interfacing surface 548 of the right member 538. While the right interfacing surface 546 and the left interfacing surface 548 can be flat-on-flat, as both surfaces are planar, in some embodiments (as shown in FIG. 4A), the interface between the two surfaces is at an angle relative to the holes for receiving the pins 575. In other words, the pins 575 are received at an angle to the interface between the left member 536 and ate right member 538. In addition, as shown in FIG. 14B, holes 562 and 564 need not go through the entirety of their respective members. In other words, one or more of the holes (e.g., holes 562, 564 or combined) can be blind holes, whereby the holes do not go through the left and right surfaces of the lateral implants.


By having multi-piece allograft spacers that are either stacked or aligned side-by-side, it is possible to have spacers of increased height and width. While the embodiments herein show two piece spacers, one skilled in the art will appreciate that three or more members can be combined to form multi-piece allograft spacers for use with any of the plate members described above.



FIGS. 15A-15D illustrate different views of an alternative low profile plate attached to a spacer according to some embodiments, The plating system 605 comprises a plate 650 attached or mounted to a spacer 610.


The system 605 includes a number of similar features to prior embodiments. The spacer 610 includes a body having an upper surface 612 and a lower surface 614 with texturing (e.g., ribs, grooves, teeth, protrusions) and sidewalls including one or more notches 617 for receiving plate extensions. The body of the spacer 610 can be U-shaped or C-shaped, such that a central portion includes a graft opening 620 for receiving graft material therein. The plate 650 includes a body having a first screw hole 652 for receiving a first screw member therethrough, a second screw hole 654 for receiving a second screw member therethrough, and a recess for receiving a blocking fastener or set screw 656. In addition, a pair of extension arms or members 617 extend from the plate body and are received in each of the notches 617 formed in the spacer 10. Each of the extension members 617 includes a window 672 for receiving a hump portion or region of the spacer to further secure the spacer 610 with the plate 650. In addition, the plate member 650 can include one or more stabilizers or knife-like edges 663 that can help secure the plate member 650 to a vertebral body. While the stabilizers 663 are shown as sharp and pointed, in other embodiments, the stabilizers 663 are more blunt and in some cases, even slightly rounded.


The plating system 605 in FIGS. 15A and 15D is unique in that the first upper screw hole 652 has been raised such that a central axis of the first upper screw hole 652 is positioned higher than the upper surface 612 of the spacer 610. In addition, the second lower screw hole 654 has been towered such that a central axis of the second lower screw hole 654 is positioned below the lower surface 614 of the spacer 610. As shown in FIG. 15B, each of the holes 652, 654 has an adjacent brow member that extends from the plate body. First screw hole 652 is adjacent upper brow member 662, while second screw hole 654 is adjacent lower brow member 664. Upper brow member 662 has been raised to accommodate the raised upper screw hole 652, while lower brow member 664 has been lowered to accommodate the lowered lower screw hole 654. Advantageously, by raising the upper screw hole 652 and lowering the lower screw hole 654, this reduces the likelihood of any viewing obstruction that may occur from the spacer 610. Moreover, even though the upper brow member 662 is raised and the lower brow member 664 is lowered, advantageously, the plating system 605 still maintains a low profile such that most if not all of the plate system remains in a disc space. In other embodiments, it may be desired for a part of the upper brow member 662, a part of the lower brow member 664 or both to contact a vertebral face (e.g., an anterior face), thereby providing stability to the plating system 605.



FIGS. 16A-16D illustrate different views of a plate member 650 used in the plating system 605. From these views, one can clearly see how the upper brow member 662 and first upper hole member 652 have been raised, while the lower brow member 664 and second lower hole member 664 have been lowered, relative to other designs. In some embodiments, the entire central axis of first upper hole member 652 (e.g., from a front of the plate member 650 to a back of the plate member 650) is continuously above the upper surface of the spacer, thereby advantageously providing a less unobstructed view of the first upper hole member 652. Likewise, in some embodiments, the entire central axis of the second lower hole member 654 (e.g., from a front of the plate member 650 to a back of the plate member 650) is continuously below the lower surface of the spacer, thereby advantageously providing a less unobstructed view of the second lower hole member 654.



FIGS. 17A-17C illustrate different views of a spacer 610 used in the plating system 605. From these views, one can clearly see features of the spacer 610 includes its upper surface 612, lower surface 614, sidewalls with notches 617 and graft opening 620. In addition, with the plate member removed from the views, one can also see an upper chamfer 618a and a lower chamfer 618b that are cut into the spacer 610. These chamfers 618a, 618b advantageously provide clearance for bone screws that are inserted through the plating system 605. One skilled in the art will appreciate that the spacer can be made of many different materials. In some embodiments, the spacer will be made out of bone (e.g., allograft), while in other embodiments, the spacer will be made of PEEK. Advantageously, the plating system 605 is removably attached to the spacer 610 such that a surgeon can choose to include a spacer of a certain material as so desired during a surgical procedure.



FIGS. 18A-18D illustrate different views of yet another plate system involving a plate member and a spacer having a unique multi-piece composition in accordance with some embodiments. The plate system 705 includes similar elements as found in prior embodiments, including a plate member 750 having a first upwardly oriented screw hole 752 for receiving a first screw, a second downwardly oriented screw hole 754 for receiving a second screw, and a blocking member or screw 756, as well as a spacer 710 (e.g., allograft or PEEK) having an upper surface 712, a lower surface 714, a graft opening 720, and notches 717 for receiving aims or extensions 770 of the plate member 750. The plate member 750 also includes one or more windows 772 in its extensions 770 for receiving a raised or bump out portion of the spacer 705, thereby helping to retain the spacer 705 within the plate member 750. In addition, the plate member 750 includes stabilizers 763 in the form of knife-like edges that help to grip into a vertebral body.


In addition to these features, the spacer 710 has a unique multi-piece composition. As shown in FIGS. 18A and 18D, in some embodiments, the spacer 710 has a body formed of two adjacent members—a first member 711 and a second member 713. The first member 711 and the second member 713 can be held together via one or more pin members, although in other embodiments, the first member 711 and second member 713 can be held via adhesive, mateable connections, etc. As shown in FIG. 18D, second member 713 can include an upper overhang region 717 that hangs over a part of the first member 711. Similarly, first member 711 can include a lower overhang region 711 that hangs below a part of the second member 713. Advantageously, these overhang regions 711 serve as guides to identify the location of the interface 715 between the first member 711 and the second member 713. During manufacturing, the overhang regions 711 make it easy to inspect the interface to 715 to ensure that the two members 711, 713 are property secured together. White the illustrated embodiment shows a spacer 710 having two separate overhanging regions, in other embodiments, the spacer 710 can have one single overhanging region. As before, the spacer 710 can be made of many different types of materials, including bone (e.g., allograft) and PEEK), and a surgeon can advantageously decide what type of spacer should accompany the plate before or during surgery.



FIG. 19 shows a plating system 805 having a plate member 850 having extensions 870 and a spacer 810 similar to that found in FIGS. 18A-18D; however, the spacer 810 is designed to accommodate lordosis. In other words, while the upper surface 712 and lower surface 714 of the spacer 710 can be substantially parallel (as shown in FIG. 18C), the upper surface 812 and lower surface 814 of the spacer 810 can have some degree of angulation or lordosis. In some embodiments, relative to a mid-line of the spacer 810, the upper surface 812 and/or lower surface 814 can have a degree of angulation of 2, 3, 5, 7, 12 degrees or more. Advantageously, the lordotic spacer 810 (which is accompanied with the plate member 850) helps to accommodate different anatomies.



FIGS. 20A-20D show yet another alternative plating system having a plate member attached to multiple spacers in accordance with embodiments of the present application. The unique plating system 905 comprises a plate member 950 having a pair of inner arms or extensions 975 and a pair of outer arms or extensions 970 for receiving one or more spacers 910 therein. In some embodiments, the inner and outer extensions 975, 970 include protruding portions designed to be received in notches in the one or more spacers.


As shown in FIG. 20A, the plating system 905 includes a first spacer 910a that is retained between a shorter outer extension 970 and a longer inner extension 975 of the plate member 950. The shorter outer extension 970 of the plate is configured to be received in notch 917 of the spacer 910a, while the longer inner extension 975 of the plate is configured to be received in notch of the spacer 910a. In addition, advantageously, the shorter outer extension 970 includes a window 972 and the longer inner extension 975 includes a window 974. Each of the windows 972, 974 is configured to receive a bump out portion of the spacer 910, thereby helping to retain the spacer 910 to the plate member 905. In addition, the windows 972, 974 help to provide a means to visualize fusion (e.g., in a lateral image) that is occurring once the spacer is implanted within a disc space. Similarly, the plating system 905 includes a second spacer 910b that is retained between a shorter outer extension 970 and a longer inner extension 975 on an opposite side of the plate member 950. While in the present embodiment, each of the longer inner extensions 975 is separated from the other without any connecting member, in other embodiments, a connection bar or bridge (such as shown in FIGS. 21A and 21B) can extend between the two inner extensions 975. Advantageously, when the plating system 905 is placed in a disc space, graft material can be packed between the two inner extensions 975 to promote fusion within the disc space.


Advantageously, in accordance with some embodiments, the plating system 905 is designed to hold at least two spacers 910a, 910b. In some embodiments, the spacers 910a, 910b are substantially rectangular pieces. In some embodiments, the spacers 910a, 910b can have substantially rounded edges. In some embodiments, the spacers 910a, 910b can include one or more chamfers 918 for providing clearance for one or more screws that are inserted through the plate member 905. For example, spacer 910a can include a chamfer that provides clearance for a screw that passes through plate opening 954, white spacer 910b can include a chamfer that provides clearance for a screw that passes through plate opening 952. Advantageously, the use of two spacers 910a, 910b —one on each side of the plate system 905 —helps to stabilize the plate system within the disc space. Moreover, having multiple individual spacers 910a, 910b that are smaller in size can ease manufacturing issues, as the spacers can be formed of relatively small pieces of bone, which can be easier to find than larger pieces of bone. In other words, bone that is removed from a body can improve the yield of production, as it will be easier to create the spacer members. While the spacers 910a, 910b are illustrated as being single-bodied members in the present embodiments, in other embodiments, the spacers can be formed of multiple pieces (e.g., pinned together).



FIGS. 21A and 21B illustrate different views of another alternative low profile plate attached to multiple spacers according to some embodiments. The plate system 1005 comprises a plate member 1050 attached to a pair of spacers 1010a and 1010b. Like the embodiment in FIG. 20A, the plate member 1050 of the present embodiment includes a pair of outer arms or extensions 1070a, 1070b and a pair of inner arms or extensions 1075a, 1075b. Plate extensions 1070a and 1075a are configured to retain spacer 1010a, while plate extensions 1070b and 1075b are configured to retain spacer 1010b. As shown in FIGS. 21A and 21B, the inner extensions 1075a and 1075b includes a connection or bridge member 1088 that extends between them. Advantageously, the bridge member 1088 helps provide added stability to the plate system 1005, and also helps provide a barrier to retain graft material within the plate system 1005. As shown in FIG. 21A, in some embodiments, the inner extensions 1075a and 1075b are parallel to one another.


As shown in FIG. 21B, outer plate extensions 1070a and 1070b include at least one window 1072 formed therein. Similarly, inner plate extensions 1075a and 1075b include at least one window formed therein. As shown in FIG. 21B, inner plate extensions each include two windows—1074 and 1075—that are formed adjacent to one another. Inner plate extension 1075a includes windows 1074a and 1075a, while inner plate extension 1075b includes windows 1074b and 1075b. In some embodiments, the windows 1072, 1074, 1075 can advantageously be designed to hold a bump out portion of the spacers and/or provide increased visualization to a surgeon during or after a fusion procedure. While in some embodiments, each of the windows 1072, 1074, and 1075 perform the same duties and functions, in other embodiments, the windows can perform different functions. For example, while inner window 1074 can be used to both retain the spacer and aid in fusion visualization, inner window 1075 can be used simply for fusion visualization.



FIG. 22 illustrates another alternative low profile plate attached to multiple spacers according to some embodiments. The plate system 1105 comprises a plate member 1150 attached to a pair of spacers 1110a and 1110b. Like the embodiment in FIG. 21A, the plate member 1150 of the present embodiment includes a pair of outer arms or extensions 1170a, 1170b and a pair of inner arms or extensions 1175a, 1175b. Plate extensions 1170a and 1175a are configured to retain spacer 1110a, while plate extensions 1170b and 1175b are configured to retain spacer 1110b. As shown in FIGS. 21A and 21B, the inner extensions 1175a and 1175b includes a connection or bridge member 1188 that extends between them. Advantageously, the bridge member 1188 helps provide added stability to the plate system 1105, and also helps provide a barrier to retain graft material within the plate system 1105. In contrast to the inner extensions 1075a, 1075b in FIG. 21A, the inner extensions 1175a, 1175b are non-parallel and angulated relative to one another. Furthermore, due to the shape of the plate member 1150, the shapes of the individual spacers 1110a and 1110b differ in that they have a prominent angled surface adjacent to the inner extensions 1175a, 1175b.



FIG. 23 illustrates another alternative low profile plate attached to multiple spacers according to some embodiments. The plate system 1205 comprises a plate member 1250 attached to a pair of spacers 1210a and 1210b. Like the embodiment in FIG. 22, the plate member 1250 of the present embodiment includes a pair of outer arms or extensions 1270a, 1270b and a pair of inner arms or extensions 1275a, 1275b. Plate extensions 1270a and 1275a are configured to retain spacer 1210a, white plate extensions |270b and 1275b are configured to retain spacer 1210b. As shown in FIGS. 23, the inner extensions 1275a and 1275b includes a connection or bridge member 1288 that extends between them. Advantageously, the bridge member 1288 helps provide added stability to the plate system 1205, and also helps provide a barrier to retain graft material within the plate system 1205. In contrast to the bridge member 1188 in FIG. 22, the bridge member 1288 is elongated and extends to a distal end of the spacers 1210a, 1210b, thereby creating an even larger space for receiving graft material in the middle of the plate system 1205.



FIGS. 24A-24C illustrate another alternative low profile plate attached to multiple spacers according to some embodiments. The plate system 1305 comprises a plate member 1350 attached to a multi-piece spacer 1310 formed of three members 1310a, 1310b, 1310c. Like the embodiment in FIG. 23, the plate member 1350 of the present embodiment includes a pair of outer arms or extensions 1370a, 1370b and a pair of inner arms or extensions 1375a, 1375b connected by a bridge member 1388. The inner extensions 1375a, 1375b and bridge member 1388 are configured to be enclosed by the body of the spacer 1310. Advantageously, the bridge member 1388 helps provide added stability to the plate system 1305, and also helps provide a barrier to retain graft material within the plate system 1305.


In some embodiments, the spacer 1310 is formed of three different members 1310a, 1310, 1310c. The members 1310a and 1310 can be outer members which bound the inner member 1310c. As shown in FIG. 24C, the members 1310a and 1310b can be substantially similar, and can include upper and lower surfaces with surface protrusions to enable better gripping of bone. Inner member 1310c can be different from the other members and can include a relatively smooth surface without surface protrusions. In addition, the inner member 1310c can be of a different height than the other members. In some embodiments, the three members 1310a, 1310b, 1310c are pinned together, while in other embodiments, they can be joined together via an adhesive or mateable connection. Advantageously, the addition of the inner member 1310c provides further support to the overall structure of the plate system 1305.



FIGS. 25A and 25B illustrate another alternative low profile plate attached to a multi piece spacer having a metal insert according to some embodiments. The plate system 1405 comprises a plate member 1450 attached to a multi-piece spacer 1410 formed of two similar components 1410a, 1410b and a metal insert 1439. The plate member 1450 can include a first screw opening, a second screw opening and a rotatable locking mechanism 1456 to prevent back out of screws that are inserted through the openings In some embodiments, the plate member 1450 of the present embodiment is mounted to the front of the spacer. In other embodiments, the plate member 1450 includes a pair of outer arms or extensions and/or a pair of inner arms or extensions (not shown to help retain the spacer 1410 within the plate member 1450.


In some embodiments, the spacer 1410 is formed of two members 1410a and 1410b separated by a metal insert 1439. These members partially enclose a graft opening 1420. The two members 1410a and 1410b can be formed of a material different from the metal insert 1439, such as PEEK. Advantageously, the metal insert 1439 is designed to provide additional strength to the spacer 1410. In some embodiments, the metal insert 1439 is formed of titanium. As shown in the exploded view in FIG. 25B, the spacer 1410 be attached to the plate member 1450 via vertical fastening members 1429a, 1429b. One skilled in the art will appreciate that the spacer 1410 can be used with any of the other plate members discussed above.



FIGS. 26A-26D illustrate another alternative plate having raised and lowered screw openings in attachment with a spacer according to some embodiments. The plate 1550 and spacer 1510 have many similar features as in prior embodiments; however, the upper screw hole 1552 in the plate 1550 has been raised, while the lower screw hole 1554 in the plate 1550 has been lowered. The upper screw hole 1552 has been raised such that a center axis of the upper screw hole 1552 is positioned entirely above an upper surface 1512 of the spacer 1510. The lower screw hole 1554 has been lowered such that a center axis of the lower screw hole 1554 is positioned entirely below a lower surface 1514 of the spacer 1510. Advantageously, by raising the upper screw hole 1552 such that a center axis extends completely above the upper surface 1512 of the spacer 1510, this provides a plate member 1550 having increased visibility on its upper end and also provides an upper plate portion that can be uniquely positioned relative to a disc space, as shown in FIG. 28. Likewise, by lowering the lower screw hole 1554 such that a center axis extends completely below the lower surface 1514 of the spacer 1510, this provides a plate member 1550 having increased visibility on its lower end and also provides a lower plate portion that can be uniquely positioned relative to a disc space, as also shown in FIG. 28.


In some embodiments, the plate 1550 and the spacer 1510 have many similar features as in prior embodiments. For example, the spacer 1510 is configured to have a body having an upper surface 1512 in contact with an upper vertebral body and a lower surface 1514 in contact with a lower vertebral body. The spacer body includes notches for receiving portions of the plate 1550 therein. In some embodiments, the spacer 1510 is formed of a natural material, such as allograft bone.


The plate 1550 includes the upper screw hole 1552 and the lower screw hole 1554, and a pair of arms or extensions that are designed to be received within the spacer 1510. As noted above, the upper screw hole 1552 has been raised such that a center axis that extends through the upper screw hole 1552 is positioned higher than an upper surface of the spacer 1510. In some embodiments, only a portion of the center axis through the upper screw hole 1552 is positioned higher than an upper surface of the spacer 1510, while in other embodiments, the entire center axis through the upper screw hole 1552 is positioned higher than an upper surface of the spacer 1510. Likewise, the lower screw hole 1554 has been lowered such that a center axis that extends through the lower screw hole 1554 is positioned lower than a lower surface of the spacer 1510. In some embodiments, only a portion of the center axis that passes through the lower screw hole 1554 is positioned lower than a lower surface of the spacer 1510, while in other embodiments, the entire center axis through the lower screw hole 1552 is positioned lower than a lower surface of the spacer 1510.


In some embodiments, the plate 1550 includes an upper extension, eyelid or rim 1571 through which the upper screw hole 1552 can pass through. In some embodiments, the upper rim 1571 has an anterior or front face 1553 and a posterior or back face 1555 (identified in FIG. 26C). In some embodiments, both the front face 1553 and the rear face 1555 of the upper rim 1571 are straight and vertical and not angled relative to height of vertical axis of the spacer. In other embodiments, either the front face 1553 or the rear face 1555 can be straight, while the other face can be angled (e.g., in an anterior direction). In yet other embodiments, both the front face 1553 and the rear face 1555 of the upper rim 1571 can be angled. Advantageously, in some embodiments, the upper screw hole 1552 extends through the tipper rim 1571 at an angle such that a screw that is inserted through the upper screw hole 1552 will be inserted at or near a corner edge of an upper vertebral body (as shown in FIG. 28). By being positioned at or near a corner edge of the upper vertebral body, it is not necessary for the screw to be positioned through an anterior face or aspect of the upper vertebral body, thereby maintaining a low profile implant. In some embodiments, the majority or entirety of the upper rim 1571 including the upper screw hole 1552 can be configured such that the upper portion of the plate rests at or near a corner edge of the upper vertebral body, thereby maintaining a low profile implant.


In some embodiments, the plate 1550 includes a lower extension, eyelid or rim 1573 through which the lower screw hole 1554 can pass through. In some embodiments, the lower rim 1573 has an anterior or front face 1553 and a posterior or back face 1555 (identified in FIG. 29A). In some embodiments, both the front face 1553 and the rear face 1555 of the lower rim 1573 are straight and vertical and not angled relative to height of vertical axis of the spacer. In other embodiments, either the front face 1553 or the rear face 1555 can be straight, while the other face can be angled (e.g., in an anterior direction). In yet other embodiments, both the front face 1553 and the rear face 1555 of the lower rim 1573 can be angled. Advantageously, in some embodiments, the lower screw hole 1554 extends through the lower rim 1573 at an angle such that a screw that is inserted through the lower screw hole 1554 will be inserted at or near a corner edge of a lower vertebral body (as shown in FIG. 28). By being positioned at or near a corner edge of the lower vertebral body, it is not necessary for the screw to be positioned through an anterior face or aspect of the upper vertebral body, thereby maintaining a low profile implant. In some embodiments, the majority or entirely of the lower rim 1573 including the lower screw hole 1554 can be configured such that the lower portion of the plate rests at or near a corner edge of the lower vertebral body, thereby maintaining a low profile implant. Advantageously, in some embodiments, at least a portion of the upper rim 1571 and/or a portion of the lower rim 1573 is maintained within the disc space between the upper vertebral body and the lower vertebral body, thereby maintaining an implant with a low profile.



FIGS. 27A-27D illustrate another alternative plate having raised and lowered screw openings in attachment with a spacer according to some embodiments. The plate 1550 and the spacer 1610 are similar to the assembly in FIGS. 26A-26D, except the spacer 1610 is formed of a different material, such as PEEK. Advantageously, the plate 1550 is capable of being assembled with either the bone spacer 1510 shown in FIGS. 26A-26D or the PEEK spacer 1610 shown in FIGS. 27A-27D prior to insertion into a disc space, thereby providing versatility to a surgeon.



FIG. 28 illustrates the plate and spacer in FIGS. 26A-26D in use within a vertebral space. From this view, one can see how the plate 1510 is designed to have an upper rim 1571 that accommodates an upper screw hole 1552 and a lower rim 1573 that accommodates a lower screw hole 1554. The upper screw hole 1552 receives an upwardly angled screw that is configured to be inserted at or near a corner of the upper vertebral body, thereby avoiding insertion through an anterior face or aspect of the upper vertebral body. The lower screw hole 1554 receives a downwardly angled screw that is configured to be inserted at or near a corner of the lower vertebral body, thereby avoiding insertion though an anterior face or aspect of the lower vertebral body.



FIGS. 29A-29C illustrate the plate in FIGS. 26A-26D without a spacer. As shown in these figures, the plate 1550 includes an upper rim 1571 that accommodates an upwardly angled screw hole 1552 and a lower rim 1573 that accommodates a downwardly angled screw hole 1554. The upper rim 1571 includes a front or anterior face 1553a and a rear or posterior face 1555a, while the lower rim 1573 includes a front or anterior face 1553b and a rear or posterior face 1555b. As shown in FIG. 29B, in some embodiments, the entire anterior face of the plate including the upper anterior face of the upper rim 1571 and the lower anterior face of the lower rim 1573) can be straight and non-angled. In other embodiments, portions of the anterior face can be slightly angled, such as in an anterior direction. In addition, as shown in FIG. 29B, in some embodiments, portions of the posterior faces of the plate (e.g., posterior faces 1555a and 1555b) can also be straight and non-angled. In other embodiments, portions of the posterior faces can be angled (e.g., in an anterior direction), such as 5 degrees, 10 degrees, 15 degrees, or more. In some embodiments, the anterior and/or posterior faces of the rims can be angled between 5 and 15 degrees.



FIG. 30 illustrates one example of an allograft spacer 1510 that can be used with the plate in FIGS. 26A-26D. FIG. 31 illustrates on example of a PEEK spacer 1610 that can be used with the same plate. As noted above, the surgeon can desirably choose which spacer to insert into a surgical site.


One skilled in the art will appreciate that any of the plate systems described above can be used with other spinal implants. Among the other implants that can accompany the plate systems include stabilization systems and rod systems, including rod members, hook members, and bone fasteners such as pedicle screws. One skilled in the art will appreciate that any of the plate systems described above can also be used with one another, or can be used multiple times along different segments of the spine. In addition, any of the plate systems described above can be used with a variety of navigation and guidance tools, including those related to neuromonitoring and robotics. Furthermore, one of skill in the art will appreciate that the plate systems described above can be produced in a number of different ways, including in part via 3-D printing methods.


It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Moreover, the improved plate systems and bone screw assemblies and related methods of use need not feature all of the objects, advantages, features and aspects discussed above. Thus, for example, those skilled in the art will recognize that the invention can be embodied or carried out in a manner that achieves or optimizes one advantage or a group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein. In addition, while a number of variations of the invention have been shown and described in detail, other modifications and methods of use, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is contemplated that various combinations or subcombinations of these specific features and aspects of embodiments may be made and still fall within the scope of the invention. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the discussed bone screw assemblies. Thus, it is intended that the present invention cover the modifications and variations of this invention provided that they come within the scope of the appended claims or their equivalents.

Claims
  • 1. A spinal system comprising: a plate member comprising a body having an anterior face, a posterior face, a first lateral side comprising a first side arm and a second lateral side comprising a second side arm, the first and second side arms each including a window that extends along a length of the first and second side arms, respectively, an upper rim extending from the body and a lower rim extending from the body, wherein the upper rim includes an upper screw hole extending through the upper rim and the lower rim includes a lower screw hole extending through the lower rim, wherein the upper screw hole includes a first central axis that passes therethrough and the lower screw hole includes a second central axis that passes therethrough, wherein the upper screw hole is angled in an upward direction through the upper rim and the lower screw hole is angled in a lower direction through the lower rim, wherein a height of each window is greater than a length of each window;a first screw insertable through the upper screw hole, wherein the first screw is oriented in an upward direction, wherein the upper screw hole has an opening at the anterior face of the plate member;a second screw insertable through the lower screw hole, wherein the second screw is oriented in a downward direction, wherein the lower screw hole has an opening at the anterior face of the plate member; anda spacer attachable to the plate member adjacent the posterior face, wherein the spacer comprises an upper surface, a lower surface, a first lateral surface, and a second lateral surface, wherein each of the upper surface and the lower surface includes one or more surface features thereon for engaging bone, wherein the spacer further comprises a first vertical notch that extends from the upper surface to the lower surface of the spacer and a second vertical notch that extends from the upper surface to the lower surface of the spacer, wherein the first vertical notch receives a portion of the first side arm of the plate member and the second vertical notch receives a portion of the second side arm of the plate member, the first and second lateral surfaces each having a portion extending laterally outward and into the respective windows of the first and second side arms,wherein the spacer includes a longitudinal axis that extends vertically from the upper surface of the spacer to the lower surface of the spacer, wherein the first central axis of the upper screw hole at the point of the opening at the anterior face of the plate member is positioned above the upper surface of the spacer, and the second central axis of the lower screw hole at the point of the opening at the anterior face of the plate member is positioned below the lower surface of the spacer.
  • 2. The spinal system of claim 1, wherein the upper rim of the plate member includes an anterior face and a posterior face, wherein each of the anterior face and the posterior face are straight and non-angled.
  • 3. The spinal system of claim 1, wherein the upper rim of the plate member includes an anterior face and a posterior face, wherein at least one of the anterior face and the posterior face are angled.
  • 4. The spinal system of claim 3, wherein the posterior face of the upper rim is angled between 5 and 15 degrees in an anterior direction relative to the longitudinal axis that extends vertically from the upper surface of the spacer to the lower surface of the spacer.
  • 5. The spinal system of claim 1, wherein the plate member includes a rotatable locking mechanism having portions to engage the first screw and the second screw to prevent backout of the first screw and the second screw from the plate member.
  • 6. The spinal system of claim 1, wherein the plate member includes a knife-like edge for inserting partially into a disc space.
  • 7. The spinal system of claim 1, wherein the spacer comprises a natural material.
  • 8. The spinal system of claim 1, wherein the spacer comprises a synthetic material.
  • 9. The spinal system of claim 1, wherein the spacer further comprises an upper chamfer and a lower chamfer, wherein the upper chamfer is configured to accommodate the first screw and the lower chamfer is configured to accommodate the second screw.
  • 10. A spinal system comprising: a plate member comprising a body having an anterior face, a posterior face, a first lateral side comprising a first side arm and a second lateral side comprising a second side arm, the first and second side arms each including a window that extends along a length of the first and second side arms, respectively, an upper rim extending from the body and a lower rim extending from the body, wherein the upper rim includes an upper screw hole extending through the upper rim and the lower rim includes a lower screw hole extending through the lower rim, wherein the upper screw hole includes a first central axis that passes therethrough and the lower screw hole includes a second central axis that passes therethrough, wherein the upper screw hole is angled in an upward direction through the upper rim and the lower screw hole is angled in a lower direction through the lower rim, wherein the plate member further includes a rotatable blocking mechanism positioned between the upper screw hole and the lower screw hole, wherein a height of each window is greater than a length of each window;a first screw insertable through the upper screw hole, wherein the first screw is oriented in an upward direction, wherein the upper screw hole has an opening at the anterior face of the plate member;a second screw insertable through the lower screw hole, wherein the second screw is oriented in a downward direction, wherein the lower screw hole has an opening at the anterior face of the plate member; anda spacer attachable to the plate member adjacent the posterior face, wherein the spacer comprises an upper surface, a lower surface, a first lateral surface, and a second lateral surface, wherein the spacer further comprises a first vertical notch that extends from the upper surface to the lower surface of the spacer and a second vertical notch that extends from the upper surface to the lower surface of the spacer, wherein the first vertical notch receives a portion of the first side arm of the plate member and the second vertical notch receives a portion of the second side arm of the plate member, the first and second lateral surfaces each having a portion extending laterally outward and into the respective windows of the first and second side arms,wherein the spacer includes a longitudinal axis that extends vertically from the upper surface of the spacer to the lower surface of the spacer, wherein the first central axis of the upper screw hole at the point of the opening at the anterior face of the plate member is positioned above the upper surface of the spacer, and the second central axis of the lower screw hole at the point of the opening at the anterior face of the plate member is positioned below the lower surface of the spacer,wherein the plate member includes no further screw holes than the upper screw hole and the lower screw hole for receiving a screw that engages an adjacent vertebra.
  • 11. The spinal system of claim 10, wherein the spacer comprises a C-shaped opening for receiving graft material therein.
  • 12. The spinal system of claim 10, wherein the spacer comprises a tapered upper surface and a tapered lowered surface.
  • 13. The spinal system of claim 10, wherein the spacer is formed of allograft or PEEK.
  • 14. The spinal system of claim 10, wherein the portions of the first and second lateral surfaces extending laterally outward include a first bump out portion and a second bump out portion, respectively, wherein the first bump out portion is securable to the first side arm of the plate member and the second bump out portion is securable to the second side arm of the plate member.
  • 15. The spinal system of claim 10, wherein the plate member includes a first knife-like edge that extends upwardly and a second knife-like edge that extends downwardly.
  • 16. The spinal system of claim 10, wherein the upper rim has a front surface and a back surface, wherein at least one of the front surface and the back surface is angled in an anterior direction.
  • 17. The spinal system of claim 16, wherein both the front surface and the back surface of the upper rim are angled in an anterior direction.
  • 18. The spinal system of claim 10, wherein the upper rim has a front surface and a back surface, wherein both the front surface and the back surface are non-angled.
  • 19. The spinal system of claim 10, wherein the plate member is removably attachable from the spacer.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part application of U.S. Ser. No. 14/320,200, filed Jun. 30, 2014, which is a continuation-in-part application of U.S. Ser. No. 14/190,948, filed Feb. 26, 2014, which is a continuation-in-part application of (i) U.S. Ser. No. 13/785,434, filed Mar. 5, 2013 and of (ii) U.S. Ser. No. 14/085,318, filed Nov. 20, 2013, which is a continuation-in-part application of U.S. patent application Ser. No. 13/785,856, filed Mar. 5, 2013, which is a continuation-in-part of U.S. patent application Ser. No. 13/559,917, filed Jul. 27, 2012, which is a continuation-in-part of Ser. No. 13/267,119, filed Oct. 6, 2011, which claims priority to U.S. Provisional Application 61/535,726, filed on Sep. 16, 2011, the entire contents of which are incorporated by reference.

US Referenced Citations (464)
Number Name Date Kind
1673630 Madge Jun 1928 A
2363405 Eichelberger Nov 1944 A
2596957 Olson May 1952 A
4599086 Doty Jul 1986 A
4743256 Brantigan May 1988 A
4955908 Frey Sep 1990 A
5002576 Fuhrmann Mar 1991 A
5163949 Bonutti Nov 1992 A
5163960 Bonutti Nov 1992 A
5197971 Bonutti Mar 1993 A
5269785 Bonutti Dec 1993 A
5295994 Bonutti Mar 1994 A
5329846 Bonutti Jul 1994 A
5331975 Bonutti Jul 1994 A
5345927 Bonutti Sep 1994 A
5364399 Lowery Nov 1994 A
5397364 Kozak et al. Mar 1995 A
5403317 Bonutti Apr 1995 A
5403348 Bonutti Apr 1995 A
5441538 Bonutti Aug 1995 A
5454365 Bonutti Oct 1995 A
5458641 Jiminez Oct 1995 A
5464426 Bonutti Nov 1995 A
5496348 Bonutti Mar 1996 A
5514153 Bonutti May 1996 A
5514180 Heggeness May 1996 A
5522846 Bonutti Jun 1996 A
5527343 Bonutti Jun 1996 A
5534012 Bonutti Jul 1996 A
5545222 Bonutti Aug 1996 A
5549612 Yapp et al. Aug 1996 A
5549630 Bonutti Aug 1996 A
5549631 Bonutti Aug 1996 A
5569305 Bonutti Oct 1996 A
5577517 Bonutti Nov 1996 A
5584862 Bonutti Dec 1996 A
5593425 Bonutti Jan 1997 A
5609635 Michelson Mar 1997 A
5624462 Bonutti Apr 1997 A
5662710 Bonutti Sep 1997 A
5667520 Bonutti Sep 1997 A
5685826 Bonutti Nov 1997 A
5694951 Bonutti Dec 1997 A
5707390 Bonutti Jan 1998 A
5716325 Bonutti Feb 1998 A
5728159 Stroever Mar 1998 A
5733306 Bonutti Mar 1998 A
5735875 Bonutti Apr 1998 A
5741253 Michelson Apr 1998 A
5814084 Grivas Sep 1998 A
5827318 Bonutti Oct 1998 A
5845645 Bonutti Dec 1998 A
5860997 Bonutti Jan 1999 A
5861041 Tienboon Jan 1999 A
5888196 Bonutti Mar 1999 A
5888219 Bonutti Mar 1999 A
5888223 Bray, Jr. Mar 1999 A
5888227 Cottle Mar 1999 A
5899939 Boyce May 1999 A
5928267 Bonutti Jul 1999 A
5935131 Bonutti Aug 1999 A
5941900 Bonutti Aug 1999 A
5954739 Bonutti Sep 1999 A
5972368 McKay Oct 1999 A
5989289 Coates Nov 1999 A
6010525 Bonutti Jan 2000 A
6017305 Bonutti Jan 2000 A
6025538 Yaccarino, III Feb 2000 A
6033438 Bianchi Mar 2000 A
6042596 Bonutti Mar 2000 A
6045579 Hochshuler Apr 2000 A
6059817 Bonutti May 2000 A
6066175 Henderson et al. May 2000 A
6077292 Bonutti Jun 2000 A
6086593 Bonutti Jul 2000 A
6096081 Grivas Aug 2000 A
6099531 Bonutti Aug 2000 A
6102928 Bonutti Aug 2000 A
6132472 Bonutti Oct 2000 A
RE36974 Bonutti Nov 2000 E
6143033 Paul Nov 2000 A
6146421 Gordon Nov 2000 A
6156037 LeHuec et al. Dec 2000 A
6159234 Bonutti Dec 2000 A
6171236 Bonutti Jan 2001 B1
6171299 Bonutti Jan 2001 B1
6174311 Branch Jan 2001 B1
6174313 Bonutti Jan 2001 B1
6187023 Bonutti Feb 2001 B1
6200347 Anderson et al. Mar 2001 B1
6203565 Bonutti Mar 2001 B1
6206922 Zdeblick et al. Mar 2001 B1
6206923 Boyd Mar 2001 B1
6217617 Bonutti Apr 2001 B1
6231592 Bonutti May 2001 B1
6231610 Geisler May 2001 B1
6235059 Benezech May 2001 B1
6245108 Biscup Jun 2001 B1
6258089 Campbell et al. Jul 2001 B1
6258125 Paul Jul 2001 B1
6261586 Mckay Jul 2001 B1
6270528 Mckay Aug 2001 B1
6277136 Bonutti Aug 2001 B1
6287325 Bonutti Sep 2001 B1
6294187 Boyce Sep 2001 B1
6342074 Simpson Jan 2002 B1
6350283 Michelson Feb 2002 B1
6358266 Bonutti Mar 2002 B1
6361565 Bonutti Mar 2002 B1
6364880 Michelson Apr 2002 B1
6368343 Bonutti Apr 2002 B1
6371988 Pafford Apr 2002 B1
6379385 Kalas Apr 2002 B1
6383186 Michelson May 2002 B1
6398811 Mckay Jun 2002 B1
6409765 Bianchi Jun 2002 B1
6432106 Fraser Aug 2002 B1
6432436 Gertzman Aug 2002 B1
6447516 Bonutti Sep 2002 B1
6451042 Bonutti Sep 2002 B1
6458158 Anderson Oct 2002 B1
6464713 Bonutti Oct 2002 B2
6468289 Bonutti Oct 2002 B1
6468293 Bonutti Oct 2002 B2
6468311 Boyd Oct 2002 B2
6471724 Zdeblick Oct 2002 B2
6475230 Bonutti Nov 2002 B1
6482233 Aebi Nov 2002 B1
6500195 Bonutti Dec 2002 B2
6503267 Bonutti Jan 2003 B2
6503277 Bonutti Jan 2003 B2
6511509 Ford Jan 2003 B1
6520993 James Feb 2003 B2
6540785 Gill et al. Apr 2003 B1
6543455 Bonutti Apr 2003 B2
6548080 Gertzman Apr 2003 B1
6554863 Paul Apr 2003 B2
6558387 Errico May 2003 B2
6558423 Michelson May 2003 B1
6558424 Thalgott May 2003 B2
6562073 Foley May 2003 B2
6569187 Bonutti May 2003 B1
6575982 Bonutti Jun 2003 B1
6579318 Varga Jun 2003 B2
6585750 Bonutti Jul 2003 B2
6592531 Bonutti Jul 2003 B2
6592609 Bonutti Jul 2003 B1
6607534 Bonutti Aug 2003 B2
6610065 Branch Aug 2003 B1
6620181 Bonutti Sep 2003 B1
6629998 Lin Oct 2003 B1
6630000 Bonutti Oct 2003 B1
6632247 Boyer, II Oct 2003 B2
6635073 Bonutti Oct 2003 B2
6638309 Bonutti Oct 2003 B2
6638310 Lin Oct 2003 B2
6652532 Bonutti Nov 2003 B2
6652593 Boyer, II Nov 2003 B2
6660038 Boyer, II Dec 2003 B2
6666889 Commarmond Dec 2003 B1
6666890 Michelson Dec 2003 B2
6676703 Biscup Jan 2004 B2
6682563 Scharf Jan 2004 B2
6695882 Bianchi Feb 2004 B2
6702821 Bonutti Mar 2004 B2
6702856 Bonutti Mar 2004 B2
6706067 Shimp Mar 2004 B2
6709458 Michelson Mar 2004 B2
6719794 Gerber Apr 2004 B2
6719803 Bonutti Apr 2004 B2
6730127 Michelson May 2004 B2
6736853 Bonutti May 2004 B2
6740118 Eisermann et al. May 2004 B2
6761738 Boyd Jul 2004 B1
6761739 Shepard Jul 2004 B2
6764491 Frey Jul 2004 B2
6767369 Boyer, II Jul 2004 B2
6770078 Bonutti Aug 2004 B2
6776800 Boyer, II Aug 2004 B2
6776938 Bonutti Aug 2004 B2
6793658 LeHuec Sep 2004 B2
RE38614 Paul Oct 2004 E
6805714 Sutcliffe Oct 2004 B2
6808585 Boyce Oct 2004 B2
6827740 Michelson Dec 2004 B1
6830570 Frey Dec 2004 B1
6835198 Bonutti Dec 2004 B2
6835206 Jackson Dec 2004 B2
6849093 Michelson Feb 2005 B2
6852126 Ahlgren Feb 2005 B2
6855167 Shimp Feb 2005 B2
6855169 Boyer, II Feb 2005 B2
6860885 Bonutti Mar 2005 B2
6860904 Bonutti Mar 2005 B2
6887272 Shinomiya Apr 2005 B2
6899735 Coates et al. May 2005 B2
6902578 Anderson Jun 2005 B1
6905517 Bonutti Jun 2005 B2
6908466 Bonutti Jun 2005 B1
6929662 Messerli Aug 2005 B1
6932835 Bonutti Aug 2005 B2
6972019 Michelson Dec 2005 B2
6974480 Messerli Dec 2005 B2
6986788 Paul Jan 2006 B2
6989029 Bonutti Jan 2006 B2
6990982 Bonutti Jan 2006 B1
7001432 Keller et al. Feb 2006 B2
7014659 Boyer, II Mar 2006 B2
7018412 Ferreira Mar 2006 B2
7018413 Krüger Mar 2006 B2
7022137 Michelson Apr 2006 B2
7025787 Bryan et al. Apr 2006 B2
7044968 Yaccarino, III May 2006 B1
7044972 Mathys May 2006 B2
7048755 Bonutti May 2006 B2
7048762 Sander May 2006 B1
7048765 Grooms May 2006 B1
7060073 Frey Jun 2006 B2
7060096 Schopf Jun 2006 B1
7070557 Bonutti Jul 2006 B2
7087073 Bonutti Aug 2006 B2
7087082 Paul Aug 2006 B2
7087087 Boyer, II Aug 2006 B2
7094251 Bonutti Aug 2006 B2
7104996 Bonutti Sep 2006 B2
7112222 Fraser Sep 2006 B2
7114500 Bonutti Oct 2006 B2
7115146 Boyer, II Oct 2006 B2
7128753 Bonutti Oct 2006 B1
7134437 Bonutti Nov 2006 B2
7137997 Paul Nov 2006 B2
7147652 Bonutti Dec 2006 B2
7147665 Bryan et al. Dec 2006 B1
7153325 Kim et al. Dec 2006 B2
7163561 Michelson Jan 2007 B2
7172627 Fiere et al. Feb 2007 B2
7192447 Rhoda Mar 2007 B2
7208013 Bonutti Apr 2007 B1
7217273 Bonutti May 2007 B2
7217290 Bonutti May 2007 B2
7223292 Messerli May 2007 B2
7226482 Messerli Jun 2007 B2
7226483 Gerber Jun 2007 B2
7229477 Biscup Jun 2007 B2
7232464 Mathieu et al. Jun 2007 B2
7238203 Bagga Jul 2007 B2
7276082 Zdeblick et al. Oct 2007 B2
7300465 Paul Nov 2007 B2
7309357 Kim Dec 2007 B2
7309359 Trieu Dec 2007 B2
7311719 Bonutti Dec 2007 B2
7320708 Bernstein Jan 2008 B1
7323011 Shepard Jan 2008 B2
7329263 Bonutti Feb 2008 B2
7347873 Paul Mar 2008 B2
7429266 Bonutti Sep 2008 B2
7435262 Michelson Oct 2008 B2
7462200 Bonutti Dec 2008 B2
7473277 Boyer, II Jan 2009 B2
7479160 Branch Jan 2009 B2
7481812 Frey Jan 2009 B2
7481831 Bonutti Jan 2009 B2
7491237 Randall Feb 2009 B2
7510557 Bonutti Mar 2009 B1
7594931 Louis Sep 2009 B2
7601173 Messerli Oct 2009 B2
7615054 Bonutti Nov 2009 B1
7618456 Mathieu et al. Nov 2009 B2
7618460 Boyd Nov 2009 B2
7635390 Bonutti Dec 2009 B1
7637953 Branch Dec 2009 B2
7662184 Edwards Feb 2010 B2
7662185 Alfaro Feb 2010 B2
7708740 Bonutti May 2010 B1
7708741 Bonutti May 2010 B1
7726002 Shimp Jun 2010 B2
7727283 Bonutti Jun 2010 B2
7749229 Bonutti Jul 2010 B1
7753963 Boyer, II Jul 2010 B2
7771475 Michelson Aug 2010 B2
7780670 Bonutti Aug 2010 B2
7794502 Michelson Sep 2010 B2
7806896 Bonutti Oct 2010 B1
7806897 Bonutti Oct 2010 B1
7815682 Peterson Oct 2010 B1
7828852 Bonutti Nov 2010 B2
7833271 Mitchell Nov 2010 B2
7837736 Bonutti Nov 2010 B2
7846207 Lechmann et al. Dec 2010 B2
7850731 Brittan Dec 2010 B2
7854750 Bonutti Dec 2010 B2
7862616 Lechmann et al. Jan 2011 B2
7875076 Mathieu et al. Jan 2011 B2
7879103 Gertzman Jan 2011 B2
7879072 Bonutti Feb 2011 B2
7892236 Bonutti Feb 2011 B1
7892261 Bonutti Feb 2011 B2
7896880 Bonutti Mar 2011 B2
7918888 Hamada Apr 2011 B2
7931690 Bonutti Apr 2011 B1
7931692 Sybert Apr 2011 B2
7938857 Garcia-bengochea May 2011 B2
7959635 Bonutti Jun 2011 B1
7967867 Barreiro Jun 2011 B2
7972381 Michelson Jul 2011 B2
8002833 Fabris Monterumici Aug 2011 B2
8100976 Bray et al. Jan 2012 B2
8105383 Michelson Jan 2012 B2
8114162 Bradley Feb 2012 B1
8128669 Bonutti Mar 2012 B2
8133229 Bonutti Mar 2012 B1
8162977 Bonutti Apr 2012 B2
8273127 Jones Sep 2012 B2
8323343 Michelson Dec 2012 B2
8328872 Duffield Dec 2012 B2
8343222 Cope Jan 2013 B2
8366776 Heinz Feb 2013 B2
8425522 Bonutti Apr 2013 B2
8435300 Messerli May 2013 B2
8486066 Bonutti Jul 2013 B2
8623030 Bonutti Jan 2014 B2
8632552 Bonutti Jan 2014 B2
8641726 Bonutti Feb 2014 B2
8690944 Bonutti Apr 2014 B2
8709085 Lechmann Apr 2014 B2
8739797 Bonutti Jun 2014 B2
8747439 Bonutti Jun 2014 B2
8784495 Bonutti Jul 2014 B2
8795363 Bonutti Aug 2014 B2
8814902 Bonutti Aug 2014 B2
8834490 Bonutti Sep 2014 B2
8840629 Bonutti Sep 2014 B2
8845699 Bonutti Sep 2014 B2
8858557 Bonutti Oct 2014 B2
8932358 Nehls Jan 2015 B1
8956417 Bonutti Feb 2015 B2
9044322 Bonutti Jun 2015 B2
9044341 Bonutti Jun 2015 B2
9050152 Bonutti Jun 2015 B2
20010010021 Boyd Jul 2001 A1
20010023371 Bonutti Sep 2001 A1
20020004683 Michelson Jan 2002 A1
20020010511 Michelson Jan 2002 A1
20020016595 Michelson Feb 2002 A1
20020029055 Bonutti Mar 2002 A1
20020040246 Bonutti Apr 2002 A1
20020091447 Shimp Jul 2002 A1
20020095160 Bonutti Jul 2002 A1
20020106393 Bianchi Aug 2002 A1
20020138143 Grooms Sep 2002 A1
20030009147 Bonutti Jan 2003 A1
20030023260 Bonutti Jan 2003 A1
20030045939 Casutt Mar 2003 A1
20030105528 Shimp et al. Jun 2003 A1
20030125739 Bagga et al. Jul 2003 A1
20030139813 Messerli Jul 2003 A1
20030167091 Scharf Sep 2003 A1
20040010287 Bonutti Jan 2004 A1
20040078078 Shepard Apr 2004 A1
20040097794 Bonutti May 2004 A1
20040098016 Bonutti May 2004 A1
20040138689 Bonutti Jul 2004 A1
20040138690 Bonutti Jul 2004 A1
20040143270 Zucherman et al. Jul 2004 A1
20040143285 Bonutti Jul 2004 A1
20040143332 Krueger et al. Jul 2004 A1
20040172033 Bonutti Sep 2004 A1
20040172133 Gerber Sep 2004 A1
20040176853 Sennett et al. Sep 2004 A1
20040193181 Bonutti Sep 2004 A1
20040230223 Bonutti Nov 2004 A1
20050055098 Zdeblick et al. Mar 2005 A1
20050065607 Gross Mar 2005 A1
20050085913 Fraser Apr 2005 A1
20050149192 Zuchermann et al. Jul 2005 A1
20050149193 Zuchermann et al. Jul 2005 A1
20050159819 McCormack et al. Jul 2005 A1
20050171607 Michelson Aug 2005 A1
20050177236 Mathieu et al. Aug 2005 A1
20050187625 Wolek et al. Aug 2005 A1
20050216059 Bonutti Sep 2005 A1
20050240267 Randall et al. Oct 2005 A1
20050240271 Zubok et al. Oct 2005 A1
20050256574 Paul et al. Nov 2005 A1
20050267534 Bonutti Dec 2005 A1
20060085071 Lechmann et al. Apr 2006 A1
20060129240 Lessar et al. Jun 2006 A1
20060142828 Schorr Jun 2006 A1
20060167495 Bonutti Jul 2006 A1
20060217809 Albert et al. Sep 2006 A1
20060235470 Bonutti Oct 2006 A1
20060241760 Randall Oct 2006 A1
20060265009 Bonutti Nov 2006 A1
20070088441 Duggal et al. Apr 2007 A1
20070123987 Bernstein May 2007 A1
20070135923 Peterman et al. Jun 2007 A1
20070162130 Rashbaum et al. Jul 2007 A1
20070168032 Muhanna et al. Jul 2007 A1
20070208378 Bonutti Sep 2007 A1
20070225806 Squires et al. Sep 2007 A1
20070225812 Gill Sep 2007 A1
20070233253 Bray et al. Oct 2007 A1
20070250167 Bray Oct 2007 A1
20070255414 Melkent Nov 2007 A1
20070270961 Ferguson Nov 2007 A1
20080039873 Bonutti Feb 2008 A1
20080046090 Paul Feb 2008 A1
20080047567 Bonutti Feb 2008 A1
20080051890 Waugh et al. Feb 2008 A1
20080051907 Marik Feb 2008 A1
20080058822 Bonutti Mar 2008 A1
20080065140 Bonutti Mar 2008 A1
20080103519 Bonutti May 2008 A1
20080108916 Bonutti May 2008 A1
20080114399 Bonutti May 2008 A1
20080125865 Abdelgany May 2008 A1
20080133013 Duggal et al. Jun 2008 A1
20080140011 Bonutti Jun 2008 A1
20080140117 Bonutti Jun 2008 A1
20080154379 Steiner Jun 2008 A1
20080161925 Brittan Jul 2008 A1
20080188940 Cohen Aug 2008 A1
20080249569 Waugh Oct 2008 A1
20090076608 Gordon et al. Mar 2009 A1
20090099661 Bhattacharya Apr 2009 A1
20090101582 Liu Apr 2009 A1
20090210062 Thalgott et al. Aug 2009 A1
20100057206 Duffield Mar 2010 A1
20100145459 McDonough Jun 2010 A1
20100145460 McDonough Jun 2010 A1
20100305704 Messerli Dec 2010 A1
20110004253 Fraser Jan 2011 A1
20110040382 Muhanna Feb 2011 A1
20110087327 Lechmann Apr 2011 A1
20110160864 Messerli Jun 2011 A1
20110202136 Brittan et al. Aug 2011 A1
20110251689 Seifert Oct 2011 A1
20120010623 Bonutti Jan 2012 A1
20120078373 Gamache Mar 2012 A1
20120130495 Duffield May 2012 A1
20120130496 Duffield May 2012 A1
20120179259 McDonough Jul 2012 A1
20120197401 Duncan et al. Aug 2012 A1
20120215226 Bonutti Aug 2012 A1
20120215233 Bonutti Aug 2012 A1
20120221017 Bonutti Aug 2012 A1
20120277873 Kana et al. Nov 2012 A1
20120323330 Kueenzi Dec 2012 A1
20130073047 Laskowitz Mar 2013 A1
20130211523 Southard Aug 2013 A1
20130226185 Bonutti Aug 2013 A1
20130237989 Bonutti Sep 2013 A1
20130274810 Fraser et al. Oct 2013 A1
20130289729 Bonutti Oct 2013 A1
20140012380 Laurence et al. Jan 2014 A1
20140018854 Bonutti Jan 2014 A1
20140025110 Bonutti Jan 2014 A1
20140025111 Bonutti Jan 2014 A1
20140025112 Bonutti Jan 2014 A1
20140039623 Iott et al. Feb 2014 A1
20140228963 Bonutti Aug 2014 A1
20140257380 Bonutti Sep 2014 A1
20104030956 Bonutti Oct 2014
20140343573 Bonutti Nov 2014 A1
Foreign Referenced Citations (10)
Number Date Country
2727003 May 1996 FR
2006513752 Apr 2006 JP
2012501744 Jan 2012 JP
2012508043 Apr 2012 JP
1997023175 Jul 1997 WO
1999063914 Dec 1999 WO
03032812 Apr 2003 WO
2005007040 Jan 2005 WO
2007098288 Aug 2007 WO
2008014258 Jan 2008 WO
Non-Patent Literature Citations (8)
Entry
U.S. Appl. No. 60/777,663, filed Feb. 27, 2006, Messerli.
U.S. Appl. No. 60/777,732, filed Feb. 27, 2006, Messerli et al.
U.S. Appl. No. 60/838,229, filed Aug. 16, 2006, Hunziker et al.
Guidance Document: Intervertebral Body Fusion Device, U.S. Dept. of Health and Human Services, Food and Drug Administration (Jun. 12, 2007).
M. Spruit et al.,The in vitro stabilizing effect of polyether-etherketone cages versus a titanium cage of similar design for anterior lumbar interbody fusion, 14(8) Eur. Spine J. 752, 752-758 (2005).
P. Schleicher et al., Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion, 17(12) Eur. Spine J. 1757, 1757-1765 (2008).
P.W. Pavlov et al., Anterior lumbar interbody fusion with threaded fusion cages and autologous bone grafts, 9 Eur. Spine J. 224, 224-229 (2000).
Synthes' SynFix Technique Guide device (“SynFix Technique Guide”).
Related Publications (1)
Number Date Country
20140336770 A1 Nov 2014 US
Provisional Applications (1)
Number Date Country
61535726 Sep 2011 US
Continuation in Parts (7)
Number Date Country
Parent 14320200 Jun 2014 US
Child 14341035 US
Parent 14190948 Feb 2014 US
Child 14320200 US
Parent 13785434 Mar 2013 US
Child 14190948 US
Parent 14085318 Nov 2013 US
Child 13785434 US
Parent 13785856 Mar 2013 US
Child 14085318 US
Parent 13559917 Jul 2012 US
Child 13785856 US
Parent 13267119 Oct 2011 US
Child 13559917 US