This disclosure pertains generally to prosthetic devices for repairing and/or replacing native heart valves, and in particular to prosthetic valves for replacing defective mitral valves, as well as methods and devices for delivering and implanting the same within a human heart.
Prosthetic valves have been used for many years to treat cardiac valvular disorders. The native heart valves (i.e., the aortic, pulmonary, tricuspid, and mitral valves) serve many critical functions in assuring the forward flow of an adequate supply of blood through the cardiovascular system. These heart valves can be rendered less effective by congenital malformations, inflammatory processes, infectious conditions, or disease. Such damage to the valves can result in serious cardiovascular compromise or death. For many years the definitive treatment for such disorders was the surgical repair or replacement of the valve during open-heart surgery. Such surgeries are highly invasive and are prone to many complications, however. Therefore, elderly and frail patients with defective heart valves often go untreated. More recently a transvascular technique has been developed for introducing and implanting a prosthetic heart valve using a flexible catheter in a manner that is much less invasive than open-heart surgery.
In this technique, a prosthetic valve is mounted in a crimped state on the end portion of a flexible catheter and advanced through a blood vessel of the patient until the prosthetic valve reaches the implantation site. The prosthetic valve at the catheter tip is then expanded to its functional size at the site of the defective native valve, such as by inflating a balloon on which the prosthetic valve is mounted.
Another known technique for implanting a prosthetic aortic valve is a transapical approach where a small incision is made in the chest wall of a patient and the catheter is advanced through the apex (i.e., bottom tip) of the heart. Like the transvascular approach, the transapical approach can include a balloon catheter having a steering mechanism for delivering a balloon-expandable prosthetic heart valve through an introducer to the aortic annulus. The balloon catheter can include a deflectable segment just proximal to the distal balloon to facilitate positioning of the prosthetic heart valve in the proper orientation within the aortic annulus.
The above techniques and others have provided numerous options for high operative risk patients with aortic valve disease to avoid the consequences of open heart surgery and cardiopulmonary bypass. While devices and procedures for the aortic valve are well-developed, such catheter-based procedures are not necessarily applicable to the mitral valve due to the distinct differences between the aortic and mitral valve.
For example, compared to the aortic valve, which has a relatively round and firm annulus (especially in the case of aortic stenosis), the mitral valve annulus can be relatively less firm and more unstable. Consequently, it may not be possible to secure a prosthetic valve that is designed primarily for the aortic valve within the native mitral valve annulus by relying solely on friction from the radial force of an outer surface of a prosthetic valve pressed against the native mitral annulus. Also, the mitral valve has a complex subvalvular apparatus, e.g., the chordae tendineae and papillary muscles, which is not present in the aortic valve and which can make placement of a prosthetic valve difficult.
Known prosthetic valves for the mitral valve typically include anchoring devices on the outside of an annular frame to assist in anchoring the prosthetic valve to surrounding tissue. Such anchoring devices can limit the ability to crimp the prosthetic valve, which can increase the overall crimp profile of the prosthetic valve. Prior art anchoring devices also tend to increase the rigidity of the prosthetic valve in the crimped state, which can limit the ability to flex/steer the delivery catheter within the patient's vasculature. Moreover, prior art anchoring devices also can be difficult to position at their desired anchoring locations due to the presence of the subvalvular tissue.
Thus, a need exists for transcatheter prosthetic mitral valves that overcome one or more of these disadvantages of the prior art.
In one representative embodiment, a prosthetic valve assembly comprises a valve component comprising a radially compressible and expandable frame and a valve structure supported inside of the frame. The valve structure is configured to allow blood to flow through the valve component in one direction and block the flow of blood in the opposite direction. The assembly further comprises a radially compressible and expandable anchor comprising an annular base and a plurality of cantilevered fixation members extending from the base. The fixation members are configured to pivot inwardly toward the valve component when the valve component is radially expanded within the anchor.
In some embodiments, the valve assembly further comprises a flexible sleeve having a first end secured to the frame of the valve component and a second end secured to the anchor. The sleeve is configured to allow the valve component and the anchor to move between a delivery configuration in which the valve component and the anchor are axially spaced from each other and an operating configuration in which the valve component is positioned co-axially within the anchor.
In some embodiments, the fixation members extend radially outwardly and circumferentially relative to a longitudinal axis of the anchor.
In another representative embodiment, a prosthetic mitral valve assembly for replacing a native mitral valve comprises a valve component comprising a radially compressible and expandable frame and a valve structure supported inside of the frame. The valve structure is configured to allow blood to flow through the valve component in one direction and block the flow of blood in the opposite direction. The assembly further comprises a radially compressible and expandable anchor comprising an annular base and a plurality of cantilevered ventricular fixation members extending from the base, wherein the fixation members are configured to extend radially outside of the native mitral valve leaflets when implanted at the native mitral valve. The assembly can also comprise a flexible connector having a first end portion secured to the frame of the valve component and a second end portion secured to the anchor. The connector is configured to allow the valve component and the anchor to move between a delivery configuration in which the valve component and the anchor are axially spaced from each other and an operating configuration in which the valve component is positioned co-axially within the anchor. The connector has first and second surfaces and is invertable when the valve component is moved from the delivery configuration to the operating configuration such that the first surface is an inner surface and the second surface is an outer surface when the valve component is in the delivery configuration, and the first surface is an outer surface and the second surface is an inner surface when the valve component is in the operating configuration.
In another representative embodiment, a method comprises introducing a delivery apparatus into a patient's body, wherein a prosthetic valve assembly is mounted on a distal end portion of the delivery apparatus; advancing the prosthetic valve assembly into the left ventricle of the heart of the patient; radially expanding an anchor of the prosthetic valve assembly; positioning fixation members of the anchor behind the native mitral valve leaflets and/or the chordae tendineae; and radially expanding a valve component within the anchor, which causes the fixation members to pivot inwardly against the native mitral valve leaflets, thereby clamping the native mitral valve leaflets between the anchor and the valve component.
The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
General Considerations
For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, devices, and systems should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, devices, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.
Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The invention is not restricted to the details of any foregoing embodiments. The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language. For example, operations described sequentially may in some cases be rearranged or performed concurrently.
As used herein, the terms “a”, “an”, and “at least one” encompass one or more of the specified element. That is, if two of a particular element are present, one of these elements is also present and thus “an” element is present. The terms “a plurality of” and “plural” mean two or more of the specified element.
As used herein, the term “and/or” used between the last two of a list of elements means any one or more of the listed elements. For example, the phrase “A, B, and/or C” means “A”, “B”, “C”, “A and B”, “A and C”, “B and C”, or “A, B, and C.”
As used herein, the term “coupled” generally means physically coupled or linked and does not exclude the presence of intermediate elements between the coupled items absent specific contrary language.
The terms “delivery configuration” and “operating configuration” refer to the arrangement of the components of the replacement valve assembly relative to one another, and each term includes both crimped and non-crimped (e.g., expanded) states.
Terms such as “above,” “upper,” “below,” and “lower” are meant only to show the position of some features relative to others as shown in the drawings, and do not necessarily correlate to actual positions or directions of those features when the replacement valve is being delivered and/or is in its implanted configuration or position.
As used herein, the term “proximal” refers to a position, direction, or portion of a device that is closer to the user and further away from the implantation site. As used herein, the term “distal” refers to a position, direction, or portion of a device that is further away from the user and closer to the implantation site. Thus, for example, proximal motion of a device is motion of the device toward the user, while distal motion of the device is motion of the device away from the user. The terms “longitudinal” and “axial” refer to an axis extending in the proximal and distal directions, unless otherwise expressly defined.
Moreover, for the sake of simplicity, the figures may not show the various ways (readily discernable, based on this disclosure, by one of ordinary skill in the art) in which the disclosed system, method, and apparatus can be used in combination with other systems, methods, and apparatuses.
Overview
Described herein are embodiments of prosthetic valves and components thereof that are primarily intended to be implanted at the mitral valve region of a human heart, as well as devices and methods for implanting the same. The prosthetic valves can be used to help restore and/or replace the functionality of a defective native valve. These prosthetic valves are not restricted to use at the native mitral valve annulus, however, and can be used to replace other valves within the heart, such as the tricuspid valve, aortic valve, and pulmonary valve. In some cases, the disclosed devices can also be used to replace a venous valve or generate a valved or valveless fistula or patent foramen ovale (PFO).
Disclosed embodiments of a prosthetic heart valve can be designed for delivery and implantation using minimally invasive techniques. For example, disclosed replacement heart valves can be crimped onto a delivery catheter, navigated through a patient's vasculature, and expanded before or during implantation in a native valve site, such as the native mitral valve. As such, the minimum crimped diameter (e.g., the profile of the crimped replacement valve on the delivery system) can be of utmost importance to the success and/or ease of performing of the procedure.
Disclosed embodiments of a prosthetic heart valve have anchoring structure that is configured to permit anchoring of the prosthetic valve at the mitral position yet does not contribute to the overall crimp profile.
Referring first to
As best shown in
The leaflets 22 can comprise any of various suitable materials, such as natural tissue (e.g., bovine pericardial tissue) or synthetic materials. The leaflets 22 can be mounted to the frame 18 using suitable techniques and mechanisms (e.g., sutures). In some embodiments, leaflets 22 can be sutured to the frame 18 in a tricuspid arrangement, as shown in
The valve component 12 can also include a blood-impermeable skirt or sealing member mounted on the outside and/or the inside of the frame 18. The skirt can be connected to the inner and/or outer surfaces of the frame 18 to form at least one layer or envelope covering some or all of the openings in the frame. The skirt can be connected to the frame 18, for example, by sutures. The skirt can comprise a fabric that is impermeable to blood but can allow for tissue ingrowth. The skirt can comprise synthetic materials, such as polyester material or a biocompatible polymer. One example of a polyester material is polyethylene terephthalate (PET). Another example is expanded polytetrafluoroethylene (ePTFE), either alone, or in combination at least one other material. Alternative materials can also be used. For example, the skirt can comprise biological matter, such as pericardial tissue (e.g., bovine, porcine, or equine pericardium) or other biological tissue.
Additional details regarding components and assembly of prosthetic valves (including techniques for mounting leaflets to the frame) are described, for example, in U.S. Patent Application Publication No. 2009/0276040 A1, U.S. Patent Publication No. 2010/0217382 A1, U.S. Patent Publication No. 2012/0123529 A1, and U.S. Patent Publication No. 2012/0239142 A1, which are incorporated by reference herein.
As best shown in
The anchor 14 can comprise a shape-memory material, such as Nitinol, to enable self-expansion from the radially compressed state to the expanded state. In other embodiments, the anchor 14 can be plastically expandable from a radially compressed state to an expanded state by an expansion device, such as an inflatable balloon, for example.
The sleeve 16 can comprise any suitable flexible and/or elastic biocompatible material, such as any of various synthetic fabrics (e.g., PET fabric) or natural tissue (e.g., bovine pericardial tissue). In particular embodiments, the sleeve 16 is non-porous or substantially non-porous to blood and can serve as an outer skirt or sealing member that minimizes or prevents paravalvular leakage along the outside of the valve component 12.
In particular embodiments, the frame 18 of the valve component 12 comprises a plastically-expandable material and the anchor 14 comprises a shape-memory material. The delivery apparatus 100, shown in
The proximal end portions of the sheath 108 and the shaft 104 can be connected to a common handle, which can be configured to permit relative longitudinal and/or rotational movement between the shaft 104 and the sheath 108. The handle can also include a locking or latching mechanism that allows a user to selectively lock the longitudinal and/or rotational position of the shaft relative to the sheath or vice versa.
In some cases, for safety and/or other reasons, the disclosed prosthetic devices may be delivered from the atrial side of the atrioventricular valve annulus. Delivery from the atrial side of the native valve annulus can be accomplished in various manners. For example, a transatrial approach can be made through an atrial wall, which can be accessed, for example, by an incision through the chest. Atrial delivery can also be made intravascularly, such as from a pulmonary vein. The prosthetic valve assembly can be delivered to the right atrium via the inferior or superior vena cava. In some cases, left atrial delivery can be made via a trans-septal approach, as described in detail below. In a trans-septal approach, an incision can be made in the atrial portion of the septum to allow access to the left atrium from the right atrium. The prosthetic valve assembly can also be delivered via a transventricular approach (through an incision in the chest and in the wall of the left ventricle), or a transfemoral approach (through the femoral artery and the aorta).
To deliver the prosthetic valve assembly 10 to the native mitral valve annulus, the valve component 12 is crimped onto the balloon 106 and the anchor 14 is loaded into the sheath 108 and retained in a radially compressed state. Delivery and placement of the prosthetic valve assembly can be angularly independent, such that the prosthetic valve assembly does not require any special rotational alignment relative to the longitudinal axis of the prosthetic valve assembly. Thus, during delivery, the prosthetic valve assembly may not require any special rotational placement so as to align the ventricular anchors with particular anatomical landmarks (such as the native valve leaflets, particular portions thereof, native valve commissures, chordae tendineae, and/or location of the aortic valve).
The delivery apparatus 100 (with the valve component 12 crimped onto the balloon 106 and the anchor 14 within the sheath 108) can be advanced through the outer catheter 150 and into the left ventricle 54. The delivery apparatus 100 can have a steering mechanism that allows the user to adjust the curvature of the distal end portion of the delivery apparatus such that the distal end portion can be directed toward the native mitral valve 56, as shown in
After adjusting the curvature of the distal end portion of the delivery apparatus 100, the delivery apparatus can be advanced through the native mitral valve 56 until the entire valve assembly 10 is positioned in the left ventricle 58. The sheath 108 can then be retracted in the proximal direction to allow the anchor 14 to self-expand to its radially expanded, functional shape.
Referring next to
Referring next to
Following deployment of the valve component 12, the balloon 106 can be deflated, and the delivery apparatus 100 and the outer catheter 150 can be removed from the body, as shown in
Advantageously, the anchor 14 and the valve component 12 are axially spaced from each other prior to insertion into the patient's body. As such, the anchor and the valve component can be easily crimped and can achieve a relatively small crimped profile that facilitates insertion and delivery through the patient's vasculature.
In the radially expanded, shape-set state (
In the radially expanded, shape-set state (
Referring to
Referring to
The anchor 504 in the illustrated embodiment comprises an annular base or ring 512 comprising a row of diamond shaped cells formed by a plurality of circumferentially extending angled struts. Extending from an outflow end of the ring 512 are a plurality of prongs, arms, or fixation members 514. Each fixation member 514 can comprise two struts 516 that extend from respective cells of the ring 512 and are connected to each other at their ends opposite the ring. The anchor 504 can include an outer skirt 518 (e.g., a fabric skirt) mounted on the outside of the ring 512 and the fixation members 514 to minimize trauma to the native tissue and promote sealing with the valve component 502. Alternatively, the skirt 518 can be on the inside of the anchor or there can be a skirt on the inside and outside of the anchor. As shown, the skirt 518 can have longitudinal slits 520 between the fixation members 514 to allow the fixation members to be placed between the native chordae tendineae.
The sleeve 506 can be connected at one end to the inside of the anchor 504 and at its opposite end to the outside of the frame 508 of the valve component 502. The end of the sleeve 506 that is secured to the frame 508 can form a sealing member on the outside of the frame 508. For example, that end of the sleeve 506 can extend along the outside of the frame 508 and can be folded against itself so as to form an annular sealing member 522 extending around the outside of the frame 508. The sealing member 522 in other words can be formed by an extension portion of the sleeve 506 that includes an inner layer extending along the frame and an outer folded layer. In other embodiments, the sealing member 522 can comprise a single layer of material.
The prosthetic valve assembly 500 can be delivered and implanted in the native mitral valve using the delivery apparatus 100, as previously described.
As noted above, any of the prosthetic valve assemblies disclosed herein can be delivered in a transventricular approach.
In alternative embodiments, the outer anchor of a prosthetic valve assembly (e.g., anchor 14) can have a D-shaped cross-section in a plane perpendicular to the longitudinal axis A of the anchor to better conform to the shape of the native mitral valve annulus.
In some embodiments, the outer anchor of a prosthetic valve assembly (e.g., anchor 14) can be deployed inside of the native leaflets 60, 62 rather than on the outside of the native leaflets. In such embodiments, the outer anchor can have barbs on the outside of the anchor that can engage or penetrate the native leaflets 60, 62 when the outer anchor is deployed.
In some embodiments, the sleeve 16 of a prosthetic valve assembly can comprise a swellable hydrophilic material that can swell upon contact with blood and create a tighter seal with the native leaflets and the valve component 12.
In some embodiments, the outer anchor of a prosthetic valve assembly (e.g., anchor 14) can have barbs or projections on the inner surface of the anchor. The barbs or projections can extend radially inwardly from the inner surface of the anchor and can engage the sleeve 16 or the valve component 12 directly and/or press the native leaflets inwardly against the sleeve 16 or the valve component to help anchor the valve component in place relative to the outer anchor.
In alternative embodiments, any of the prosthetic valve assemblies disclosed herein can include a valve component and an anchor without a flexible sleeve interconnecting the valve component and the anchor. In such embodiments, the valve component and the anchor can be delivered on the same delivery apparatus or on separate delivery apparatuses. For example, when two separate delivery apparatus are used, one delivery apparatus can be used to deliver one component of the valve assembly from one access location (e.g., through the wall of the left ventricle) while the other delivery apparatus can be used to deliver the other component of the valve assembly from another access location (e.g., through the wall of the left atrium or through the atrial septum). Delivery apparatuses that can be used to deliver a valve assembly having a valve component and an anchor that are not connected to each other during delivery are disclosed in U.S. Patent Publication No. US2012/0022633, which is incorporated herein by reference.
In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. I therefore claim as my invention all that comes within the scope and spirit of these claims.
The present application claims the benefit of U.S. Provisional Application No. 62/148,441, filed Apr. 16, 2015, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3409013 | Berry | Nov 1968 | A |
3472230 | Fogarty | Oct 1969 | A |
3548417 | Kisher | Dec 1970 | A |
3587115 | Shiley | Jun 1971 | A |
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3714671 | Edwards et al. | Feb 1973 | A |
3755823 | Hancock | Sep 1973 | A |
4035849 | Angell et al. | Jul 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4297749 | Davis et al. | Nov 1981 | A |
4339831 | Johnson | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4345340 | Rosen | Aug 1982 | A |
4373216 | Klawitter | Feb 1983 | A |
4406022 | Roy | Sep 1983 | A |
4470157 | Love | Sep 1984 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4574803 | Storz | Mar 1986 | A |
4592340 | Boyles | Jun 1986 | A |
4605407 | Black et al. | Aug 1986 | A |
4612011 | Kautzky | Sep 1986 | A |
4643732 | Pietsch et al. | Feb 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4692164 | Dzemeshkevich et al. | Sep 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4759758 | Gabbay | Jul 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4787901 | Baykut | Nov 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4829990 | Thuroff et al. | May 1989 | A |
4851001 | Taheri | Jul 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4922905 | Strecker | May 1990 | A |
4979939 | Shiber | Dec 1990 | A |
4986830 | Owens et al. | Jan 1991 | A |
4994077 | Dobben | Feb 1991 | A |
5007896 | Shiber | Apr 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5047041 | Sammuels | Sep 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5080668 | Bolz et al. | Jan 1992 | A |
5085635 | Cragg | Feb 1992 | A |
5089015 | Ross | Feb 1992 | A |
5108370 | Walinsky | Apr 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5163953 | Vince | Nov 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5192297 | Hull | Mar 1993 | A |
5232446 | Amey | Aug 1993 | A |
5266073 | Wall | Nov 1993 | A |
5282847 | Trescony et al. | Feb 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5360444 | Kusuhara | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411055 | Kane | May 1995 | A |
5411522 | Trott | May 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5480424 | Cox | Jan 1996 | A |
5500014 | Quijano et al. | Mar 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5571175 | Vanney et al. | Nov 1996 | A |
5591185 | Kilmer et al. | Jan 1997 | A |
5599305 | Hermann et al. | Feb 1997 | A |
5607464 | Trescony et al. | Mar 1997 | A |
5609626 | Quijano et al. | Mar 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5665115 | Cragg | Sep 1997 | A |
5716417 | Girard et al. | Feb 1998 | A |
5728068 | Leone et al. | Mar 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5756476 | Epstein et al. | May 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5800508 | Goicoechea et al. | Sep 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5855602 | Angell | Jan 1999 | A |
5906619 | Olson et al. | May 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
6027525 | Suh et al. | Feb 2000 | A |
6042607 | Williamson, IV et al. | Mar 2000 | A |
6132473 | Williams et al. | Oct 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171335 | Wheatley et al. | Jan 2001 | B1 |
6174327 | Mertens et al. | Jan 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217585 | Houser et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6245040 | Inderbitzen et al. | Jun 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6287339 | Vazquez et al. | Sep 2001 | B1 |
6299637 | Shaolian | Oct 2001 | B1 |
6302906 | Goecoechea et al. | Oct 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6350277 | Kocur | Feb 2002 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6440164 | Di Matteo et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6468660 | Ogle | Oct 2002 | B2 |
6482228 | Norred | Nov 2002 | B1 |
6488704 | Connelly et al. | Dec 2002 | B1 |
6527979 | Constantz | Mar 2003 | B2 |
6569196 | Vesely et al. | May 2003 | B1 |
6575959 | Sarge et al. | Jun 2003 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6605112 | Moll | Aug 2003 | B1 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6790229 | Berreklouw | Sep 2004 | B1 |
6830584 | Seguin | Dec 2004 | B1 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6974476 | McGuckin, Jr. et al. | Dec 2005 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7198646 | Figulla et al. | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7276084 | Yang et al. | Oct 2007 | B2 |
7318278 | Zhang et al. | Jan 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7429269 | Schwammenthal et al. | Sep 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7530253 | Spenser et al. | May 2009 | B2 |
7579381 | Dove | Aug 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7621948 | Herrmann et al. | Nov 2009 | B2 |
7704222 | Wilk et al. | Apr 2010 | B2 |
7736327 | Wilk et al. | Jun 2010 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7914575 | Guyenot et al. | Mar 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8007992 | Tian et al. | Aug 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
8092521 | Figulla et al. | Jan 2012 | B2 |
8118866 | Herrmann et al. | Feb 2012 | B2 |
8167932 | Bourang | May 2012 | B2 |
8206437 | Bonhoeffer et al. | Jun 2012 | B2 |
8216174 | Wilk et al. | Jul 2012 | B2 |
8317858 | Straubinger et al. | Nov 2012 | B2 |
8398704 | Straubinger et al. | Mar 2013 | B2 |
8416643 | Magee | Apr 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8460370 | Zakay | Jun 2013 | B2 |
9532868 | Braido | Jan 2017 | B2 |
9662203 | Sheahan et al. | May 2017 | B2 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020173842 | Buchanan | Nov 2002 | A1 |
20030100939 | Yodfat et al. | May 2003 | A1 |
20030158597 | Quiachon et al. | Aug 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040092858 | Wilson et al. | May 2004 | A1 |
20040133263 | Dusbabek et al. | Jul 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137698 | Salahieh et al. | Jun 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050288766 | Plain et al. | Dec 2005 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060142837 | Haverkost et al. | Jun 2006 | A1 |
20060149350 | Patel et al. | Jul 2006 | A1 |
20060161249 | Realyvasquez et al. | Jul 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060229719 | Marquez et al. | Oct 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060276874 | Wilson et al. | Dec 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070027534 | Bergeim et al. | Feb 2007 | A1 |
20070066863 | Rafiee et al. | Mar 2007 | A1 |
20070088431 | Bourang et al. | Apr 2007 | A1 |
20070100439 | Cangialosi et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070142906 | Figulla et al. | Jun 2007 | A1 |
20070156224 | Cioanta et al. | Jul 2007 | A1 |
20070203503 | Salahieh et al. | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070270943 | Solem | Nov 2007 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080071361 | Tuval et al. | Mar 2008 | A1 |
20080071362 | Tuval et al. | Mar 2008 | A1 |
20080071363 | Tuval et al. | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080071368 | Tuval et al. | Mar 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080082166 | Styrc et al. | Apr 2008 | A1 |
20080114442 | Mitchell et al. | May 2008 | A1 |
20080125853 | Bailey et al. | May 2008 | A1 |
20080154355 | Benichou et al. | Jun 2008 | A1 |
20080161911 | Revuelta et al. | Jul 2008 | A1 |
20080208328 | Antocci et al. | Aug 2008 | A1 |
20080208332 | Lamphere et al. | Aug 2008 | A1 |
20080221672 | Lamphere et al. | Sep 2008 | A1 |
20080255660 | Guyenot et al. | Oct 2008 | A1 |
20080255661 | Straubinger et al. | Oct 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090054968 | Bonhoeffer et al. | Feb 2009 | A1 |
20090054974 | McGuckin, Jr. et al. | Feb 2009 | A1 |
20090076598 | Salahieh et al. | Mar 2009 | A1 |
20090112309 | Jaramillo et al. | Apr 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090164005 | Dove et al. | Jun 2009 | A1 |
20090171432 | Von Segesser et al. | Jul 2009 | A1 |
20090171447 | Von Segesser et al. | Jul 2009 | A1 |
20090171456 | Kveen et al. | Jul 2009 | A1 |
20090216310 | Straubinger et al. | Aug 2009 | A1 |
20090216313 | Straubinger et al. | Aug 2009 | A1 |
20090216322 | Le et al. | Aug 2009 | A1 |
20090222076 | Figulla et al. | Sep 2009 | A1 |
20090234443 | Ottma et al. | Sep 2009 | A1 |
20090240320 | Tuval et al. | Sep 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090287299 | Tabor et al. | Nov 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20100016958 | St. Goar et al. | Jan 2010 | A1 |
20100042208 | Herrmann et al. | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100131054 | Tuval et al. | May 2010 | A1 |
20100137979 | Tuval et al. | Jun 2010 | A1 |
20100174362 | Straubinger et al. | Jul 2010 | A1 |
20100204781 | Alkhatib | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100262231 | Tuval et al. | Oct 2010 | A1 |
20110015616 | Straubinger et al. | Jan 2011 | A1 |
20110015729 | Jimenez et al. | Jan 2011 | A1 |
20110137397 | Chau et al. | Jun 2011 | A1 |
20110208290 | Straubinger et al. | Aug 2011 | A1 |
20110208297 | Tuval et al. | Aug 2011 | A1 |
20110208298 | Tuval et al. | Aug 2011 | A1 |
20110238159 | Guyenot et al. | Sep 2011 | A1 |
20110288634 | Tuval et al. | Nov 2011 | A1 |
20110319989 | Lane et al. | Dec 2011 | A1 |
20120035722 | Tuval | Feb 2012 | A1 |
20120046741 | Tuval et al. | Feb 2012 | A1 |
20120046742 | Tuval et al. | Feb 2012 | A1 |
20120101570 | Tuval et al. | Apr 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120185039 | Tuval et al. | Jul 2012 | A1 |
20120197386 | Von Segesser et al. | Aug 2012 | A1 |
20120209374 | Bonhoeffer et al. | Aug 2012 | A1 |
20120283823 | Bonhoeffer et al. | Nov 2012 | A1 |
20120296418 | Bonyuet et al. | Nov 2012 | A1 |
20120310336 | Figulla et al. | Dec 2012 | A1 |
20130073035 | Tuval et al. | Mar 2013 | A1 |
20130079869 | Straubinger et al. | Mar 2013 | A1 |
20130190862 | Pintor et al. | Jul 2013 | A1 |
20130197622 | Mitra et al. | Aug 2013 | A1 |
20130253635 | Straubinger et al. | Sep 2013 | A1 |
20130310928 | Morriss et al. | Nov 2013 | A1 |
20140222136 | Geist | Aug 2014 | A1 |
20140343665 | Straubinger et al. | Nov 2014 | A1 |
20140343669 | Lane et al. | Nov 2014 | A1 |
20140364944 | Lutter et al. | Dec 2014 | A1 |
20140379074 | Spence | Dec 2014 | A1 |
20150216657 | Braido | Aug 2015 | A1 |
20150216658 | Braido | Aug 2015 | A1 |
20150359631 | Sheahan et al. | Dec 2015 | A1 |
20160113764 | Sheahan et al. | Apr 2016 | A1 |
20160113766 | Ganesan | Apr 2016 | A1 |
20160302922 | Keidar | Oct 2016 | A1 |
20170042671 | Backus et al. | Feb 2017 | A1 |
20170143485 | Gorman, III et al. | May 2017 | A1 |
20170209264 | Chau et al. | Jul 2017 | A1 |
20170216026 | Quill et al. | Aug 2017 | A1 |
20170224484 | Pintor et al. | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
2246526 | Mar 1973 | DE |
19532846 | Mar 1997 | DE |
19546692 | Jun 1997 | DE |
19857887 | Jul 2000 | DE |
19907646 | Aug 2000 | DE |
10010074 | Oct 2001 | DE |
10049812 | Apr 2002 | DE |
10049813 | Apr 2002 | DE |
10049814 | Apr 2002 | DE |
10049815 | Apr 2002 | DE |
102006052564 | Dec 2007 | DE |
0103546 | Mar 1984 | EP |
0144167 | Jun 1985 | EP |
0592410 | Apr 1994 | EP |
0597967 | May 1994 | EP |
0850607 | Jul 1998 | EP |
1057460 | Dec 2000 | EP |
1088529 | Apr 2001 | EP |
1469797 | Oct 2004 | EP |
1570809 | Sep 2005 | EP |
1653888 | May 2006 | EP |
2777617 | Sep 2014 | EP |
2788217 | Jul 2000 | FR |
2815844 | May 2002 | FR |
2056023 | Mar 1981 | GB |
1271508 | Nov 1986 | SU |
9117720 | Nov 1991 | WO |
9217118 | Oct 1992 | WO |
93001768 | Feb 1993 | WO |
9724080 | Jul 1997 | WO |
9829057 | Jul 1998 | WO |
9933414 | Jul 1999 | WO |
9940964 | Aug 1999 | WO |
9947075 | Sep 1999 | WO |
0018333 | Apr 2000 | WO |
0041652 | Jul 2000 | WO |
0047139 | Aug 2000 | WO |
0128459 | Apr 2001 | WO |
0135878 | May 2001 | WO |
0149213 | Jul 2001 | WO |
0162189 | Aug 2001 | WO |
0154624 | Aug 2001 | WO |
0154625 | Aug 2001 | WO |
0164137 | Sep 2001 | WO |
0176510 | Oct 2001 | WO |
0222054 | Mar 2002 | WO |
0236048 | May 2002 | WO |
0241789 | May 2002 | WO |
0243620 | Jun 2002 | WO |
0247575 | Jun 2002 | WO |
0249540 | Jun 2002 | WO |
03047468 | Jun 2003 | WO |
05034812 | Apr 2005 | WO |
05087140 | Sep 2005 | WO |
05102015 | Nov 2005 | WO |
06014233 | Feb 2006 | WO |
06034008 | Mar 2006 | WO |
06108090 | Oct 2006 | WO |
06111391 | Oct 2006 | WO |
06138173 | Dec 2006 | WO |
08005405 | Jan 2008 | WO |
08035337 | Mar 2008 | WO |
08147964 | Mar 2008 | WO |
08150529 | Dec 2008 | WO |
09024859 | Feb 2009 | WO |
09116041 | Sep 2009 | WO |
Entry |
---|
Int'l. Search Report issued for PCT/US2016/026515, dated Jul. 18, 2016. |
Al-Khaja, N., et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery 3:305-311, Jun. 30, 2009. |
Almagor, M.D., Yaron, et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, vol. 16, No. 6, pp. 1310-1314, Nov. 1, 1990; ISSN 0735-1097. |
Al Zaibag, Muayed, et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenosis,” British Heart Journal, Jan. 1987, vol. 57, No. 1, pp. 51-53. |
Andersen, et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” European Heart Journal (1992), 13, 704-708. |
Andersen, Henning Rud, “History of Percutaneous Aortic Valve Prosthesis,” Herz 34 2009 Nr. 5, Urban & Vogel, pp. 343-346, Skejby University Hospital Department of Cardiology, Aarhus, Denmark. |
Benchimol, Alberto, et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977 vol. 273, No. 1, pp. 55-62. |
Dake, Transluminal Placement of Endovascular Stent-Grafts for the Treatment of Descending Thoracic Aortic Aneurysms, New Engl.J.Med., 1994; 331:1729 34. |
Dotter, M.D., Charles T., “Transluminal Treatment of Arteriosclerotic Obstruction,” University of Oregon's Minthorn Memorial Laboratory for Cardiovascular Research through Radiology, Circulation, vol. XXX, Nov. 1964, pp. 654-670. |
Kolata, Gina, “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” nytimes.com, http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-arteries-gets-a-faili . . . , Jul. 29, 2009, 2 pages. |
Inoue, M.D., Kanji, et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery 87:394-402, 1984. |
Lawrence, Jr., M.D., David D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology 1897; 163: 357-360. |
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154. |
Porstmann, W., et al., “Der Verschluβ des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, im Apr. 1967, pp. 199-203. |
Rashkind, M.D., William J., “Creation of an Atrial Septal Defect Withoput Thoracotomy,” the Journal of the American Medical Association, vol. 196, No. 11, Jun. 13, 1966, pp. 173-174. |
Rashkind, M.D., William J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Interventional Cardiology, pp. 363-367. |
Rösch, M.D., Josef, “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Interv Radiol 2003; 14:841-853. |
Ross, F.R.C.S., D.N., “Aortic Valve Surgery,” Guy's Hospital, London, pp. 192-197, approximately 1968. |
Sabbah, Ph.D., Hani N., et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Journal of Cardiac Surgery, vol. 4, No. 4, pp. 302-309, Dec. 1989; ISSN 0886-0440. |
Selby, M.D., J. Bayne, “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology 1990; 176:535-538. |
Serruys, P.W., et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal (1989) 10, 774-782, pp. 37-45, Jun. 13, 1989. |
Sigwart, Ulrich, “An Overview of Intravascular Stents: Old and New,” Chapter 48, Textbook of Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815. |
Uchida, Barry T., et al., “Modifications of Gianturco Expandable Wire Stents,” AJR:150, May 1988, Dec. 3, 1987, pp. 1185-1187. |
Urban, M.D., Philip, “Coronary Artery Stenting,” Editions Médecine et Hygiène, Genève, 1991, pp. 5-47. |
Watt, A.H., et al. “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology (1986), 21, 227-230. |
Wheatley, M.D., David J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, pp. 415-424, Butterworths 1986. |
Number | Date | Country | |
---|---|---|---|
20160302922 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62148441 | Apr 2015 | US |