Low-profile prosthetic heart valve for replacing a mitral valve

Information

  • Patent Grant
  • 10010417
  • Patent Number
    10,010,417
  • Date Filed
    Friday, April 15, 2016
    8 years ago
  • Date Issued
    Tuesday, July 3, 2018
    6 years ago
Abstract
In one representative embodiment, a prosthetic valve assembly comprises a valve component comprising a radially compressible and expandable frame and a valve structure supported inside of the frame. The valve structure is configured to allow blood to flow through the valve component in one direction and block the flow of blood in the opposite direction. The assembly further comprises a radially compressible and expandable anchor comprising an annular base and a plurality of cantilevered fixation members extending from the base. The fixation members are configured to pivot inwardly toward the valve component when the valve component is radially expanded within the anchor.
Description
FIELD

This disclosure pertains generally to prosthetic devices for repairing and/or replacing native heart valves, and in particular to prosthetic valves for replacing defective mitral valves, as well as methods and devices for delivering and implanting the same within a human heart.


BACKGROUND

Prosthetic valves have been used for many years to treat cardiac valvular disorders. The native heart valves (i.e., the aortic, pulmonary, tricuspid, and mitral valves) serve many critical functions in assuring the forward flow of an adequate supply of blood through the cardiovascular system. These heart valves can be rendered less effective by congenital malformations, inflammatory processes, infectious conditions, or disease. Such damage to the valves can result in serious cardiovascular compromise or death. For many years the definitive treatment for such disorders was the surgical repair or replacement of the valve during open-heart surgery. Such surgeries are highly invasive and are prone to many complications, however. Therefore, elderly and frail patients with defective heart valves often go untreated. More recently a transvascular technique has been developed for introducing and implanting a prosthetic heart valve using a flexible catheter in a manner that is much less invasive than open-heart surgery.


In this technique, a prosthetic valve is mounted in a crimped state on the end portion of a flexible catheter and advanced through a blood vessel of the patient until the prosthetic valve reaches the implantation site. The prosthetic valve at the catheter tip is then expanded to its functional size at the site of the defective native valve, such as by inflating a balloon on which the prosthetic valve is mounted.


Another known technique for implanting a prosthetic aortic valve is a transapical approach where a small incision is made in the chest wall of a patient and the catheter is advanced through the apex (i.e., bottom tip) of the heart. Like the transvascular approach, the transapical approach can include a balloon catheter having a steering mechanism for delivering a balloon-expandable prosthetic heart valve through an introducer to the aortic annulus. The balloon catheter can include a deflectable segment just proximal to the distal balloon to facilitate positioning of the prosthetic heart valve in the proper orientation within the aortic annulus.


The above techniques and others have provided numerous options for high operative risk patients with aortic valve disease to avoid the consequences of open heart surgery and cardiopulmonary bypass. While devices and procedures for the aortic valve are well-developed, such catheter-based procedures are not necessarily applicable to the mitral valve due to the distinct differences between the aortic and mitral valve.


For example, compared to the aortic valve, which has a relatively round and firm annulus (especially in the case of aortic stenosis), the mitral valve annulus can be relatively less firm and more unstable. Consequently, it may not be possible to secure a prosthetic valve that is designed primarily for the aortic valve within the native mitral valve annulus by relying solely on friction from the radial force of an outer surface of a prosthetic valve pressed against the native mitral annulus. Also, the mitral valve has a complex subvalvular apparatus, e.g., the chordae tendineae and papillary muscles, which is not present in the aortic valve and which can make placement of a prosthetic valve difficult.


Known prosthetic valves for the mitral valve typically include anchoring devices on the outside of an annular frame to assist in anchoring the prosthetic valve to surrounding tissue. Such anchoring devices can limit the ability to crimp the prosthetic valve, which can increase the overall crimp profile of the prosthetic valve. Prior art anchoring devices also tend to increase the rigidity of the prosthetic valve in the crimped state, which can limit the ability to flex/steer the delivery catheter within the patient's vasculature. Moreover, prior art anchoring devices also can be difficult to position at their desired anchoring locations due to the presence of the subvalvular tissue.


Thus, a need exists for transcatheter prosthetic mitral valves that overcome one or more of these disadvantages of the prior art.


SUMMARY

In one representative embodiment, a prosthetic valve assembly comprises a valve component comprising a radially compressible and expandable frame and a valve structure supported inside of the frame. The valve structure is configured to allow blood to flow through the valve component in one direction and block the flow of blood in the opposite direction. The assembly further comprises a radially compressible and expandable anchor comprising an annular base and a plurality of cantilevered fixation members extending from the base. The fixation members are configured to pivot inwardly toward the valve component when the valve component is radially expanded within the anchor.


In some embodiments, the valve assembly further comprises a flexible sleeve having a first end secured to the frame of the valve component and a second end secured to the anchor. The sleeve is configured to allow the valve component and the anchor to move between a delivery configuration in which the valve component and the anchor are axially spaced from each other and an operating configuration in which the valve component is positioned co-axially within the anchor.


In some embodiments, the fixation members extend radially outwardly and circumferentially relative to a longitudinal axis of the anchor.


In another representative embodiment, a prosthetic mitral valve assembly for replacing a native mitral valve comprises a valve component comprising a radially compressible and expandable frame and a valve structure supported inside of the frame. The valve structure is configured to allow blood to flow through the valve component in one direction and block the flow of blood in the opposite direction. The assembly further comprises a radially compressible and expandable anchor comprising an annular base and a plurality of cantilevered ventricular fixation members extending from the base, wherein the fixation members are configured to extend radially outside of the native mitral valve leaflets when implanted at the native mitral valve. The assembly can also comprise a flexible connector having a first end portion secured to the frame of the valve component and a second end portion secured to the anchor. The connector is configured to allow the valve component and the anchor to move between a delivery configuration in which the valve component and the anchor are axially spaced from each other and an operating configuration in which the valve component is positioned co-axially within the anchor. The connector has first and second surfaces and is invertable when the valve component is moved from the delivery configuration to the operating configuration such that the first surface is an inner surface and the second surface is an outer surface when the valve component is in the delivery configuration, and the first surface is an outer surface and the second surface is an inner surface when the valve component is in the operating configuration.


In another representative embodiment, a method comprises introducing a delivery apparatus into a patient's body, wherein a prosthetic valve assembly is mounted on a distal end portion of the delivery apparatus; advancing the prosthetic valve assembly into the left ventricle of the heart of the patient; radially expanding an anchor of the prosthetic valve assembly; positioning fixation members of the anchor behind the native mitral valve leaflets and/or the chordae tendineae; and radially expanding a valve component within the anchor, which causes the fixation members to pivot inwardly against the native mitral valve leaflets, thereby clamping the native mitral valve leaflets between the anchor and the valve component.


The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an anchor for a prosthetic valve assembly, according to one embodiment.



FIG. 2 is a side elevation view of a stent for a valve component of a prosthetic valve assembly, according to one embodiment.



FIG. 3 is a top plan view of a valve component of a prosthetic valve assembly, according to one embodiment.



FIGS. 4A-4C are enlarged side views of a prosthetic valve assembly incorporating the anchor of FIG. 1 shown mounted on a delivery apparatus at various stages of deployment, according to one embodiment.



FIGS. 5A-5D show an exemplary method for delivering and implanting the prosthetic valve assembly of FIGS. 4A-4C at the native mitral valve of the heart.



FIG. 6 is a perspective view of another embodiment of an anchor for a prosthetic valve assembly.



FIGS. 7A-7C are enlarged side views of a prosthetic valve assembly incorporating the anchor of FIG. 6 shown mounted on a delivery apparatus at various stages of deployment, according to one embodiment.



FIGS. 8A-8D show an exemplary method for delivering and implanting the prosthetic valve assembly of FIGS. 7A-7C at the native mitral valve of the heart.



FIG. 9A is a perspective view of another embodiment of an anchor for a prosthetic valve assembly shown in a radially expanded, shape-set state.



FIG. 9B is a perspective view of the anchor of FIG. 9A shown in a further expanded state by deployment of a valve component within the anchor.



FIGS. 10A-10D are enlarged side views of a prosthetic valve assembly incorporating the anchor of FIGS. 9A-9B shown mounted on a delivery apparatus at various stages of deployment, according to one embodiment.



FIGS. 11A-11D show an exemplary method for delivering and implanting the prosthetic valve assembly of FIGS. 10A-10D at the native mitral valve of the heart.



FIG. 12A is a perspective view of another embodiment of an anchor for a prosthetic valve assembly shown in a radially expanded, shape-state.



FIG. 12B is a perspective view of the anchor of FIG. 12A shown in a further expanded state by deployment of a valve component within the anchor.



FIGS. 13A-13E are enlarged side views of a prosthetic valve assembly incorporating the anchor of FIGS. 12A-12B shown mounted on a delivery apparatus at various stages of deployment, according to one embodiment.



FIGS. 14A-14E show an exemplary method for delivering and implanting the prosthetic valve assembly of FIGS. 13A-13E at the native mitral valve of the heart.



FIG. 15 is a perspective view of another embodiment of a prosthetic valve assembly and a delivery apparatus.



FIG. 16 shows an exemplary method for delivering and implanting the prosthetic valve assembly of FIGS. 7A-7C at the native mitral valve of the heart via a transventricular approach.





DETAILED DESCRIPTION

General Considerations


For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, devices, and systems should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, devices, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.


Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The invention is not restricted to the details of any foregoing embodiments. The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language. For example, operations described sequentially may in some cases be rearranged or performed concurrently.


As used herein, the terms “a”, “an”, and “at least one” encompass one or more of the specified element. That is, if two of a particular element are present, one of these elements is also present and thus “an” element is present. The terms “a plurality of” and “plural” mean two or more of the specified element.


As used herein, the term “and/or” used between the last two of a list of elements means any one or more of the listed elements. For example, the phrase “A, B, and/or C” means “A”, “B”, “C”, “A and B”, “A and C”, “B and C”, or “A, B, and C.”


As used herein, the term “coupled” generally means physically coupled or linked and does not exclude the presence of intermediate elements between the coupled items absent specific contrary language.


The terms “delivery configuration” and “operating configuration” refer to the arrangement of the components of the replacement valve assembly relative to one another, and each term includes both crimped and non-crimped (e.g., expanded) states.


Terms such as “above,” “upper,” “below,” and “lower” are meant only to show the position of some features relative to others as shown in the drawings, and do not necessarily correlate to actual positions or directions of those features when the replacement valve is being delivered and/or is in its implanted configuration or position.


As used herein, the term “proximal” refers to a position, direction, or portion of a device that is closer to the user and further away from the implantation site. As used herein, the term “distal” refers to a position, direction, or portion of a device that is further away from the user and closer to the implantation site. Thus, for example, proximal motion of a device is motion of the device toward the user, while distal motion of the device is motion of the device away from the user. The terms “longitudinal” and “axial” refer to an axis extending in the proximal and distal directions, unless otherwise expressly defined.


Moreover, for the sake of simplicity, the figures may not show the various ways (readily discernable, based on this disclosure, by one of ordinary skill in the art) in which the disclosed system, method, and apparatus can be used in combination with other systems, methods, and apparatuses.


Overview


Described herein are embodiments of prosthetic valves and components thereof that are primarily intended to be implanted at the mitral valve region of a human heart, as well as devices and methods for implanting the same. The prosthetic valves can be used to help restore and/or replace the functionality of a defective native valve. These prosthetic valves are not restricted to use at the native mitral valve annulus, however, and can be used to replace other valves within the heart, such as the tricuspid valve, aortic valve, and pulmonary valve. In some cases, the disclosed devices can also be used to replace a venous valve or generate a valved or valveless fistula or patent foramen ovale (PFO).


Disclosed embodiments of a prosthetic heart valve can be designed for delivery and implantation using minimally invasive techniques. For example, disclosed replacement heart valves can be crimped onto a delivery catheter, navigated through a patient's vasculature, and expanded before or during implantation in a native valve site, such as the native mitral valve. As such, the minimum crimped diameter (e.g., the profile of the crimped replacement valve on the delivery system) can be of utmost importance to the success and/or ease of performing of the procedure.


Disclosed embodiments of a prosthetic heart valve have anchoring structure that is configured to permit anchoring of the prosthetic valve at the mitral position yet does not contribute to the overall crimp profile.


Referring first to FIG. 4A, there is shown a prosthetic valve assembly 10 mounted on a delivery apparatus 100, according to one embodiment. The prosthetic valve assembly 10 in the illustrated embodiment comprises a valve component 12, an outer anchor 14, and a flexible sleeve or connecting portion that is secured at opposite ends to the valve component 12 and the anchor 14. The valve assembly 10 is configured to transform or move between a delivery configuration in which the valve component 12 and the anchor 14 are spaced apart from each other for transcatheter delivery into and through a patient's body (FIG. 4A) and a deployed or operating (functional) configuration in which the valve component is placed co-axially within the anchor and both components are radially expanded (FIG. 4C). The anchor 14 is configured to anchor the valve component to the native heart valve and/or surrounding tissue, as further described below.


As best shown in FIGS. 2-3, the valve component 12 comprises a stent or frame 18 and a valve structure 20 comprising one or more leaflets 22 supported by the frame. The frame 18 can have a wire mesh-like configuration and can be radially collapsible and expandable between a radially expanded state and a radially compressed state to enable delivery and implantation at an atrioventricular valve region of the heart (i.e., at the mitral or tricuspid valve region). The wire mesh can include metal wires or struts arranged in a lattice pattern, such as a sawtooth or zig-zag pattern, but other patterns may also be used. The frame 18 can comprise a shape-memory material, such as Nitinol, to enable self-expansion from the radially compressed state to the expanded state. In other embodiments, the frame 18 can be plastically expandable from a radially compressed state to an expanded state by an expansion device, such as an inflatable balloon, for example. Such plastically expanding frames can comprise stainless steel, chromium alloys, and/or other suitable materials.


The leaflets 22 can comprise any of various suitable materials, such as natural tissue (e.g., bovine pericardial tissue) or synthetic materials. The leaflets 22 can be mounted to the frame 18 using suitable techniques and mechanisms (e.g., sutures). In some embodiments, leaflets 22 can be sutured to the frame 18 in a tricuspid arrangement, as shown in FIG. 3.


The valve component 12 can also include a blood-impermeable skirt or sealing member mounted on the outside and/or the inside of the frame 18. The skirt can be connected to the inner and/or outer surfaces of the frame 18 to form at least one layer or envelope covering some or all of the openings in the frame. The skirt can be connected to the frame 18, for example, by sutures. The skirt can comprise a fabric that is impermeable to blood but can allow for tissue ingrowth. The skirt can comprise synthetic materials, such as polyester material or a biocompatible polymer. One example of a polyester material is polyethylene terephthalate (PET). Another example is expanded polytetrafluoroethylene (ePTFE), either alone, or in combination at least one other material. Alternative materials can also be used. For example, the skirt can comprise biological matter, such as pericardial tissue (e.g., bovine, porcine, or equine pericardium) or other biological tissue.


Additional details regarding components and assembly of prosthetic valves (including techniques for mounting leaflets to the frame) are described, for example, in U.S. Patent Application Publication No. 2009/0276040 A1, U.S. Patent Publication No. 2010/0217382 A1, U.S. Patent Publication No. 2012/0123529 A1, and U.S. Patent Publication No. 2012/0239142 A1, which are incorporated by reference herein.


As best shown in FIG. 1, the outer anchor 14 comprises an annular ring or base 24 at a lower end of the anchor. The ring 24 can be comprised of a plurality of struts 26 arranged in a lattice configuration that allows the anchor to be radially collapsible and expandable between a radially expanded state and a radially compressed state to enable delivery and implantation at an atrioventricular valve region of the heart. Extending from the ring 24 are a plurality of circumferentially spaced, cantilevered fixation members, prongs, or arms, 28. The arms 28 in the illustrated embodiment extend radially outwardly from a longitudinally axis A of the anchor 14 such that the anchor generally has an overall conical shape that flares extending in a direction from the ring 24 toward the opposite end of the anchor.


The anchor 14 can comprise a shape-memory material, such as Nitinol, to enable self-expansion from the radially compressed state to the expanded state. In other embodiments, the anchor 14 can be plastically expandable from a radially compressed state to an expanded state by an expansion device, such as an inflatable balloon, for example.


The sleeve 16 can comprise any suitable flexible and/or elastic biocompatible material, such as any of various synthetic fabrics (e.g., PET fabric) or natural tissue (e.g., bovine pericardial tissue). In particular embodiments, the sleeve 16 is non-porous or substantially non-porous to blood and can serve as an outer skirt or sealing member that minimizes or prevents paravalvular leakage along the outside of the valve component 12.


In particular embodiments, the frame 18 of the valve component 12 comprises a plastically-expandable material and the anchor 14 comprises a shape-memory material. The delivery apparatus 100, shown in FIG. 4A, is one example of a delivery apparatus for delivering and deploying an assembly 10 comprising a plastically-expandable frame 18 and a self-expandable anchor 14. As shown, the delivery apparatus 100 can comprise a balloon catheter 102 comprising an elongated shaft 104 and an inflatable balloon 106 (or equivalent expansion mechanism) mounted on the distal end portion of the shaft 104. The valve component 12 is shown crimped onto the balloon 106 for delivery into a patient's body. The delivery apparatus 100 can also include a delivery sheath 108 that is configured to receive and retain the anchor 14 in a crimped, radially compressed state for delivery into the patient's body.


The proximal end portions of the sheath 108 and the shaft 104 can be connected to a common handle, which can be configured to permit relative longitudinal and/or rotational movement between the shaft 104 and the sheath 108. The handle can also include a locking or latching mechanism that allows a user to selectively lock the longitudinal and/or rotational position of the shaft relative to the sheath or vice versa.


In some cases, for safety and/or other reasons, the disclosed prosthetic devices may be delivered from the atrial side of the atrioventricular valve annulus. Delivery from the atrial side of the native valve annulus can be accomplished in various manners. For example, a transatrial approach can be made through an atrial wall, which can be accessed, for example, by an incision through the chest. Atrial delivery can also be made intravascularly, such as from a pulmonary vein. The prosthetic valve assembly can be delivered to the right atrium via the inferior or superior vena cava. In some cases, left atrial delivery can be made via a trans-septal approach, as described in detail below. In a trans-septal approach, an incision can be made in the atrial portion of the septum to allow access to the left atrium from the right atrium. The prosthetic valve assembly can also be delivered via a transventricular approach (through an incision in the chest and in the wall of the left ventricle), or a transfemoral approach (through the femoral artery and the aorta).


To deliver the prosthetic valve assembly 10 to the native mitral valve annulus, the valve component 12 is crimped onto the balloon 106 and the anchor 14 is loaded into the sheath 108 and retained in a radially compressed state. Delivery and placement of the prosthetic valve assembly can be angularly independent, such that the prosthetic valve assembly does not require any special rotational alignment relative to the longitudinal axis of the prosthetic valve assembly. Thus, during delivery, the prosthetic valve assembly may not require any special rotational placement so as to align the ventricular anchors with particular anatomical landmarks (such as the native valve leaflets, particular portions thereof, native valve commissures, chordae tendineae, and/or location of the aortic valve).



FIGS. 4A-4C and 5A-5D show an exemplary process for delivering the prosthetic valve assembly 10 via a trans-septal approach. As show in FIG. 5A, a delivery assembly can include an outer catheter 150, which can be advanced into the right atrium 50 (such as via the inferior vena cava) and then used to create a puncture through the intra-atrial septum 52. The outer catheter 150 can be advanced through the septum until a distal end portion of the outer catheter extends into the left atrium 54.


The delivery apparatus 100 (with the valve component 12 crimped onto the balloon 106 and the anchor 14 within the sheath 108) can be advanced through the outer catheter 150 and into the left ventricle 54. The delivery apparatus 100 can have a steering mechanism that allows the user to adjust the curvature of the distal end portion of the delivery apparatus such that the distal end portion can be directed toward the native mitral valve 56, as shown in FIG. 5A. The steering mechanism can comprise, for example, one or more pull wires having distal ends fixed at a location along the distal end portion of the delivery apparatus and proximal ends operatively coupled to an adjustment knob on the handle. Further details of a steering mechanism and other components of a delivery apparatus that can be implemented in the delivery apparatus 100 are disclosed in U.S. Publication No. 2012/0239142 A1.


After adjusting the curvature of the distal end portion of the delivery apparatus 100, the delivery apparatus can be advanced through the native mitral valve 56 until the entire valve assembly 10 is positioned in the left ventricle 58. The sheath 108 can then be retracted in the proximal direction to allow the anchor 14 to self-expand to its radially expanded, functional shape. FIGS. 4A and 5A show the anchor 14 in the expanded, shape-set state after retraction of the sheath 108. As shown in FIG. 5A, the delivery apparatus 100 can then be retracted proximally to positioned the arms 28 of the anchor 14 behind the native mitral valve leaflets 60, 62. Positioning of the anchor 14 behind the native leaflets also can allow the arms 28 to extend through and engage portions of the native chordae tendineae 64. In this position, the ring 24 of the anchor 14 desirably is just below the free ends of the native leaflets 60, 62.


Referring next to FIGS. 4B and 5B, the delivery apparatus 100 is further retracted proximally to pull the valve component 12 within the native leaflets 60, 62 and co-axially within the anchor 14. Retracting the valve component 14 also causes the sleeve 16 to become inverted and extend over the valve component 12.


Referring next to FIGS. 4C and 5C, the balloon 106 can be inflated, causing the valve component 12 to radially expand to its functional size. During expansion of the valve component 12, the valve component exerts a force in the radial direction against the ring 24, which in turn causes the arms 28 of the anchor 14 to pivot radially inwardly against the native leaflets 60, 62, as indicated by arrows 152 in FIG. 4B. The arms 28 pinch or compress the native leaflets between the valve component 12 and the anchor 14, thereby anchoring the valve assembly in place within the native mitral valve 56. The inverted sleeve 16 provides an atraumatic landing zone for the valve component 12, shielding the valve component from direct contact with the free ends 30 of the arms 28 during subsequent expansion of the valve component.


Following deployment of the valve component 12, the balloon 106 can be deflated, and the delivery apparatus 100 and the outer catheter 150 can be removed from the body, as shown in FIG. 5D.


Advantageously, the anchor 14 and the valve component 12 are axially spaced from each other prior to insertion into the patient's body. As such, the anchor and the valve component can be easily crimped and can achieve a relatively small crimped profile that facilitates insertion and delivery through the patient's vasculature.



FIGS. 6 and 7A show a prosthetic valve assembly 200, according to another embodiment, comprising a valve component 12, an outer anchor 202, and a flexible sleeve or connecting portion 16 that is secured at opposite ends to the valve component 12 and the anchor 202. The valve assembly 200 can be identical to the valve assembly 10, except that the anchor 14 of FIG. 1 is replaced with the anchor 202. Thus, components that are common to the valve assembly 10 and the valve assembly 200 are given the same respective reference numbers and are not described further. The anchor 202 comprises an annular base or ring 204 and two or more paddle-shaped arms, or fixation members, 206 extending from the ring 204. In the illustrated embodiment, the anchor 202 comprises two fixation members 206 on diametrically opposed sides of the ring 204, although the spacing and number of fixation members 206 can be varied in other embodiments.



FIGS. 7A-7C and 8A-8D show an exemplary process for delivering and implanting the prosthetic valve assembly 200 via a trans-septal procedure. The steps for delivering and implanting the valve assembly 200 can be accomplished as previously described above in connection with the valve assembly 10. When placing the fixation members 206 behind the native leaflets 60, 62, the fixation members 206 can be positioned at the A2 and P2 positions of the native leaflets such that each fixation member is placed between the chordae tendineae of the respective native leaflet. In other embodiments, the fixation members 206 can be placed behind portions of the chordae tendineae. Upon expansion of the valve component 12, the fixation members 206 pivot inwardly and clamp the native tissue (the native leaflets and/or portions of the chordae tendineae) between the valve component 12 and the anchor 202.



FIGS. 9A-9B and 10A-10B show a prosthetic valve assembly 300, according to another embodiment, comprising a valve component 12, an outer anchor 302, and a flexible sleeve or connecting portion 16 that is secured at opposite ends to the valve component 12 and the anchor 302. The valve assembly 300 can be identical to the valve assembly 10, except that the anchor 14 of FIG. 1 is replaced with the anchor 302. Thus, components that are common to the valve assembly 10 and the valve assembly 300 are given the same respective reference numbers and are not described further.



FIG. 9A shows the anchor 302 in a radially expanded, shape-set state after deployment from the delivery sheath 108. FIG. 9B shows the anchor 302 in a further expanded state after the valve component 12 is expanded inside of the anchor 302 (the valve component is omitted in FIG. 9B for purposes of illustration). As shown, the anchor 302 comprises an annular base or ring 304, a plurality of elongated prongs, arms, or fixation members 306 extending from an upper end of the ring 304 (the upper end being the proximal or inflow end of the ring in the illustrated embodiment), and a plurality of prongs, or arms, 308 extending from a lower end of the ring 304 (the lower end being the distal or outflow end of the ring in the illustrated embodiment).


In the radially expanded, shape-set state (FIG. 9A), the fixation members 306 desirably flare or extend radially outwardly from each other and a longitudinal axis A such that the anchor generally has an overall conical shape. The lower prongs 308 desirably curve outwardly away from the lower end of the ring 304. The lower prongs 308 serve as a fulcrum to promote inward pivoting of the fixation members 306 against the native leaflets during deployment. Thus, when the valve component 12 is expanded inside of the anchor 302, the outward radial expansion force against the lower prongs 308 cause the fixation members 306 to pivot inwardly against the native leaflets, which in turn are pressed against the sleeve 16 and the valve component 12 to anchor the valve assembly 300 in place.



FIGS. 10A-10D and 11A-11D show an exemplary process for delivering and implanting the prosthetic valve assembly 300 via a trans-septal procedure. FIGS. 10A and 11A show the sheath 108 extending over and retaining the anchor 302 in a radially compressed state for delivery into the heart. FIGS. 10B and 11B show the sheath 108 in a retracted position and the anchor 302 in a radially expanded, shape-set state so that the fixation members 306 can be placed behind the native leaflets 60, 62 (FIG. 11B). FIGS. 10C and 11C show the valve component 12 moved inside of the anchor 302 and the native leaflets 60, 62. FIGS. 10D and 11D show the anchor 302 further expanded by inflating the balloon 106, which causes the fixation members 306 to press inwardly against the native leaflets 60, 62 to anchor the valve assembly 300 in place. Additional details regarding the steps for delivering and implanting the valve assembly 300 can be the same as previously described above in connection with the valve assembly 10 and therefore are not repeated here.



FIGS. 12A-12B and 13A-13B show a prosthetic valve assembly 400, according to another embodiment, comprising a valve component 12, an outer anchor 402, and a flexible sleeve or connecting portion 16 that is secured at opposite ends to the valve component 12 and the anchor 402. The valve assembly 400 can be identical to the valve assembly 10, except that the anchor 14 of FIG. 1 is replaced with the anchor 402. Thus, components that are common to the valve assembly 10 and the valve assembly 400 are given the same respective reference numbers and are not described further.



FIG. 12A shows the anchor 402 in a radially expanded, shape-set state after deployment from the delivery sheath 108. FIG. 12B shows the anchor 402 in a further expanded state after the valve component 12 is expanded inside of the anchor 402 (the valve component is omitted in FIG. 12B for purposes of illustration). As shown, the anchor 402 comprises an annular base or ring 404, a plurality of elongated prongs, arms, or fixation members 406 extending from an upper end of the ring 404 (the upper end being the proximal or inflow end of the ring in the illustrated embodiment), and a plurality of prongs, or arms, 408 extending from a lower end of the ring 404 (the lower end being the distal or outflow end of the ring in the illustrated embodiment).


In the radially expanded, shape-set state (FIG. 12A), the fixation members 406 desirably flare or extend radially outwardly from each other and curve circumferentially around a longitudinal axis A. The fixation members 406 can have barbs or hooks 410 located on the inside of the curve defined by the respective fixation member. The fixation members 406 are configured to draw or pull the native leaflets 60, 62 and/or the chordae tendineae 64 inwardly toward the sleeve 16 and the valve component 12, as further described below. The lower prongs 408 desirably curve outwardly away from the lower end of the ring 304.



FIGS. 13A-13E and 14A-14E show an exemplary process for delivering and implanting the prosthetic valve assembly 300 via a trans-septal procedure. FIGS. 13A and 14A show the sheath 108 extending over and retaining the anchor 402 in a radially compressed state for delivery into the heart. FIGS. 13B and 14B show the sheath 108 in a retracted position and the anchor 402 in a radially expanded, shape-set state so that the fixation members 406 can be placed behind the native leaflets 60, 62 (FIG. 14B). FIGS. 13C and 14C show the valve component 12 moved inside of the anchor 302 and the native leaflets 60, 62.


Referring to FIGS. 13D and 14D, the delivery apparatus 100 can be rotated in the direction of arrow 412 to rotate the valve assembly 400 relative to the native tissue. Rotation of the valve assembly 400 causes the fixation members 406 to rotate behind and/or through the chordae tendineae 64. Due to the spiral shape of the fixation members 406, the native leaflets and/or the chordae tendineae are drawn inwardly toward the sleeve 16 and the valve component 12. As the fixation members 406 are rotated, at least some of the chordae tendineae pass over and become lodged behind the hooks 410, which help keep the chordae tendineae tensioned in a partially wound or twisted state around the valve component 12 and prevent unwinding of the chordae tendineae and rotation of the valve assembly in the opposite direction once the valve assembly is released from the delivery apparatus 100.


Referring to FIGS. 13E and 14E, after rotating the valve assembly 400, the anchor 402 can be further expanded by inflating the balloon 106, which causes the fixation members 406 to press inwardly against the native leaflets 60, 62. The radial force of the fixation members as well as the engagement of the chordae tendineae through rotation of the fixation members anchors the valve assembly in place within the native mitral valve. The native leaflets 60, 62 are pulled inwardly against the sleeve 16 and/or the valve component 12 through rotation of the fixation members, thereby enhancing the seal of the native tissue against the valve assembly to prevent or minimize paravalvular leakage. Additional details regarding the steps for delivering and implanting the valve assembly 400 can be the same as previously described above in connection with the valve assembly 10 and therefore are not repeated here.



FIG. 15 shows a prosthetic valve assembly 500, according to another embodiment, disposed on a delivery apparatus 100. The prosthetic valve assembly 500 in the illustrated embodiment comprises a valve component 502, an outer anchor 504, and a flexible sleeve or connecting portion 506 that is secured at opposite ends to the valve component 502 and the anchor 504. The valve component 502 comprises an annular frame 508 and a leaflet assembly 510 mounted inside of the frame 508.


The anchor 504 in the illustrated embodiment comprises an annular base or ring 512 comprising a row of diamond shaped cells formed by a plurality of circumferentially extending angled struts. Extending from an outflow end of the ring 512 are a plurality of prongs, arms, or fixation members 514. Each fixation member 514 can comprise two struts 516 that extend from respective cells of the ring 512 and are connected to each other at their ends opposite the ring. The anchor 504 can include an outer skirt 518 (e.g., a fabric skirt) mounted on the outside of the ring 512 and the fixation members 514 to minimize trauma to the native tissue and promote sealing with the valve component 502. Alternatively, the skirt 518 can be on the inside of the anchor or there can be a skirt on the inside and outside of the anchor. As shown, the skirt 518 can have longitudinal slits 520 between the fixation members 514 to allow the fixation members to be placed between the native chordae tendineae.


The sleeve 506 can be connected at one end to the inside of the anchor 504 and at its opposite end to the outside of the frame 508 of the valve component 502. The end of the sleeve 506 that is secured to the frame 508 can form a sealing member on the outside of the frame 508. For example, that end of the sleeve 506 can extend along the outside of the frame 508 and can be folded against itself so as to form an annular sealing member 522 extending around the outside of the frame 508. The sealing member 522 in other words can be formed by an extension portion of the sleeve 506 that includes an inner layer extending along the frame and an outer folded layer. In other embodiments, the sealing member 522 can comprise a single layer of material.


The prosthetic valve assembly 500 can be delivered and implanted in the native mitral valve using the delivery apparatus 100, as previously described.


As noted above, any of the prosthetic valve assemblies disclosed herein can be delivered in a transventricular approach. FIG. 16, for example, shows the prosthetic valve assembly 200 of FIGS. 7A-7C being delivered in a transventricular approach. As shown, an introducer 600 can be inserted through an opening or puncture made in the chest and the left ventricle of the heart, such as at the bare sport on the lower anterior ventricle wall. The delivery apparatus 100 can be inserted through the introducer 600 to position the valve assembly 200 in the left ventricle. The sheath 108 can then be retracted to allow the outer anchor 202 to expand. The shaft 104 can be manipulated to place the fixation members 206 behind the native leaflets and/or native chordae tendineae by advancing the shaft 104 in the distal direction. Further advancement of the shaft 104 in the distal direction causes the sleeve 16 and the valve component 12 to be positioned within the native leaflets, as depicted in FIG. 8B. Thereafter, the valve component 12 can be expanded by inflating the balloon 106.


In alternative embodiments, the outer anchor of a prosthetic valve assembly (e.g., anchor 14) can have a D-shaped cross-section in a plane perpendicular to the longitudinal axis A of the anchor to better conform to the shape of the native mitral valve annulus.


In some embodiments, the outer anchor of a prosthetic valve assembly (e.g., anchor 14) can be deployed inside of the native leaflets 60, 62 rather than on the outside of the native leaflets. In such embodiments, the outer anchor can have barbs on the outside of the anchor that can engage or penetrate the native leaflets 60, 62 when the outer anchor is deployed.


In some embodiments, the sleeve 16 of a prosthetic valve assembly can comprise a swellable hydrophilic material that can swell upon contact with blood and create a tighter seal with the native leaflets and the valve component 12.


In some embodiments, the outer anchor of a prosthetic valve assembly (e.g., anchor 14) can have barbs or projections on the inner surface of the anchor. The barbs or projections can extend radially inwardly from the inner surface of the anchor and can engage the sleeve 16 or the valve component 12 directly and/or press the native leaflets inwardly against the sleeve 16 or the valve component to help anchor the valve component in place relative to the outer anchor.


In alternative embodiments, any of the prosthetic valve assemblies disclosed herein can include a valve component and an anchor without a flexible sleeve interconnecting the valve component and the anchor. In such embodiments, the valve component and the anchor can be delivered on the same delivery apparatus or on separate delivery apparatuses. For example, when two separate delivery apparatus are used, one delivery apparatus can be used to deliver one component of the valve assembly from one access location (e.g., through the wall of the left ventricle) while the other delivery apparatus can be used to deliver the other component of the valve assembly from another access location (e.g., through the wall of the left atrium or through the atrial septum). Delivery apparatuses that can be used to deliver a valve assembly having a valve component and an anchor that are not connected to each other during delivery are disclosed in U.S. Patent Publication No. US2012/0022633, which is incorporated herein by reference.


In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrated embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims. I therefore claim as my invention all that comes within the scope and spirit of these claims.

Claims
  • 1. A method comprising: introducing a delivery apparatus into a patient's body, wherein a prosthetic valve assembly is mounted on a distal end portion of the delivery apparatus;advancing the prosthetic valve assembly into the left ventricle of the heart of the patient;radially expanding an anchor of the prosthetic valve assembly;positioning axially extending fixation members of the anchor behind the native mitral valve leaflets and/or the chordae tendineae; andradially expanding a valve component of the prosthetic valve assembly within the anchor, which causes the fixation members to pivot inwardly against the native mitral valve leaflets, thereby clamping the native mitral valve leaflets between the anchor and the valve component.
  • 2. The method of claim 1, wherein the valve component and the anchor are axially spaced apart from each other on the delivery apparatus when the prosthetic valve assembly is introduced into the body and advanced into the left ventricle, and wherein after radially expanding the anchor but prior to radially expanding the valve component, the valve component is moved axially to a location within the anchor.
  • 3. The method of claim 2, wherein the prosthetic valve assembly comprises a flexible sleeve having a first end portion secured to the valve component and a second end portion secured to the anchor.
  • 4. The method of claim 3, wherein moving the valve component to a location within the anchor comprises retracting the delivery apparatus and the valve component proximally toward the left atrium while the anchor is engaged with the native mitral valve leaflets.
  • 5. The method of claim 4, wherein the valve component is radially compressed on an inflatable balloon prior to being radially expanded and wherein radially expanding the valve component comprises inflating the balloon.
  • 6. The method of claim 2, wherein radially expanding the anchor comprises deploying the anchor from a sheath, which causes the anchor to radially self-expand to an expanded state.
  • 7. The method of claim 2, wherein the anchor has a tapered shape when radially expanded and becomes cylindrical when the valve component is expanded within the anchor.
  • 8. The method of claim 2, further comprising, after radially expanding the anchor and positioning the fixation members behind the native mitral valve leaflets and/or the native chordae tendineae but prior to radially expanding the valve component, rotating the delivery apparatus relative to a longitudinal axis of the delivery apparatus to rotate the anchor, causing the fixation members to twist and pull the native mitral valve leaflets and/or the native chordae tendineae radially inwardly such that subsequent expansion of the valve component in the anchor clamps the native mitral valve leaflets and/or the native chordae tendineae in a twisted and pulled position between the anchor and the valve component.
  • 9. The method of claim 1, wherein the fixation members define a first angle with respect to a central longitudinal axis of the anchor before the fixation members pivot inwardly and a second angle with respect to the axis after the fixation members pivot inwardly, wherein the first angle is larger than the second angle.
  • 10. The method of claim 1, wherein the anchor comprises an annular base and each of the fixation members has a fixed end connected to the annular base and an opposing free end spaced axially from the annular base, the free ends of the fixation members defining an inflow end of the anchor, and wherein the act of expanding the valve component within the anchor comprises expanding the valve component within the annular base, causing the valve component to exert a radial outwardly directed force against the annular base, which causes the free ends of the fixation members to pivot inwardly.
  • 11. A method comprising: introducing a delivery apparatus into a patient's body, wherein a prosthetic valve assembly is mounted on a distal end portion of the delivery apparatus, wherein the prosthetic valve assembly comprises an anchor having a plurality of cantilevered fixation members extending from an annular base of the anchor and a valve component axially separated from the anchor comprising a radially compressible and expandable frame and a valve structure supported inside the frame;radially expanding the anchor;positioning the fixation members behind the native mitral valve leaflets and/or the chordae tendineae of the patient;after positioning the fixation members behind the native mitral valve leaflets and/or the chordae tendineae of the patient, moving the valve component axially to a location within the anchor; andafter moving the valve component axially to a location within the anchor, radially expanding the valve component, which causes the fixation members to pivot inwardly against the native mitral valve leaflets, thereby clamping the native mitral valve leaflets between the anchor and the valve component.
  • 12. The method of claim 11, wherein radially expanding the valve component causes a radially outwardly directed force to be exerted against the base of the anchor, thereby causing the fixation members to pivot inwardly.
  • 13. The method of claim 11, wherein the fixation members define a first angle with respect to a central longitudinal axis of the anchor before the fixation members pivot inwardly and a second angle with respect to the axis after the fixation members pivot inwardly, wherein the first angle is larger than the second angle.
  • 14. The method of claim 11, wherein the anchor in the expanded state is tapered in a direction extending from the base of the anchor toward the fixation members, and wherein radially expanding the valve component causes the anchor to further expand to a cylindrical shape.
  • 15. The method of claim 11, wherein the prosthetic valve assembly further comprises a flexible sleeve having a first end portion secured to the valve component and a second end portion secured to the anchor.
  • 16. The method of claim 11, wherein the prosthetic valve assembly further comprises a flexible, invertible connector having a first surface, a second surface, a first end portion secured to the frame, and a second end portion secured to the anchor, and wherein moving the valve component axially to a location within the anchor causes the connector to move from a first configuration in which the first surface is an inner surface and the second surface is an outer surface to a second configuration in which the first surface is an outer surface and the second surface is an inner surface.
  • 17. The method of claim 11, wherein radially expanding the valve component comprises radially expanding the valve component until the valve component bears against the annular base of the anchor, thereby causing the annular base to expand radially, which in turn causes the fixation members to pivot inwardly.
  • 18. The method of claim 11, wherein the fixation members extend axially from the annular base and are circumferentially spaced apart from each other around the annular base.
  • 19. The method of claim 18, wherein each fixation member has a fixed end connected to the annular base and an opposing free end spaced axially from the annular base.
  • 20. A method comprising: introducing a delivery apparatus into a patient's body, wherein a prosthetic valve assembly is mounted on a distal end portion of the delivery apparatus;advancing the prosthetic valve assembly into the left ventricle of the heart of the patient;radially expanding an anchor of the prosthetic valve assembly, the anchor comprising an annular base defining an outflow end of the anchor and a plurality of cantilevered fixation members extending axially from the annular base, each of the fixation members having a fixed end connected to the annular base and an opposing free end spaced axially from the annular base, the free ends of the fixation members defining an inflow end of the anchor;positioning the fixation members of the anchor behind the native mitral valve leaflets and/or the chordae tendineae;positioning a valve component of the prosthetic valve assembly within the annular base of the anchor; andradially expanding the valve component within the annular base of the anchor, causing the valve component to exert a radial outwardly directed force against the annular base, which causes the free ends of the fixation members to pivot inwardly inwardly against the native mitral valve leaflets, thereby clamping the native mitral valve leaflets between the anchor and the valve component.
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of U.S. Provisional Application No. 62/148,441, filed Apr. 16, 2015, which is incorporated herein by reference.

US Referenced Citations (307)
Number Name Date Kind
3409013 Berry Nov 1968 A
3472230 Fogarty Oct 1969 A
3548417 Kisher Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4470157 Love Sep 1984 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4829990 Thuroff et al. May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Sammuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5108370 Walinsky Apr 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5232446 Amey Aug 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5332402 Teitelbaum Jul 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411522 Trott May 1995 A
5411552 Andersen et al. May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5599305 Hermann et al. Feb 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5639274 Fischell et al. Jun 1997 A
5665115 Cragg Sep 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5800508 Goicoechea et al. Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5906619 Olson et al. May 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968068 Dehdashtian et al. Oct 1999 A
6027525 Suh et al. Feb 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245040 Inderbitzen et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6299637 Shaolian Oct 2001 B1
6302906 Goecoechea et al. Oct 2001 B1
6306141 Jervis Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6350277 Kocur Feb 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 Di Matteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6527979 Constantz Mar 2003 B2
6569196 Vesely et al. May 2003 B1
6575959 Sarge et al. Jun 2003 B1
6582462 Andersen et al. Jun 2003 B1
6605112 Moll Aug 2003 B1
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6790229 Berreklouw Sep 2004 B1
6830584 Seguin Dec 2004 B1
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
7018406 Seguin et al. Mar 2006 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7318278 Zhang et al. Jan 2008 B2
7374571 Pease et al. May 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7462191 Spenser et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7524330 Berreklouw Apr 2009 B2
7530253 Spenser et al. May 2009 B2
7579381 Dove Aug 2009 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7704222 Wilk et al. Apr 2010 B2
7736327 Wilk et al. Jun 2010 B2
7892281 Seguin et al. Feb 2011 B2
7914575 Guyenot et al. Mar 2011 B2
7993394 Hariton et al. Aug 2011 B2
8007992 Tian et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8092521 Figulla et al. Jan 2012 B2
8118866 Herrmann et al. Feb 2012 B2
8167932 Bourang May 2012 B2
8206437 Bonhoeffer et al. Jun 2012 B2
8216174 Wilk et al. Jul 2012 B2
8317858 Straubinger et al. Nov 2012 B2
8398704 Straubinger et al. Mar 2013 B2
8416643 Magee Apr 2013 B2
8449599 Chau et al. May 2013 B2
8460370 Zakay Jun 2013 B2
9532868 Braido Jan 2017 B2
9662203 Sheahan et al. May 2017 B2
20010021872 Bailey et al. Sep 2001 A1
20020032481 Gabbay Mar 2002 A1
20020173842 Buchanan Nov 2002 A1
20030100939 Yodfat et al. May 2003 A1
20030158597 Quiachon et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040039436 Spenser et al. Feb 2004 A1
20040092858 Wilson et al. May 2004 A1
20040133263 Dusbabek et al. Jul 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040260389 Case et al. Dec 2004 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060025857 Bergheim et al. Feb 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060142837 Haverkost et al. Jun 2006 A1
20060149350 Patel et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060195134 Crittenden Aug 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070027534 Bergeim et al. Feb 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070100439 Cangialosi et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070156224 Cioanta et al. Jul 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070270943 Solem Nov 2007 A1
20080065011 Marchand et al. Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080281411 Berreklouw Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090054968 Bonhoeffer et al. Feb 2009 A1
20090054974 McGuckin, Jr. et al. Feb 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090112309 Jaramillo et al. Apr 2009 A1
20090138079 Tuval et al. May 2009 A1
20090157175 Benichou Jun 2009 A1
20090164005 Dove et al. Jun 2009 A1
20090171432 Von Segesser et al. Jul 2009 A1
20090171447 Von Segesser et al. Jul 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090216310 Straubinger et al. Aug 2009 A1
20090216313 Straubinger et al. Aug 2009 A1
20090216322 Le et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100016958 St. Goar et al. Jan 2010 A1
20100042208 Herrmann et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100131054 Tuval et al. May 2010 A1
20100137979 Tuval et al. Jun 2010 A1
20100174362 Straubinger et al. Jul 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100262231 Tuval et al. Oct 2010 A1
20110015616 Straubinger et al. Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110208290 Straubinger et al. Aug 2011 A1
20110208297 Tuval et al. Aug 2011 A1
20110208298 Tuval et al. Aug 2011 A1
20110238159 Guyenot et al. Sep 2011 A1
20110288634 Tuval et al. Nov 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120035722 Tuval Feb 2012 A1
20120046741 Tuval et al. Feb 2012 A1
20120046742 Tuval et al. Feb 2012 A1
20120101570 Tuval et al. Apr 2012 A1
20120123529 Levi et al. May 2012 A1
20120185039 Tuval et al. Jul 2012 A1
20120197386 Von Segesser et al. Aug 2012 A1
20120209374 Bonhoeffer et al. Aug 2012 A1
20120283823 Bonhoeffer et al. Nov 2012 A1
20120296418 Bonyuet et al. Nov 2012 A1
20120310336 Figulla et al. Dec 2012 A1
20130073035 Tuval et al. Mar 2013 A1
20130079869 Straubinger et al. Mar 2013 A1
20130190862 Pintor et al. Jul 2013 A1
20130197622 Mitra et al. Aug 2013 A1
20130253635 Straubinger et al. Sep 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20140222136 Geist Aug 2014 A1
20140343665 Straubinger et al. Nov 2014 A1
20140343669 Lane et al. Nov 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140379074 Spence Dec 2014 A1
20150216657 Braido Aug 2015 A1
20150216658 Braido Aug 2015 A1
20150359631 Sheahan et al. Dec 2015 A1
20160113764 Sheahan et al. Apr 2016 A1
20160113766 Ganesan Apr 2016 A1
20160302922 Keidar Oct 2016 A1
20170042671 Backus et al. Feb 2017 A1
20170143485 Gorman, III et al. May 2017 A1
20170209264 Chau et al. Jul 2017 A1
20170216026 Quill et al. Aug 2017 A1
20170224484 Pintor et al. Aug 2017 A1
Foreign Referenced Citations (66)
Number Date Country
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10010074 Oct 2001 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049814 Apr 2002 DE
10049815 Apr 2002 DE
102006052564 Dec 2007 DE
0103546 Mar 1984 EP
0144167 Jun 1985 EP
0592410 Apr 1994 EP
0597967 May 1994 EP
0850607 Jul 1998 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1469797 Oct 2004 EP
1570809 Sep 2005 EP
1653888 May 2006 EP
2777617 Sep 2014 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2056023 Mar 1981 GB
1271508 Nov 1986 SU
9117720 Nov 1991 WO
9217118 Oct 1992 WO
93001768 Feb 1993 WO
9724080 Jul 1997 WO
9829057 Jul 1998 WO
9933414 Jul 1999 WO
9940964 Aug 1999 WO
9947075 Sep 1999 WO
0018333 Apr 2000 WO
0041652 Jul 2000 WO
0047139 Aug 2000 WO
0128459 Apr 2001 WO
0135878 May 2001 WO
0149213 Jul 2001 WO
0162189 Aug 2001 WO
0154624 Aug 2001 WO
0154625 Aug 2001 WO
0164137 Sep 2001 WO
0176510 Oct 2001 WO
0222054 Mar 2002 WO
0236048 May 2002 WO
0241789 May 2002 WO
0243620 Jun 2002 WO
0247575 Jun 2002 WO
0249540 Jun 2002 WO
03047468 Jun 2003 WO
05034812 Apr 2005 WO
05087140 Sep 2005 WO
05102015 Nov 2005 WO
06014233 Feb 2006 WO
06034008 Mar 2006 WO
06108090 Oct 2006 WO
06111391 Oct 2006 WO
06138173 Dec 2006 WO
08005405 Jan 2008 WO
08035337 Mar 2008 WO
08147964 Mar 2008 WO
08150529 Dec 2008 WO
09024859 Feb 2009 WO
09116041 Sep 2009 WO
Non-Patent Literature Citations (26)
Entry
Int'l. Search Report issued for PCT/US2016/026515, dated Jul. 18, 2016.
Al-Khaja, N., et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery 3:305-311, Jun. 30, 2009.
Almagor, M.D., Yaron, et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, vol. 16, No. 6, pp. 1310-1314, Nov. 1, 1990; ISSN 0735-1097.
Al Zaibag, Muayed, et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenosis,” British Heart Journal, Jan. 1987, vol. 57, No. 1, pp. 51-53.
Andersen, et al., “Transluminal implantation of artificial heart valves. Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs.” European Heart Journal (1992), 13, 704-708.
Andersen, Henning Rud, “History of Percutaneous Aortic Valve Prosthesis,” Herz 34 2009 Nr. 5, Urban & Vogel, pp. 343-346, Skejby University Hospital Department of Cardiology, Aarhus, Denmark.
Benchimol, Alberto, et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977 vol. 273, No. 1, pp. 55-62.
Dake, Transluminal Placement of Endovascular Stent-Grafts for the Treatment of Descending Thoracic Aortic Aneurysms, New Engl.J.Med., 1994; 331:1729 34.
Dotter, M.D., Charles T., “Transluminal Treatment of Arteriosclerotic Obstruction,” University of Oregon's Minthorn Memorial Laboratory for Cardiovascular Research through Radiology, Circulation, vol. XXX, Nov. 1964, pp. 654-670.
Kolata, Gina, “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” nytimes.com, http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-arteries-gets-a-faili . . . , Jul. 29, 2009, 2 pages.
Inoue, M.D., Kanji, et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery 87:394-402, 1984.
Lawrence, Jr., M.D., David D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology 1897; 163: 357-360.
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154.
Porstmann, W., et al., “Der Verschluβ des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, im Apr. 1967, pp. 199-203.
Rashkind, M.D., William J., “Creation of an Atrial Septal Defect Withoput Thoracotomy,” the Journal of the American Medical Association, vol. 196, No. 11, Jun. 13, 1966, pp. 173-174.
Rashkind, M.D., William J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Interventional Cardiology, pp. 363-367.
Rösch, M.D., Josef, “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Interv Radiol 2003; 14:841-853.
Ross, F.R.C.S., D.N., “Aortic Valve Surgery,” Guy's Hospital, London, pp. 192-197, approximately 1968.
Sabbah, Ph.D., Hani N., et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Journal of Cardiac Surgery, vol. 4, No. 4, pp. 302-309, Dec. 1989; ISSN 0886-0440.
Selby, M.D., J. Bayne, “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology 1990; 176:535-538.
Serruys, P.W., et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal (1989) 10, 774-782, pp. 37-45, Jun. 13, 1989.
Sigwart, Ulrich, “An Overview of Intravascular Stents: Old and New,” Chapter 48, Textbook of Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
Uchida, Barry T., et al., “Modifications of Gianturco Expandable Wire Stents,” AJR:150, May 1988, Dec. 3, 1987, pp. 1185-1187.
Urban, M.D., Philip, “Coronary Artery Stenting,” Editions Médecine et Hygiène, Genève, 1991, pp. 5-47.
Watt, A.H., et al. “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology (1986), 21, 227-230.
Wheatley, M.D., David J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, pp. 415-424, Butterworths 1986.
Related Publications (1)
Number Date Country
20160302922 A1 Oct 2016 US
Provisional Applications (1)
Number Date Country
62148441 Apr 2015 US