The examples described herein relate to a low-profile apparatus for transitioning circular polarized electromagnetic waves to linear polarized electromagnetic waves when moving in a first direction and transitioning linear polarized electromagnetic waves to circular polarized electromagnetic waves when moving in a second direction.
Waveguides are used in many radio frequency (RF) applications for low-loss signal propagation. The two most common forms of waveguides are rectangular and circular. It may be desired to transition electromagnetic waves between different propagation modes. For example, there are applications where it is desirable to transition from linear polarized electromagnetic waves to circular polarized electromagnetic waves. Likewise, there are applications where it is desirable to transition from circular polarized electromagnetic waves to linear polarized electromagnetic waves. Rectangular to circular waveguide transitions may be used to transition electromagnetic waves from circular polarized electromagnetic waves to linear polarized electromagnetic waves as the electromagnetic waves travel from a circular waveguide to a rectangular waveguide. Likewise, rectangular to circular waveguide transitions may be used to transition electromagnetic waves from linear polarized electromagnetic waves to circular polarized electromagnetic waves as the electromagnetic waves travel from a rectangular waveguide to a circular waveguide.
As an example, a circular polarized horn antenna, which is used to transmit and receive free-space electromagnetic waves, utilizes a circular waveguide to impedance match (i.e., minimize power loss) with the horn antenna. A circular to rectangular waveguide transition is further useful for transitioning to the RF electronics, which are either rectangular waveguide based or require a rectangular waveguide to coax transition.
Typical rectangular to circular waveguide transitions may be too large and/or may weigh too much to be useful in some applications. Rectangular to circular waveguide transitions are typically constructed by milling, or machining, a bulk piece of metal, such as brass, copper, silver, or aluminum to form the waveguide transition. Typically, the rectangular to circular waveguide transition includes a rectangular waveguide at one end, a circular waveguide at the other end, with a transition length in between with a common centerline axis along the apparatus. The transition length is typically at least a few inches between the waveguides on the ends. The dimensions of typical rectangular to circular waveguide transitions prevent their use in low-profile applications. Another disadvantage of typical rectangular to circular waveguide transitions includes weight and cost. Other disadvantages of typical rectangular to circular waveguide transitions may exist.
The present disclosure is directed to a low-profile apparatus for transitioning circular polarized electromagnetic waves to linear polarized electromagnetic waves when moving in a first direction and transitioning linear polarized electromagnetic waves to circular polarized electromagnetic waves when moving in a second direction.
One example of the present disclosure is an apparatus including a substrate. The apparatus includes an electrical path positioned within the substrate. The apparatus includes a first antenna element attached to the substrate, the first antenna element is capacitively coupled to the electrical path. The apparatus includes a second antenna element attached to the substrate, the second antenna element is capacitively coupled to the electrical path. The apparatus includes a ground plane positioned on the substrate.
Electromagnetic waves propagate along the electrical path in a transverse electromagnetic mode (TEM). Electromagnetic waves transition from circular polarized electromagnetic waves to linear polarized electromagnetic waves when moving in a first direction from the first antenna element to the second antenna element. Electromagnetic waves transition from linear polarized electromagnetic waves to circular polarized electromagnetic waves when moving in a second direction from the second antenna element to the first antenna element.
The apparatus may include a first waveguide having a first interior, the first waveguide attached to the substrate, wherein the first antenna element is positioned within the first interior of the first waveguide. The apparatus may include a second waveguide having a second interior, the second waveguide attached to the substrate, wherein the second antenna element is positioned within the second interior of the second waveguide. The first waveguide having a first central axis and the second waveguide having a second central axis, wherein the second central axis may be offset from the first central axis. The substrate has a first surface and a second surface opposite of the first surface. The ground plane of the apparatus may further comprise a first ground plane positioned on the first surface of the substrate. The apparatus may include a second ground plane positioned on the second surface of the substrate and at least one via may electrically short the second ground plane to the first ground plane. The first antenna element may be positioned on the first surface of the substrate and the second antenna element may be positioned on the second surface of the substrate.
The first antenna element may be attached to the substrate and be positioned within a first interior of the first waveguide and the second antenna element may be attached to the substrate and be positioned within a second interior of the second waveguide. The first waveguide may have a circular cross-section. The first antenna element may be a circular antenna element. The second waveguide may have a rectangular cross-section. The second antenna element may be a rectangular antenna element. The electrical path may include a first microstrip, a second microstrip, and a stripline connected between the first microstrip and the second microstrip, wherein the first antenna element is capacitively coupled to the first microstrip and wherein the second antenna element is capacitively coupled to the second microstrip. The first antenna element may include a slot through the first antenna element. The substrate may be comprised of a plurality of layers and the electrical path may be positioned on an internal layer of the plurality of layers.
One example of the present disclosure is a method that includes providing a circular antenna element and a first ground plane on a top surface of a first layer. The method includes providing a second layer and providing an electrical path on a surface of a third layer. The method includes providing a rectangular antenna element and a second ground plane on a bottom surface of a fourth layer. The method includes bonding together the first layer, the second layer, the third layer, and the fourth layer to form a substrate, wherein the circular antenna element and the first ground plane are positioned on a first surface of the substrate and wherein the rectangular antenna element and the second ground plane are positioned on a second surface of the substrate, the second surface being opposite of the first surface.
The circular antenna element may be capacitively coupled to a first portion of the electrical path on the surface of the third layer and the rectangular antenna element may be capacitively coupled to a second portion of the electrical path on the surface of the third layer. The electrical path may include a first microstrip, a second microstrip, and a stripline connected between the first microstrip and the second microstrip. The first portion of the electrical path may be the first microstrip and the second portion of the electrical path may be the second microstrip. The method may include providing a plurality of vias through the substrate and providing conductive material within the plurality of vias, wherein the plurality of vias electrically short the first ground plane with the second ground plane. The method may include attaching a circular waveguide to the first surface of the substrate, wherein the circular waveguide encloses the circular antenna element. The method may include attaching a rectangular waveguide to the second surface of the substrate, wherein the rectangular waveguide encloses the rectangular antenna element.
The method may include providing the circular antenna element and the first ground plane on the top surface of the first layer comprises removing material from the first layer to form the circular antenna element and the first ground plane or comprises forming the circular antenna element and the first ground plane on the first layer by additive manufacturing. The method may include providing the electrical path on the surface of the third layer comprises removing material from the third layer to form the electrical path or comprises forming the electrical path on the third layer by additive manufacturing. The method may include providing the rectangular antenna element and the second ground plane on the bottom surface of the fourth layer comprises removing material from the fourth layer to form the rectangular antenna element and the second ground plane or comprises forming the rectangular antenna element and the second ground plane on the fourth layer by additive manufacturing.
One example of the present disclosure is a method that includes providing a circular antenna element and a rectangular antenna element on a surface of a first layer. The method includes providing a second layer and providing an electrical path on a surface of a third layer. The method includes providing a ground plane on a surface of a fourth layer. The method includes bonding together the first layer, the second layer, the third layer, and the fourth layer to form a substrate, wherein the circular antenna element and the rectangular antenna element are positioned on a first surface of the substrate and wherein the ground plane is positioned on a second surface of the substrate, the second surface being opposite of the first surface.
The circular antenna element may be capacitively coupled to the electrical path and the rectangular antenna element may be capacitively coupled to electrical path. The method may include attaching a circular waveguide to the first surface of the substrate, wherein the circular waveguide encloses the circular antenna element. The method may include attaching a rectangular waveguide to the first surface of the substrate, wherein the rectangular waveguide encloses the rectangular antenna element.
While the disclosure is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, it should be understood that the disclosure is not intended to be limited to the particular forms disclosed. Rather, the intention is to cover all modifications, equivalents and alternatives falling within the scope of the disclosure as defined by the appended claims.
As used herein, the terms “top,” “bottom,” “first,” and “second” can refer to relative directions or positions of features in the apparatus shown in the Figures. These terms, however, should be construed broadly to include apparatus having other orientations, such as inverted or inclined orientations where top/bottom, over/under, above/below, up/down, and left/right can be interchanged depending on the orientation.
The apparatus 100A includes a first antenna element 160 located on the first surface 111 of the substrate 110 and a second antenna element 170 (best shown in
Electromagnetic waves that travel in a first direction along the substrate 110 between the first and second antenna elements 160, 170 transition from a first propagation mode to a second propagation mode and electromagnetic waves that travel in a second direction along the substrate 110 between the first and second antenna elements 160, 170 transition from a second propagation mode to a first propagation mode. For example, as shown in
The first antenna element 160 of the apparatus 100A may be a circular antenna element that includes a slot 161 through the first antenna element 160. The slot 161 is configured to cause the electromagnetic waves to rotate around the first antenna element 160 resulting in circular polarization. The dimensions of the first antenna element 160, the slot 161 in the first antenna element 160, and the second antenna element 170 may be configured to maximize signal propagation at a desired operating frequency as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.
The apparatus 100A includes a first ground plane 120 located on a portion of the first surface 111 and a second ground plane 130 located on a portion of the second surface 112. One or more vias 190 electrically short the first ground plane 120 to the second ground plane 130 as discussed herein. While the one or more vias 190 electrically short the first ground plane 120 to the second ground plane 130, the one or more vias 190 are not electrically shorted to the electrical path 180 through the substrate 110. Likewise, the one or more vias 190 are not electrically shorted to the first antenna element 160 nor the second antenna element 170.
The apparatus 100A includes a first antenna element 160 located on the first surface 111 of the substrate 110 and a second antenna element 170 located on the second surface 112 of the substrate 110. The apparatus 100A includes an electrical path 180 positioned within the substrate 110. The electrical path 180 may be comprised of a first microstrip 181, a second microstrip 182, and a stripline 183 connected between the first microstrip 181 and the second microstrip 182. As used herein, a microstrip is an electrical path that has a single ground plane above or below the microstrip. A stripline is an electrical path that is positioned between two ground planes. The stripline 183 portion of the electrical path 180 is the portion of the electrical path 180 that is positioned between an area of overlap of the first and second ground planes 120, 130. The first antenna element 160 is capacitively coupled to the first microstrip 181 and the second antenna element 170 is capacitively coupled to the second microstrip 182.
As discussed herein, electromagnetic waves that travel in a second direction along the substrate 110 between the second and first antenna elements 160, 170 transition from a second propagation mode to a first propagation mode. For example, as shown in
The electromagnetic waves, whether they are linear polarized electromagnetic waves or circular polarized electromagnetic waves, that are received by and propagated from the first and second antenna elements 160, 170 propagate in transverse electric (TE) mode through a waveguide. Electromagnetic waves in TE modes have no electric field in the direction of propagation. The electromagnetic waves transition from TE mode to transverse electromagnetic (TEM) mode as the electromagnetic waves propagate along the electrical path 180 in either direction. Electromagnetic waves in TEM mode have neither electric nor magnetic fields in the direction of propagation. Typical rectangular to circular waveguide transitions do not transition the electromagnetic waves from TE mode to TEM mode and back to TE mode. Rather, the electromagnetic waves remain in TE mode as they travel between the collinear waveguides of the transition.
The apparatus 100B includes a first antenna element 160 located on the first surface 111 of the substrate 110 and a second antenna element 170 also located on the first surface 111 of the substrate 110. The apparatus 100B includes an electrical path 184 (shown in
Electromagnetic waves that travel in a first direction along the substrate 110 between the first and second antenna elements 160, 170 transition from a first propagation mode to a second propagation mode and electromagnetic waves that travel in a second direction along the substrate 110 between the first and second antenna elements 160, 170 transition from a second propagation mode to a first propagation mode. For example, electromagnetic waves received by the first antenna element 160 may be received as circular polarized electromagnetic waves, propagate in a first direction along the electrical path 184, and transition to linear polarized electromagnetic waves at the second antenna element 170. Likewise, electromagnetic waves received by the second antenna element 170 may be received as linear polarized electromagnetic waves, propagate in a second direction along the electrical path 184, and transition to circular polarized electromagnetic waves at the first antenna element 160.
The first antenna element 160 of the apparatus 100B may be a circular antenna element that includes a slot 161 through the first antenna element 160. The slot 161 is configured to cause the electromagnetic waves to rotate around the first antenna element 160 resulting in circular polarization. The dimensions of the first antenna element 160, the slot 161 in the first antenna element 160, and the second antenna element 170 may be configured to maximize signal propagation at a desired operating frequency as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.
The apparatus 100B includes a ground plane 125 located on the second surface 112. The apparatus 100B includes a first antenna element 160 located on the first surface 111 of the substrate 110 and a second antenna element 170 also located on the first surface 111 of the substrate 110. The apparatus 100B includes an electrical path 184 positioned within the substrate 110. The entire electrical path 184 is a microstrip. The first antenna element 160 is capacitively coupled to the electrical path 184 and the second antenna element 170 is also capacitively coupled to the electrical path 184.
The apparatus 100C includes a first waveguide 140 located on the first surface 111 of the substrate 110 and a second waveguide 150 located on the second surface 112 of the substrate 110. The first waveguide 140 has a first interior 141 and a first central axis 142. The second waveguide 150 has a second interior 151 and a second central axis 152. The first central axis 142 is offset from the second central axis 152.
The apparatus 100C includes a first antenna element 160 located on the first surface 111 of the substrate 110 within the first interior 141 of the first waveguide 140. In other words, the first waveguide 140 encloses or encircles the first antenna element 160. The apparatus 100C includes a second antenna element 170 located on the second surface 112 of the substrate 110 within the second interior 151 of the second waveguide 150. In other words, the second waveguide encloses or encircles the second antenna element 170. The apparatus 100C includes an electrical path 180 positioned within the substrate 110. The first antenna element 160 is capacitively coupled to the electrical path 180 and the second antenna element 170 is capacitively coupled to the electrical path 180.
As discussed herein, electromagnetic waves that travel in a first direction along the substrate 110 between the first and second antenna elements 160, 170 transition from a first propagation mode to a second propagation mode and electromagnetic waves that travel in a second direction along the substrate 110 between the first and second antenna elements 160, 170 transition from a second propagation mode to a first propagation mode. The first direction is opposite of the second direction. For example, electromagnetic waves received by the first waveguide 140 and the first antenna element 160 are received as circular polarized electromagnetic waves. The electromagnetic waves then propagate in a first direction along the electrical path 180 located within the substrate 110. The electromagnetic waves are then transitioned to linear polarized electromagnetic waves at the second antenna element 170, which then propagate out of the second waveguide 150. The electromagnetic waves that travel in a second direction from the second waveguide 150 and second antenna element 170 to the first antenna element 160 and first waveguide 140 transition from linear polarized electromagnetic waves to circular polarized electromagnetic waves as discussed herein.
The first waveguide 140 may have a circular cross-section and the second waveguide 150 may have a rectangular cross-section. The first antenna element 160 of the apparatus 100C may be a circular antenna element that includes a slot 161 through the first antenna element 160. The slot 161 is configured to cause the electromagnetic waves to rotate around the first antenna element 160 resulting in circular polarization. The dimensions of the first waveguide 140, the first antenna element 160, the slot 161 in the first antenna element 160, the second antenna element 170, and the second waveguide 150 may be configured to maximize signal propagation at a desired operating frequency as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.
The first antenna element 160 is capacitively coupled to an electrical path 180 positioned within the substrate 110. The second antenna element 170 is also capacitively coupled to the electrical path 180 positioned within the substrate 110. Specifically, the first antenna element 160 is capacitively coupled to a first microstrip 181 of the electrical path 180 and the second antenna element 170 is capacitively coupled to a second microstrip 182 of the electrical path 180. A stripline 183 connects the first microstrip 181 with the second microstrip 182. As discussed herein, the stripline 183 is the portion of the electrical path that is positioned between two ground planes 120, 130 (shown in
The first antenna element 160 is capacitively coupled to an electrical path 180 positioned within the substrate 110. The second antenna element 170 is also capacitively coupled to the electrical path 180 positioned within the substrate 110. Specifically, the first antenna element 160 is capacitively coupled to a first microstrip 181 of the electrical path 180 and the second antenna element 170 is capacitively coupled to a second microstrip 182 of the electrical path 180. A stripline 183 connects the first microstrip 181 with the second microstrip 182. As discussed herein, the stripline 183 is the portion of the electrical path that is positioned between two ground planes 120, 130 (shown in
As discussed herein, the substrate 110 of an apparatus (100A, 100B, and 100C) for transitioning electromagnetic waves between different propagation modes may be comprised of a plurality of layers bonded together.
The apparatus 100D includes a first waveguide 140 located on the first surface 111 of the substrate 110 and a second waveguide 150 also located on the first surface 111 of the substrate 110. The first waveguide 140 has a first interior 141 and a first central axis 142. The second waveguide 150 has a second interior 151 and a second central axis 152. The first central axis 142 is offset from the second central axis 152.
The apparatus 100D includes a first antenna element 160 located on the first surface 111 of the substrate 110 within the interior 141 of the first waveguide 140. In other words, the first waveguide 140 encloses or encircles the first antenna element 160. The apparatus 100D includes a second antenna element 170 located on the first surface 111 of the substrate 110 within the interior 151 of the second waveguide 150. In other words, the second waveguide 150 encloses or encircles the second antenna element 170. The apparatus 100D includes an electrical path 180 positioned within the substrate 110. The first antenna element 160 is capacitively coupled to the electrical path 180 and the second antenna element 170 is capacitively coupled to the electrical path 180.
As discussed herein, electromagnetic waves that travel in a first direction along the substrate 110 between the first and second antenna elements 160, 170 transition from a first propagation mode to a second propagation mode and electromagnetic waves that travel in a second direction along the substrate 110 between the first and second antenna elements 160, 170 transition from a second propagation mode to a first propagation mode. For example, electromagnetic waves received by the first waveguide 140 and the first antenna element 160 are received as circular polarized electromagnetic waves. The electromagnetic waves then propagate in a first direction along the electrical path 180 located within the substrate 110. The electromagnetic waves are then transitioned to linear polarized electromagnetic waves at the second antenna element 170, which then propagate out of the second waveguide 150. The electromagnetic waves that travel in a second direction from the second waveguide 150 and second antenna element 170 to the first antenna element 160 and first waveguide 140 transition from linear polarized electromagnetic waves to circular polarized electromagnetic waves as discussed herein.
The first waveguide 140 may have a circular cross-section and the second waveguide 150 may have a rectangular cross-section. The first antenna element 160 of the apparatus 100D may be a circular antenna element that includes a slot 161 through the first antenna element 160. The slot 161 is configured to cause the electromagnetic waves to rotate around the first antenna element 160 resulting in circular polarization. The dimensions of the first waveguide 140, the first antenna element 160, the slot 161 in the first antenna element 160, the second antenna element 170, and the second waveguide 150 may be configured to maximize signal propagation at a desired operating frequency as would be appreciated by one of ordinary skill in the art having the benefit of this disclosure.
The method 300 includes providing an electrical path on a surface of a third layer, at 330. The method 300 may include removing material from the third layer to form the electrical path or forming the electrical path on the third layer by additive manufacturing, at 335. The method 300 includes providing a rectangular antenna element and a second ground plane on a bottom surface of a fourth layer, at 340. The method 300 may include removing material from the fourth layer to form the rectangular antenna element and the second ground plane or forming the rectangular antenna element and the second ground plane on the fourth layer by additive manufacturing, at 345. The method 300 includes bonding together the first layer, the second layer, the third layer, and the fourth layer to form a substrate, wherein the circular antenna element and the first ground plane are positioned on a first surface of the substrate and wherein the rectangular antenna element and the second ground plane are positioned on a second surface of the substrate, the second surface being opposite of the first surface, at 350.
The method 300 may include providing a plurality of vias through the substrate, at 360. The method 300 may include providing conductive material within the plurality of vias, wherein the plurality of vias electrically short the first ground plane to the second ground plane, at 370. The method 300 may include attaching a circular waveguide to the first surface of the substrate, wherein the circular waveguide encloses the circular antenna element, at 380. The method 300 may include attaching a rectangular waveguide to the second surface of the substrate, wherein the rectangular waveguide encloses the rectangular antenna element, at 390.
The method 400 may include attaching a circular waveguide to the first surface of the substrate, wherein the circular waveguide encloses the circular antenna element, at 460. The method 400 may include attaching a rectangular waveguide to the first surface of the substrate, wherein the rectangular waveguide encloses the rectangular antenna element, at 470.
Although this disclosure has been described in terms of certain embodiments, other embodiments that are apparent to those of ordinary skill in the art, including embodiments that do not provide all of the features and advantages set forth herein, are also within the scope of this disclosure. Accordingly, the scope of the present disclosure is defined only by reference to the appended claims and equivalents thereof.